
Position–theta-phase model of hippocampal place cell
activity applied to quantification of running speed
modulation of firing rate
Kathryn McClaina,b,1, David Tingleyb, David J. Heegera,c,1, and György Buzsákia,b,1

aCenter for Neural Science, New York University, New York, NY 10003; bNeuroscience Institute, New York University, New York, NY 10016;
and cDepartment of Psychology, New York University, New York, NY 10003

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved November 18, 2019 (received for review July 24, 2019)

Spiking activity of place cells in the hippocampus encodes the
animal’s position as it moves through an environment. Within a
cell’s place field, both the firing rate and the phase of spiking in
the local theta oscillation contain spatial information. We propose a
position–theta-phase (PTP) model that captures the simultaneous
expression of the firing-rate code and theta-phase code in place cell
spiking. This model parametrically characterizes place fields to com-
pare across cells, time, and conditions; generates realistic place cell
simulation data; and conceptualizes a framework for principled hy-
pothesis testing to identify additional features of place cell activity.
We use the PTP model to assess the effect of running speed in place
cell data recorded from rats running on linear tracks. For the major-
ity of place fields, we do not find evidence for speed modulation of
the firing rate. For a small subset of place fields, we find firing rates
significantly increase or decrease with speed. We use the PTP model
to compare candidate mechanisms of speed modulation in signifi-
cantly modulated fields and determine that speed acts as a gain
control on the magnitude of firing rate. Our model provides a tool
that connects rigorous analysis with a computational framework for
understanding place cell activity.

spatial navigation | phase precession | firing rate variability

Place cells in the rodent hippocampus encode spatial infor-
mation through their spiking activity. As the rodent moves

through an environment, the firing rate of place cells increases at
particular locations, termed “place fields,” suggesting a firing
rate code for position (1). Meanwhile, the local field potential in
the hippocampus is dominated by a 7- to 9-Hz “theta” oscilla-
tion, and place cell spiking is modulated according to the phase
of this oscillation (2). The phase at which spiking occurs pre-
cesses as the animal moves through the place field, a phenomena
known as “phase precession” (2). Two overlapping codes for
position emerge: a rate code and a phase code.
It has been suggested that the phase code is used to identify

the animal’s location, while the firing rate can be used to encode
other variables, such as the speed of the animal’s movement (3).
Indeed, firing rate variability from trial to trial has been a long-
noted and unexplained feature of place cell activity (4–6). In
support of this hypothesis, several papers have reported a posi-
tive correlation between running speed and firing rate of pyra-
midal neurons in the hippocampus (7–9), entorhinal cortex (10–
13), and neocortical neurons (14, 15). Replicability of this effect
in hippocampus has only recently been questioned (16).
Analyzing the influence of additional variables (such as run-

ning speed) on place cell firing is difficult for several practical
reasons. First, the experimenter has only limited control over the
relevant variables (position, running speed, theta phase), making
the behavioral paradigm nearly impossible to design without
introducing additional interfering elements. Second, rodents will
only run a small number of trials on a given day, typically dozens,
giving us limited statistical power for analyzing effects across
multiple dimensions.

Another challenge in understanding this system is the dynamic
interaction between the rate code and phase code. As these codes
combine, different formats of information are conveyed simulta-
neously in place cell spiking. The interaction can produce unin-
tuitive, although entirely predictable, results in traditional analyses
of place cell activity. These practical challenges have hindered the
effort to explain variability in hippocampal firing rates. A com-
putational tool is needed that accounts for the well-established
features of this system and provides a path forward in asking
further questions.
We have drawn from classic generalized linear model (13, 17),

gain control models (18–20), and phase-precession models (21, 22)
to develop a position–theta-phase (PTP) model of place cell ac-
tivity. In this model, spatial input is scaled by theta-phase modu-
lation to determine the firing rate of a place cell. This model has 3
primary utilities:

1) It provides a quantitative description of the relevant features
of place cell activity. The model can be reliably fit with fewer
than 100 spikes. These descriptive statistics can be compared
across time, conditions, and cells.

