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Biomarker discovery by integrated 
joint non-negative matrix 
factorization and pathway 
signature analyses
Naoya Fujita1,2,3, Shinji Mizuarai2, Katsuhiko Murakami1 & Kenta Nakai   1,3

Predictive biomarkers are important for selecting appropriate patients for particular treatments. 
Comprehensive genomic, transcriptomic, and pharmacological data provide clues for understanding 
relationships between biomarkers and drugs. However, it is still difficult to mine biologically meaningful 
biomarkers from multi-omics data. Here, we developed an approach for mining multi-omics cell line 
data by integrating joint non-negative matrix factorization (JNMF) and pathway signature analyses to 
identify candidate biomarkers. The JNMF detected known associations between biomarkers and drugs 
such as BRAF mutation with PLX4720 and HER2 amplification with lapatinib. Furthermore, we observed 
that tumours with both BRAF mutation and MITF activation were more sensitive to BRAF inhibitors 
compared to tumours with BRAF mutation without MITF activation. Therefore, activation of the BRAF/
MITF axis seems to be a more appropriate biomarker for predicting the efficacy of a BRAF inhibitor 
than the conventional biomarker of BRAF mutation alone. Our biomarker discovery scheme represents 
an integration of JNMF multi-omics clustering and multi-layer interpretation based on pathway gene 
signature analyses. This approach is also expected to be useful for establishing drug development 
strategies, identifying pharmacodynamic biomarkers, in mode of action analysis, as well as for mining 
drug response data in a clinical setting.

Precision medicine for cancer patients with molecular targeted drugs and predictive biomarkers is expected to 
lead to a paradigm shift from one-size-fits-all medicine to patient-specific medicine1. In particular, in the era of 
cancer immunology, the immunohistochemistry of programmed death ligand-1 (PD-L1) expression levels has 
been approved as a companion diagnostic for the anti-PD-1 antibody pembrolizumab; however, the identification 
of useful biomarkers remains a significant issue2. Selecting appropriate patients for a particular treatment using 
predictive biomarkers will certainly help to increase therapeutic effectiveness and reduce toxicities. Thus, it is 
important to identify reliable predictive biomarkers to select the right patient for the right drug.

Comprehensive genomic and pharmacological data of large collections of cancer cell lines have been pub-
lished as the Cancer Cell Line Encyclopedia (CCLE)3,4. These cell line databases provide mutation, copy number 
alteration, and mRNA expression profiles, as well as the results of tests of the sensitivities of cells to growth inhibi-
tion induced by various compounds or drugs. Although there is some discordance between databases, especially 
in terms of the compound sensitivity profiles, these databases generally show reasonable consistency5,6.

These multi-dimensional genomic and pharmacological datasets have been used to perform multi-omics anal-
yses with the goal of understanding the relationships between cancer genomes and drug responders. The NCI 
DREAM challenge is an example of an approach leading to remarkable improvements in this area7, in which sev-
eral prediction models were proposed to estimate sensitivity to compounds based on genetic information. The 
top-performing method was found to be a kernel method with multiview and multitask learning, which uses 
all of the genetic profiles provided7. Although this challenge is focused on providing a benchmarked set of algo-
rithms, it is difficult to translate the results obtained from the predictors for clinical application. This is because the 
models simultaneously require genetic, epigenomic, and proteomic data, and such comprehensive models make 
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for challenging biological interpretations. Moreover, other research programs have focused on discovering useful 
biomarker candidates in clinical settings rather than relying on predictive performance. Several well-known bio-
marker and drug associations were detected using analysis of variance (ANOVA)- or regression-based analyses 
from multi-omics data3,4. However, some biological features such as tissue-specific expression are correlated, which 
poses a limitation in the reliability of ANOVA with multiplicity and regression analysis with multicollinearity in 
handling these features. Furthermore, the most common type of predictive biomarker measured clinically with a 
companion diagnosis kit is a single gene that is equivalent to the therapeutic target itself or a gene that is biologically 
relevant to the target8. Therefore, it is still challenging to efficiently utilize comprehensive genomic data to determine 
an appropriate treatment strategy. In this study, we sought to resolve these issues to facilitate the use of multi-omics 
analyses for understanding relationships between the cancer genome and drug responders through development 
of comprehensive prediction models with multi-genetic features. Since the choice of predictive biomarkers for sug-
gesting treatment options to patients should be based on a biological rationale, we focused on detecting biologically 
meaningful biomarkers rather than merely developing comprehensive multi-omics predictors.