Significance

The hippocampus is heavily studied in the context of spatial
navigation, and the format of spatial information in the hip-
pocampus is multifaceted and complex. Furthermore, the hip-
pocampus is also thought to contain information about other
important aspects of behavior such as running speed, although
there is not agreement on the nature and magnitude of their
effect. To understand how all of these variables are simulta-
neously represented and used to guide behavior, a theoretical
framework is needed that can be directly applied to the data
we record. We present a model that captures well-established
spatial-encoding features of hippocampal activity and provides
the opportunity to identify and incorporate novel features for
our collective understanding.
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2) The model can easily generate simulated place cell data that
mimic real place cell activity. The simulated data can be used
for analysis on its own, or as statistical grounding in analyses
of real data.

3) It introduces a framework for principled hypothesis testing.
By iteratively adjusting features of the model and using a
model fit comparison with the proposed baseline model, we
can assess the influence of additional modulating variables.

We demonstrate these utilities and use the model to assess
speed modulation in place cells. We find no evidence for speed
modulation in the majority of place fields. For a minority of
place fields, spiking is either positively or negatively modulated
by speed. The modulation appears to act as a gain control on the
overall magnitude of firing, as opposed to other candidate
computations. Our PTP model offers a disciplined tool to sep-
arate physiological mechanisms from spurious statistical arti-
facts that may result from nonintuitive interactions of observed
variables.

Results
Parametric Model of Place Cell Activity.We model place cell activity
as a function of 2 independent inputs: position and theta phase
(Fig. 1A). Place cell activity is canonically described as a Gaussian
function of position over a discrete portion of the environment.
These portions (“place fields”) are analogous to sensory receptive

fields for place cells. Place cell spiking outside of the place field is
typically sparse and has not been characterized; therefore, our
model focuses on within-place field spiking. The spatially activated
responses are modulated according to the phase of the theta os-
cillation, and the preferred phase of the modulation changes with
position, precessing to earlier phases of the theta cycle as the
animal moves through the field (2, 22, 23). This endows the phase
of each spike with spatial information, along with the magnitude
of the firing rate. We formalized these concepts by modeling firing
rate as a Gaussian spatial response function, scaled by a Von
Mises theta modulation function (Fig. 1B). The preferred phase of
the theta modulation function shifts with position according to the
linear precession function. We modeled spiking as an inhomoge-
neous Poisson process of the firing rate.
The PTP model functions are determined by parameters that

correspond to relevant functional features of place cell activity
(Fig. 1B). The amplitude of the firing rate is parameterized by
Ax. The width and position of the place field are captured by σx
and x0, respectively. The theta-phase selectivity is determined
by kθ. Cells that spike within a narrow range of phases have
high selectivity, while cells that spike across the whole cycle
have low selectivity. mθ determines the rate of phase pre-
cession, and the preferred phase at the center of the place field
is bθ.

Fitting and Simulating Place Cell Activity. We fit the model to
spiking data recorded from place cells in rats. We examined data
recorded from dorsal CA1 region of the hippocampus in rats as
they ran along linear tracks (24). We used the rat’s position,
theta phase, and spike timing to estimate parameter values for
each place field (Methods and SI Appendix, Fig. S1). Parameter
values were stable across random subsets of data (SI Appendix,
Fig. S2), indicating that our fitting procedure is reliable for this
quantity of experimental data. With the parameter estimates for
individual place fields as well as the distribution of parameters
across the whole population, we were able to generate empiri-
cally grounded simulation data.
Using parameters estimated from an example place field, we

generated place cell spiking in a simulated experiment (Fig. 2).
For each simulated trial, a virtual rat ran through the place field
at a constant speed while theta oscillated at a constant frequency,
resulting in a straight trajectory through phase–position space
(Fig. 2A, i). The PTP model predicted the firing rate at each
point along this trajectory and simulated spiking as a sto-
chastic Poisson process of the instantaneous firing rate (Fig.
2A, ii). From one trial to the next, the initial theta phase at the
beginning of the field randomly shifted, as it does in real ex-
periments (SI Appendix, Fig. S3), which resulted in spatially
shifted firing rate patterns. Note the distinction between the
initial theta phase at the entrance to the place field that
we refer to here, i.e., oscillation phase that happens to occur
at that particular time and location, and the onset phase of
precession.
The magnitude of firing rates predicted by the PTP model is

larger than typically reported for place cells. The range of firing
rates for place cells within their place field has been reported as
1 to 40 Hz based on the trial-averaged firing rate within the place
field (3, 25). However, on individual trials, our model predicts
80- to 100-Hz peak firing rate for many cells (Fig. 2A, ii, and SI
Appendix, Fig. S4). The discrepancy arises from trial averaging,
which averages out the effect of the theta modulation, resulting
in an averaged peak firing rate roughly one-half the true peak
firing rate (Fig. 2B, i).
Intertrial randomness in the theta phase at the beginning of

the place field could also explain part of the variability in place
cell firing rates. We simulated 2 trials with the same parameters
and running speed, varying only the initial theta phase at the
entry to the place field (Fig. 3A). The theta modulation was

Fig. 1. Parametric model of place cell activity. (A) Schematic of model: firing
rate at each theta phase and position predicted by the PTP model (heatmap).
The firing rates are derived by multiplying the spatial tuning curve (below x
axis) with the theta-phase tuning curve (beside y axis). The theta-phase tuning
curve shifts as the preferred phase (*) decreases as a function of position
(Lower Left), capturing phase precession. Parameters for this schematic derived
from fitting model to real place field data. (B) Model equations: Spatial input
function is a Gaussian function of position with 3 parameters: amplitude Ax,
width σx, and center x0. Theta modulation function is a Von Mises function
(approximately circular Gaussian) of theta phase normalized to height 1 with
one parameter: kθ. Theta modulation is centered on a preferred phase in the
precession function, which changes linearly with position according to slope
mθ and intercept bθ.
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shifted with respect to the spatial input, which changed the
predicted firing rate across the field by a factor of 2. Including
the Poisson variability of spiking, the firing rate within the field
could reasonably be 4 Hz on trial 1 and 16 Hz on trial 2. This
difference is based solely on the initial theta phase and Poisson
variability (6).*
The effect of the initial theta phase on firing rate is amplified

at faster running speeds. We used the PTP model to predict the
firing rate as a function of both running speed and initial theta
phase (Fig. 3B). At slow speeds, the initial theta phase is not very
influential in the overall rate; however, at fast speeds, the
expected rate can vary dramatically. The intuition behind this
observation is when the animal runs slowly, many theta cycles
occur within the place field, making the alignment of any par-
ticular cycle less important for the overall predicted firing rate.
At faster speeds, there are fewer cycles, making the co-
incidence of the theta modulation and spatial input much more
important.

The speed-dependent variability could produce spurious cor-
relations between speed and firing rate. We simulated a place
cell experiment 3 times with identical conditions (Fig. 3C). In
each experiment, we randomly varied running speed and initial
theta phase, drawing from a uniform distribution of each, and
used the model to generate spikes. We computed the average
firing rate at each position for the fast, medium, and slow trials.
Across the 3 simulations, an apparently negative relationship
between speed and firing rate arose in one, no relationship was
evident in another, and a positive relationship appeared in the
last. Recall the model used for simulation has no explicit speed
dependence, so each of the apparent relationships is artifactual.
The confound between running speed and firing-rate variability
makes the analysis of speed tuning in place cells difficult, be-
cause standard statistics are not sufficient to assess the signifi-
cance of these relationships.

Quantifying the Effect of Running Speed on Place Cell Activity. In real
place field data, we found a heterogeneous distribution of speed
dependence using standard correlations. We computed the average
speed and firing rate within the place field for each trial and cal-
culated the correlation across trials. Contrary to previous findings
that have reported mostly positive correlations between running
speed and firing rate (3, 7), and in line with a more recent re-
port (16), we found place fields with ostensible negative speed

Fig. 2. Simulating place cell data. (A) Single-trial simulation. (i) Simulated
theta-phase–position trajectory imposed on place field schematic (as in Fig.
1A) for trial 1 (blue), and trial 2 (purple) at the same speed with a different
initial theta phase at the start of the place field [not to be confused with
onset of phase precession, i.e., the preferred phase at position 0 (2)]. (ii)
Simulated firing rates for model fit to place field in C computed for trajec-
tories in trial 1 and 2 in i. Spiking for each trial (below) simulated via Poisson
process. (B) Summary visualization of simulated data: Spiking was simulated
for 42 trials with varying speeds and initial theta phases, using the best-fit
PTP model from real place cell in C. (i) Mean firing rate vs. position, averaged
over trials. (ii) Theta phase vs. position for each spike. (C) Summary visuali-
zation of real place cell data in example place field. (i and ii) Same as in B.