Non-negative matrix factorization (NMF) is an unsupervised approach that can highlight outliers or extreme 
characteristics in a non-negative input matrix X according to its parts-based representation nature9. Matrix X 
is then factorized by the non-negative submatrices W and H. NMF has emerged as one of the most useful algo-
rithms currently available in the cancer genome research field. An NMF method was used to generate mutational 
signatures for 96 trinucleotide mutation patterns from the genomes of cancer patients10,11. For example, this 
method detected that smoking-related C > A mutations at NpCpN and POLE mutations were related to C > A 
and T > G mutations in a TpCpT and TpTpT context, respectively. Thus, a mutational signature or NMF approach 
can help to decompose the multiple effects of a carcinogen based on a patient’s combined mutation pattern. 
Furthermore, NMF can classify tumour subtypes from microarray data. Indeed, NMF was used to identify a small 
number of gene combinations (metagenes) whose profiles represent features that can distinguish among leu-
kaemia and lung cancer subtypes12. NMF is essentially applicable for a single-input matrix such as face imaging 
pixels and mutational signature profiles, although it has potential to be further extended to multiple inputs. Joint 
non-negative matrix factorization (JNMF) is fitted for multiple inputs with the same row size, which generates a 
common sub matrix W and individual sub matrices Hs13. JNMF can therefore be used to detect common clusters 
(co-modules) from mRNA expression, microRNA expression, and DNA methylation data of cancer patients. 
Thus, we hypothesized that JNMF would be a suitable method to handle several multi-omics datasets simulta-
neously. Moreover, among the many techniques available to handle multiple inputs14, JNMF is theoretically and 
practically equivalent to a standard NMF method with concatenated inputs.

With respect to resolving the biological interpretation challenge, pathway analysis can be a useful tool to 
annotate a given set of genes in a biologically meaningful manner15. Ingenuity Pathway Analysis (IPA) is one of 
the most beneficial tools available to understand the association of various types of molecules, and provides causal 
networks based on biological relationships curated from the literature16. Furthermore, gene signature analysis 
enables inferences on pathway activation and dependency17,18. Therefore, pathway and gene signature analyses 
are effective for understanding particular gene sets identified as NMF co-modules.

Our research objective was to identify promising candidate biomarkers using multi-dimensional genomic 
and pharmacological data from a collection of cell lines. The approach used is based on the integration of JNMF 
multi-omics clustering with multi-layer interpretation based on pathway gene signature analyses (Fig. 1). This 
scheme enabled us to identify novel rationale-based biomarkers as well as known clinically validated biomarkers.

Results
JNMF with missing data.  To illustrate the robustness of our multi-omics clustering method against missing 
values, JNMF was first applied to simulated data. Three simulated input matrices were generated: a simulated 
compound sensitivity matrix, simulated mutation matrix, and simulated mRNA expression matrix. Four co-mod-
ules were predefined in these simulated matrices, in line with a previous report13. To best mimic real data, the sim-
ulated genetic mutation matrix was represented in a binary format, whereas the simulated compound sensitivity 
and mRNA expression matrices were represented in a continuous format. The simulated compound sensitivity 
matrix contained certain missing values randomly (10%), because typical sensitivity metrics (IC50, GI50, AUC, 
etc.) often fail due to the lack of measurement of a compound in a cell line or after filtering out noisy results. The 
simulated matrices of mutation and expression profiles contained missing rows randomly (10%), since public 
genomic and transcriptomic data cannot always be fully assigned to all cell lines for compound sensitivity data.

JNMF for the three simulated matrices with factorization rank k = 4 correctly revealed the four predefined 
clusters (Fig. 2). JNMF with X1, X2, and X3 inputs returned H1, H2, H3, and W submatrices. WH1 clearly repro-
duced X1, resulting in four modules (blue submatrices), and WH2 and WH3 contained three modules. Therefore, 
JNMF detected co-clusters hidden in the input matrices despite the presence of missing values. The dimension-
ality reduction effect of JNMF also results in a noise reduction effect. Furthermore, JNMF could interpolate the 
missing values. This property of JNMF might enable predicting the mutation status from expression profiles, as 
well as predicting compound sensitivity from genomic profiles. However, further experimental validation must 
be conducted to validate these applications.