Fig. 3. Speed-dependent variability can cause spurious correlations with
running speed. (A) Alignment between spatial input and theta modulation
can affect expected firing rate in place fields. Position and theta phase are
simulated for 2 trials with identical running speed, differing only in the
initial theta phase at the entrance of the place field. The resulting model
equations and predicted firing rates are shown: (i) The spatial input function
(black) is identical for the 2 trials, while the phase modulation functions are
shifted according to the initial theta phase for trials 1 (blue) and 2 (green).
(ii) Predicted firing rate vs. position for trials 1 and 2 computed by multi-
plying the spatial input and phase modulation functions in i. (iii) Mean firing
rates for trials 1 and 2, averaged over position. Error bars correspond to SE
(SEM) predicted from Poisson variance of spiking. (B) Mean firing rate
across place field simulated as a function of initial theta phase and run-
ning speed. Variability caused by initial theta phase increases at higher
speeds. (C ) Firing rate vs. position in the fast (red), medium (yellow), and
slow (blue) sets of trials in 3 simulated experiments. In each experiment,
30 trials were simulated with randomized speeds and initial theta phases.
Mean firing rate was computed as a function of position for each set of
trials. Conditions were identical for each simulated experiment with no
explicit speed dependence in the model; however, apparent speed mod-
ulation appeared by chance, both negatively (experiment 1) and posi-
tively (experiment 3).

*Differences between phase precession in single trials vs. data pooled across trials have
been reported previously (6). However, we find that the PTP model replicates this result
(SI Appendix, Fig. S5), demonstrating that it is a natural consequence of the simple
assumptions of this model. We hypothesize that the difference in sample size between
pooled and single-trial data, as well as the method used to compute circular correlations
may be the primary cause of this effect.
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relationships (Fig. 4A) as well as those with apparently positive
relationships (Fig. 4C). We also found a majority of place fields
that did not appear to be speed modulated (Fig. 4B). Across all
place fields in the dataset, the distribution of correlations
appeared to be heterogeneous (Fig. 4D). However, because
speed-related variability can produce spurious correlations (Fig.
3C), these apparent effects must be scrutinized.
To more rigorously assess speed modulation, we used the PTP

model to generate an ensemble of simulated experiments, from
which we computed a null distribution of speed correlations. We
use “null distribution” because the PTP model has no speed de-
pendence, so the resulting correlations arise solely from the sources
of variability accounted for in this model. For each place field in
our dataset, we used the estimated model parameters to virtually
recreate the experiment (Fig. 5A). We computed the correlation
between speed and simulated firing rate, and then repeated the sim-
ulated experiments 20,000 times to compute a null distribution

of correlation values (Fig. 5B). The null distribution varies across
place fields depending on the best-fit model parameters for
each individual field, and so must be computed independently.
Speed–firing-rate correlations for most place fields did not lie

significantly outside the respective null distributions. The distance
between the true correlation value and the null distribution was
measured as a P value in the positive and negative directions (Fig.
5C). A criterion of P < 0.05 was used, and fields with significant
positive and negative modulation were identified. A subset of
place fields with positive modulation (19%) and a subset with
negative modulation (12%) were identified above chance levels.
Nonetheless, the majority of place fields (69%) did not meet our
criterion for significant speed modulation (Fig. 5D). In summary,
we found that the degree of speed modulation in the majority
of place fields lies within the predictions of the PTP model,
which does not include any speed dependence. However, we
found a minority of place fields with speed modulation beyond
the model predictions. Next, we sought the potential mecha-
nisms of such effects.
We extended the PTPmodel to explore the computational effect

of speed on firing rates of significantly modulated place fields. The
model delineates the independent features of place fields that
could be affected by running speed. Two candidates that could

Fig. 4. Real pyramidal cells show heterogeneous distribution of speed cor-
relations. (A) Speed dependence of example place field with ostensible neg-
ative speed modulation: (i) Trial vs. position of each spike, trials ordered by
mean running speed in the place field. (ii) Firing rate vs. position for fastest
(red), middle (yellow), and slowest (blue) thirds of trials. (iii) Mean firing rate
across place field vs. speed, each point representing one trial. r values
throughout indicate Kendall rank correlation coefficient (P = 0.025). (B)
Same as A for ostensibly unmodulated example place field (P = 0.13). (C )
Same as A for ostensibly positively speed-modulated place field (P = 8.8e-
04). (D) Distribution of speed–firing-rate correlations across all place fields
in dataset.