We next investigated the effects of missing and noise values on the results of JNMF. For the same simulated 
datasets, the following four parameters were systematically examined by a 0.1 grid to check the consistency of 
elements in the four co-modules: m as the missing rate of all input Xs, and a, b, and c as the noise rates of X1, X2, 
and X3, respectively. Regression analysis revealed that the consistency of the co-module in W, yW, is affected by 
the parameters m, a, and c (Fig. S1a), whereas the other consistency indexes yH1, yH2, and yH3 are affected by {m, a},  
{m, b}, and {m, c}, respectively (Fig. S1b–d). In this artificial case, a missing ratio m = 0.1 had a slight influence 
on the results.
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Detection of known biomarkers by JNMF.  To discover the relationship between the compound sen-
sitivity and multi-omics profiles of cell lines, we conducted JNMF with factorization rank k = 40 for the CCLE 
data set3 as follows: compound sensitivity X1, mutation X2, copy number amplification X3, copy number loss X4, 
mRNA expression X5, and tumour type X6 (Table S1). JNMF was applied to find 40 meta-profiles for cell lines 
as a W matrix and 40 co-modules for genetic and pharmacological features as H matrices simultaneously. We 
repeated 10 trials of JNMF with random initial values. The results showed that the objective function sufficiently 
converged in all 10 trials (Fig. S2). Furthermore, a consensus matrix for W showed high concordance between 
trials with a cophenetic correlation coefficient of 0.91 (Fig. S3). This consensus matrix contained robust clusters 
with melanoma, blood cancer, and hypermutated profiles. This consistency reflects the fact that similar JNMF 
clusters could be obtained for any initial condition. Thus, JNMF would be able to detect unique characteristics 
from multi-dimensional genomic and pharmacologic data. The best result was selected as that showing the small-
est objective function value among the 10 trials, which was used for further analysis.

JNMF revealed several well-established relationships between drugs and biomarkers. For example, 
BRAF-mutated melanoma cells and patients in preclinical and clinical trials show specific sensitivity to the BRAF 
inhibitors PLX4720 and its structural analogue, PLX4032 (vemurafenib)19,20. In line with this knowledge, our 
JNMF result returned a co-module (#12) that contained PLX4720, BRAF mutation, and melanoma tumour type 
(Fig. 3a). Another co-module (#5) was related to human epidermal growth factor receptor 2 (HER2)-activated 
breast tumours, which was enriched with the features of HER2 amplification, overexpression, and breast tumour, 
and also showed sensitivity to the HER2 inhibitor lapatinib (Fig. 3b). Ultimately, we selected a factorization 
rank of 40 based on high consistency of the JNMF results with biologically useful knowledge. Furthermore, 
each genetic or pharmacological feature belonged to one co-module according to the consensus and connec-
tivity matrices scheme. In addition to the HER2-breast cancer (#5) and BRAF–melanoma (#12) co-modules, 
other cancer-related co-modules were selected, such as those representing the hypermutated phenotype (#3) and 
responders to receptor tyrosine kinase inhibitors (#28) (Table S2).

Pathway analysis predicted activation of microphthalmia-associated transcription factor 
(MITF) in the melanoma cluster.  To interpret the biological relationships in the obtained multi-omics 
JNMF co-module clusters, pathway analysis was performed for the most highly expressed gene sets in the 
co-modules to investigate whether or not a specific pathway was activated. IPA upstream analysis estimated 
module-specific upstream regulators, including transcription factors (Table S2), and suggested that the tran-
scription factor MITF was activated in co-module #12, which was highly significant among co-modules (IPA 
overlap p-value = 6.91E-39, Fig. S4). Therefore, we focused on co-module #12, which was sensitive to BRAF inhi-
bition and included strong melanoma characteristics, and was also one of the highly reproducible modules among 
the 10 trials as mentioned above. Furthermore, IPA protein-protein interaction (PPI) analysis for co-module 
#12 showed that melanoma-related transcription factors, such as MITF, PAX3, SOX8, and SOX10, formed a 
sub-network (Fig. S5). Thus, these analyses of upstream regulator estimation and PPI network elucidated MITF 
activation. Since co-module #12 also included MITF amplification and overexpression of MITF itself, it was pre-
sumed that the gene sets were highly expressed as a result of MITF activation associated with MITF amplification. 
Therefore, it seems that MITF amplification and activation is a characteristic of this module.