Fig. 5. Speed modulation is statistically significant in a small number of place
fields. (A) Mean firing rate vs. speed for real example place field (same as Fig.
4C), for real experiment (black) and simulated experiment (green). Simulation
performed using model fit to this place field and conditions identical to
real experiment. Kendall correlation coefficient for simulated experiment is r =
0.27 (P = 0.032). (B) Null distribution of speed–firing-rate correlations (green)
computed from 20,000 simulations of the experiment in A, each using the
empirically measured position and theta phase from the original experiment.
Empirical correlation in black. For this example field, we find evidence
for speed modulation beyond what can be explained by the PTP model (P =
0.001). (C ) One-tailed P values computed from null distribution for all place
fields in the dataset. Two tests are shown, one for positive speed–firing-
rate relationships (red) and one for negative speed–firing-rate relation-
ships (blue). Values range from 0 to 1, corresponding to the proportion of
simulated experiments with correlation values larger (for negative test) or
smaller (for positive test) than that of the real experiment. Significant
speed modulation is defined as P < 0.05. (D) Proportion of place fields for
which there was statistical significance for negative or positive speed
modulation, and the proportion for which there was no evidence for speed
modulation.
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directly impact the average firing rate in the place field are the
amplitude Ax (Fig. 6A) and the phase selectivity kθ (Fig. 6B).†
Modeling amplitude as a function of speed corresponds to a
gain control model, where running speed multiplicatively
scales the magnitude of activity. Modeling phase selectivity as
a function of speed corresponds to a changing window of
spiking within the theta cycle. These 2 mechanisms could also
work in consort in a dual-speed model (Fig. 6C). In each of
these speed-dependent variants of our original model, we
model the speed-dependent parameter as a linear function of
speed. The slope of this function determines the direction and
degree of speed dependence (23).
Significantly speed-modulated place fields are best explained by

a gain control model of speed. We performed a model fit com-
parison for each place field, comparing the speed-dependent
model variants and the original place field model. For each place
field, we fit each model and measured the performance of the
model in predicting a held-out subset of the data. We selected
the model with the highest average log-likelihood as the preferred
model for that place field (Methods). Expectedly, the majority
of unmodulated place fields preferred the original PTP model
(Fig. 6D). Among the subsets of positively and negatively
modulated place fields, the majority preferred a gain control
model of speed modulation. These results suggest the compu-
tational effect of speed operates primarily on the magnitude of
place cell activity, leaving the theta-phase modulation of place
cells unaffected.

Discussion
Refining Previous Notions of Speed Modulation of Firing Rates. Our
analysis of speed modulation in place cell activity provides some
amendments to previous notions in the spatial navigation field.
We did not find evidence for speed modulation in the majority of
place cells and suggest increased firing rate variability at high
speeds as a potential source of spurious correlations. Of the
minority of fields that did show modulation, some were positively
modulated and others were negatively modulated. For each of
these subsets, speed appears to affect the activity primarily as a
gain control, scaling the overall magnitude, while theta modu-
lation remains mostly unaffected (8, 21, 26–28).‡

The lack of robust speed dependence of place cell firing rates
may convey an important robustness of the system. If place cells
are used to for navigation purposes, altering the “code” for behav-
ioral parameters such as running speed may not be advantageous.
Interleaving codes through gain control computations can allow one
population to simultaneously represent multiple variables (3, 19, 29–
31), and our results do suggest that speed dependence in a minority
of place fields is best characterized as gain control. However, the
sparsity of place cells in our data showing any speed dependence
makes this interpretation tenuous.
An additional consideration in studying “speed modulation” is

the relationship between speed and trial number that exists in
almost all experiments. As the animal’s motivation decreases
throughout the course of an experiment, running speed also

Fig. 6. Speed model comparison: variants of basic model that include speed dependence. (A) Gain control model: (i) Hypothetical relationship between
amplitude parameter and speed. (ii) Spatial input function as it varies with speed. (iii) Phase modulation function (stationary with respect to speed). (iv)
Hypothetical relationship between firing rate and speed for gain control model. (B) Phase modulation model: same as A, except phase selectivity varies with
speed instead of amplitude. (C) Dual modulation model: same as A, except both amplitude and phase selectivity vary with speed. (D) Proportion of place fields
in each speed modulation category best fit by each model variant. Positively and negatively modulated fields are by majority best fit with a gain control
model, while unmodulated fields are mostly best fit with the original PTP model.

†Other features of a place field could also be affected by speed, such as the properties of
phase precession (23). However, our model does not predict that speed dependence of
phase precession will have an effect on firing rate (SI Appendix, Fig. S6).

‡A positive relationship between theta frequency and running speed has been reported
in many studies (21, 26, 27) and questioned by others (8, 28). Through simulation, we find
that, regardless of the relationship, changing theta frequency does not affect estimated
firing rate across the place field (SI Appendix, Fig. S7).
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decreases, causing an inseparable correlation between speed and
trial number (SI Appendix, Fig. S8). This may be a confounding
variable as neural signals associated with velocity are reciprocally
woven into neural circuits that control motivated behavior (32–34).
What has been identified as “speed modulation” in this report, and
likely in others, could also be considered a motivation signal
modulating activity, or simply “drift,” i.e., slow changes in activity
patterns over time. In terms of functionally characterizing sources
of variability in the system, such a distinction may not be impor-
tant, because speed, time, and motivation are correlated. However,
if the goal is to identify underlying physiological mechanisms of the
effect, it should become an important consideration.
A quantitative characterization of drift over time in place field

activity is a much-needed analysis for hippocampal research that
our PTP model would be suited to address. As experimenters
probe physiological circuits by performing manipulations and
recording multiple changes, a baseline characterization of the
volatility is needed to specify the effects caused by the manipu-
lations and separate them from appealing, although ultimately
spurious effects.
Our findings do not contradict suggestions that speed is a

fundamental parameter of hippocampal activity. We found that
the firing rates of the majority of putative fast-spiking inter-
neurons, but not those of slow-spiking interneurons, were posi-
tively modulated by running speed (SI Appendix, Fig. S9). Fast-
spiking interneurons, rather than pyramidal cells or slow-spiking
interneurons, may be responsible for speed control of frequency
of theta oscillation of hippocampal place cells (2, 21, 35, 36) and
entorhinal grid cells (37).

The PTP Model: Uses and Findings. The PTP model we describe here
provides a functional description of the well-established factors
that influence place cell activity: position and theta phase. Position
is an external variable that exists in space, while the theta oscil-
lation is entirely internally generated and propagates in time.
These variables interact dynamically through running speed, which
may exert its own place field-specific influence on activity. The
results of this interaction are not always obvious or intuitive. Our
model can be used in lieu of intuition to inform baseline controls.
Appropriate controls are necessary to ward against interpreting
inherent implications of the position–phase interaction as novel
features of place cell activity. Our model also provides a frame-
work for identifying and incorporating truly novel features into our
collective understanding of hippocampal operations.
The PTP model has allowed us to uncover a few surprising

features of place cell activity. First, the dynamic range of place
cell firing rate is roughly double what is typically measured from
trial-averaged firing rates. Second, running speed affects firing
rate variability due to Poisson randomness and alignment be-
tween theta phase and position, which can produce spurious
correlations between speed and firing rate. Finally, despite the
potential for spurious correlations, there appear to be small
subsets of place fields that show genuine speed modulation.
In general, the PTP model can be used in several ways. First,

key features of place fields can be described quantitatively by
fitting the model with relatively small amounts of place cell data.
Second, realistic place cell data can be generated in simulated
experiments, with conditions and parameters fully controlled by
the experimenter. Simulated place cell data can help explore
theoretical aspects of the hippocampal spatial navigation system,
inform the design of future experiments, and serve as a control in
analyzing real place cell data. Last, hypothetical variations of the
model can be systematically tested to uncover additional features
of the data as demonstrated in Fig. 6.

Model Limitations and Extensions. In formulating our model,
choices were made for the sake of simplicity that may have
neglected some particular specifics of hippocampal physiology.

For example, formulating phase precession as a linear function
of position (2, 3) ignores previous work that has characterized a
curved “banana”-shaped phase precession (25, 38). Skewness of
place fields, which may emerge with experience (39), is another
interesting feature that is not captured by the symmetric spatial
input function of our model. However, the PTP model can be
amended to accommodate details of such properties, and be a
useful tool for further probing their significance.
Physical stationarity of the place field is a more fundamental

assumption of the PTP model. We define the spatial input
function as an environmental input drive at a particular location
(1). An alternate interpretation is that a place field begins at the
occurrence of the first spike, and the place field peak varies from
trial to trial (5, 6), tying the place field more strongly to theta
phase than to position. This interpretation may be useful in some
contexts, but ours reflects common assumptions in the field that
are arguably more relevant in the context of spatial navigation.
One-dimensional space is another assumption. In its current

instantiation, the PTP model is not directly applicable for 2D
navigation. It is possible to expand the model to 2 dimensions;
however, the exact form of this expansion raises interesting the-
oretical and experimental questions about phase precession in
multiple dimensions. Two opposing hypotheses could include the
following: 1) preferred phase is tied to allocentric space, meaning
the phase precession function would change depending on the
direction of travel; or 2) phase precession is constant, meaning the
preferred phase at one location would be drastically different
depending on the direction of travel, suggesting theta phase is an
egocentric code (25, 40, 41). These 2 hypotheses could be com-
pared in real data using variations of the PTP model, and their
implications for spatial navigation could be explored.
We also use a Poisson noise model to capture stochasticity of

place cell spiking. We capture theta-time-scale fluctuations in
the underlying rate. Pyramidal cells in hippocampus reportedly
spike in bursts (42), which may be explained by an underlying
mechanism faster than the theta modulation. It is possible that
true spiking statistics could be more accurately replicated with
the addition of faster variables or history dependence. The PTP
model could serve as an effective null model to test for the role
and effects of faster spiking properties in place cells.
We also only model single place fields, while real place cells

can have multiple fields within an environment (43, 44). As is,
PTP models for multiple fields could easily be combined along
an expanded position axis. A potentially interesting extension
could involve using optimization to automatically identify place
fields and model them jointly.
The PTP model describes the interaction between position and

theta phase as the primary factors that affect place cell activity. The
interaction of these variables is specific to place cells, yet multiple
variables might have similarly specific interactions that affect firing
rates in other functions and regions of the spatial navigation system
(35, 45–47). We hope our general statistical approach can be used
to promote rigor in the study of spatial navigation and connect
analyses to broader computational frameworks.

Methods
Parametric Model of Place Cell Activity. The model is defined by 3 equations,
where x is the position within the field and θ is the phase of the theta
oscillation:
Spatial input equation:

fðxÞ= expðAxÞ · exp
 
−ðx − x0Þ2

2σ2x

!
;

Phase modulation equation:

gðθ, xÞ= expðkθ · ðcosðθ− θ0ðxÞÞ− 1ÞÞ;

Phase precession equation:
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θ0ðxÞ=bθ +mθðx − x0Þ.

The rate is modeled as a product of the spatial input and phase modulation
equations:

rðx, θÞ= fðxÞ ·gðθ, xÞ.

Intuitively, f can be considered a firing rate, with units of hertz. g is a unitless
modulation of f. θ0, measured in radians, is the preferred theta phase of g, at
position x. The position variable x, and parameters x0 and σx, are measured
in arbitrary units normalized across each place field, but can easily be converted
to cm by multiplying by the measured width of the field, as we do throughout
this report for ease of visualization.

The number of spikes kt occurring at position xt and theta phase θt over
interval dt is modeled as a Poisson probability distribution with mean
λt =dt · rðxt , θtÞ:

pðkt jλtÞ = λktt e−λt

kt !
.

The likelihood that amodel produced the datawere computed as the product
of probability over time:

ℓ=∏
t
pðkt jλtÞ.

Our model explained the spiking activity of the majority of place fields better
than simpler iterations of the model (SI Appendix, Fig. S10). Code, demon-
strations, and example data for the PTP model can be found at https://
github.com/kmcclain001/ptpModel.

Data. Spiking and local field potential were recorded from dorsal CA1 region
of the hippocampus of rats as they traversed linear tracks [as described by
Tingley and Buzsáki (24)]. Datasets were curated for each place field by
selecting time points while the animal was in each place field. The model
was fit for each field using the data recorded at those time points. The in-
puts to the model consist of 4 time-series variables that are interpolated
to the sampling rate of the local field potential (1,250 Hz): 1) the position of
the rat within the place field, 2) phase of the theta oscillation, 3) speed of
the rat within the place field (only used in explicit speed models), and 4)
binary spike or no spike for each time point. The conclusions of our analyses
are maintained across a reasonable range of sampling frequencies.
Position. Raw position was measured as described by Tingley and Buzsáki (24).
The position on the track was linearized based on the occupancy in 2D (code
included). Trials were partitioned by the starting point and running direction
of the rat. Place fields were defined only within trials from a single partition.
Linearized position was smoothed using a Gaussian convolution kernel and
interpolated cubically to 1,250 Hz. Position within each place field was
normalized on a 0 to 1 scale.
Running speed. Speed of the rat was computed from the raw position mea-
surements as the Euclidean distance in 2D position between frames. Speed
was smoothed with a Gaussian convolution kernel and cubically interpolated
to 1,250 Hz.
Theta phase. To extract the theta oscillation, the local field potential was
filtered using a fourth order 4- to 15-Hz bandpass Butterworth filter. Due to
speed-dependent asymmetry in the theta oscillation waveform (48), the

phase within each cycle was defined by the latency between peaks in the
signal and linearly interpolated from 0 to 2π between consecutive peaks.

Raw data are available at https://buzsakilab.com/wp/datasets/. Preprocessing
scripts as well as a list of experimental sessions used in this study can be found
at https://github.com/kmcclain001/dataProcessing.

Model Fitting. Models were fit to data from each place field independently.
Each time point corresponded to a datapoint with a position, theta phase,
running speed, and spike/no spike value. For each fit, parameters were es-
timated using a training dataset. Amultistart fitting procedure was usedwith
5 randomly chosen initial points to mitigate the effects of local minima in the
optimization. The fmincon function in Matlab was used to perform the
optimization, constrained by reasonable parameter ranges (exact values can
be found in code). If the parameter estimates did not converge 5 times, a field
was discarded, which was the case for 80 fields.

Parameter Estimation. To assess the stability of the parameter estimates for
each field, the model was fit 10 times. For each fit, 90% of the data points for
that field were randomly chosen to make the training dataset (SI Appendix,
Fig. S1). The repeated fitting provided a distribution of parameter estimates
for each field (SI Appendix, Fig. S2). The median value for each parameter
was chosen as the estimate for each field.

Model Comparison. To compare the performance of competing models (Fig. 6
and SI Appendix, Fig. S10), Monte Carlo cross-validation with averaging was
used (49). Data were split 10 times, and each model was cross-validated by
fitting on 75% of the data, and then testing on the remaining 25%. The
mean log-likelihood for each model was computed, and the model with the
highest log-likelihood was chosen. Cross-validation allowed us to make a
valid comparison across models with different numbers of parameters.

Neuron Classification. Waveforms were clustered as described by Tingley and
Buzsáki (24). Putative cell types for each cluster were identified by 4 factors:
firing rate, integral of the second half of the mean waveform, and the rising
slope and falling slope of the autocorrelogram fit with a double-exponential
function. These 4 features were grouped using k-means clustering with 15
clusters. These clusters were merged manually into putative interneurons
and putative pyramidal cells.

Place Field Identification. Place fields were identified based on the firing rate
of pyramidal cells (3). The mean firing rate as a function of position was
computed for each cell in each trial condition. Regions on the track where
the firing rate was above 20% of the peak were isolated (44). The length of
these regions had to be longer than ∼1/15th the length of the track and
smaller than five-eighths the length of the track. The place cell also had to
spike at least once while the subject was in the field on at least four-fifths of
the trials.
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