Figure 1.  Biomarker discovery scheme. (a) Input matrices are multi-dimensional pharmacological, genomic, 
transcriptomic, and tumour-type data aligned by cell lines. (b) The joint non-negative matrix factorization 
(JNMF) method detects multi-dimensional co-modules. Each module shows the co-occurrence between 
genetic (red) and pharmacological (blue) features. (c) Pathway analysis provides causal relationship based on 
biological knowledge in co-module features. (d) Gene signature analysis clarifies the relationship between 
pathway activation and sensitivity to compounds.
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MITF activation signature as a novel predictive biomarker for BRAF inhibition.  We further exam-
ined the input data to explore the utility of MITF amplification and activation as a biomarker in addition to 
BRAF mutation status for predicting the response to a BRAF inhibitor. First, we detected relationships between 
the sensitivity profile to a BRAF inhibitor and genetic features, including BRAF mutation, MITF amplification, 
and expression profiles of MITF target genes, present in the JNMF input set (Fig. 4). Next, a MITF activation 
signature was generated based on the genes regulated by MITF in co-module #12, and the correlation between 
the MITF activation score and PLX4720 sensitivity profile in the JNMF input set was confirmed (rank correla-
tion = 0.17, p-value = 0.0004, Fig. 4). This evidence suggests that JNMF can detect reasonable relationships hid-
den in multi-omics input data. Finally, we found that the activation status of MITF alone could serve as a useful 
novel biomarker to indicate the sensitivity to a BRAF inhibitor. Although a correlation between BRAF mutation 
and MITF activation was detected, they did not completely overlap in melanoma cells. However, tumours with 
both BRAF mutation and MITF activation were more sensitive to PLX4720 compared to tumours with BRAF 
mutation but without MITF activation (Fig. 5).

Drug differentiation strategy using JNMF.  Similar to biomarker discovery, an essential component of 
drug development is to understand the unique characteristics of individual drugs. Utilizing the parts-based rep-
resentation of NMF can help to reveal important differences among drugs based on the results of JNMF.

Indeed, we detected remarkable differences in the JNMF results between two compounds with similar overall 
drug sensitivity profiles. For example, the RAS/BRAF/MEK signal transduction pathway is known to play an 
important role in tumour development in multiple cancer types. Thus, both BRAF and MEK inhibitors show 
similar biological effects on cancer cells. However, JNMF found that co-module #30, enriched with the features 
of colorectal tumours, was only sensitive to MEK inhibitor and did not exert efficacy to BRAF inhibitor (Fig. 3a). 
Both epidermal growth factor receptor (EGFR) and HER2 belong to the ERBB protein family. Thus, a single 
ERBB inhibitor has been developed for treating EGFR-mutated or HER2-amplified cancers. However, in the pres-
ent analysis, co-module #5 showed that HER2-amplified and overexpressed breast cancers were sensitive to HER2 
inhibition but were not sensitive to EGFR inhibition (Fig. 3b). Given that the present JNMF-based approach 
could detect critical, biologically verified differences in drugs, even between drugs with similar overall sensitivity 
profiles, it shows good promise for developing unique biomarker-based strategies to design novel compounds, 
with more reliability than currently available approaches.

Figure 2.  JNMF multi-dimensional clustering with simulated data. Simulated compound, expression, and 
mutation data are clustered using JNMF to detect co-modules. The simulated compound dataset in continuous 
format X1 contains four modules as well as missing components. The simulated expression dataset in continuous 
format X2 contains three modules as well as missing profiles in rows. The simulated mutation dataset in binary 
format X3 contains three modules as well as missing profiles in rows. Continuous X1 and X2 have Gaussian noise, 
and binary X3 is partially flip-flopped as noise. JNMF generates meta-profiles H1, H1, H3, and W.
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Discussion
The proposed JNMF method adapted to handle missing data allows for the integration of multiple genomic 
and pharmacological datasets, and our multi-dimensional clustering approach of JNMF could efficiently extract 
genetic alterations related to sensitivity profiles for specific compounds. Moreover, using simulated data, JNMF 
correctly detected co-modules or multi-dimensional clusters with predefined conditions containing 10% missing 
values.

By exploiting the parts-based representation of NMF, we successfully excluded the influence of other inter-
acting factors to extract melanoma-specific features. Further, by combining known biological knowledge via 
pathway analysis, MITF downstream genes emerged as candidate biomarkers that can be interpreted based on a 
biological rationale rather than from simple prediction analysis derived from combining the influence of multiple 
features. Furthermore, use of a gene signature approach enabled estimation of the activation levels of the tran-
scriptional regulator MITF and could predict responders and non-responders to BRAF inhibitors by integrating 
information of the known and candidate biomarkers. Specifically, tumours with both BRAF mutation and MITF 
activation were more sensitive to PLX4720 than tumours with BRAF mutation without MITF activation (Fig. 5). 
Therefore, activation of the BRAF/MITF axis might be a more appropriate biomarker for predicting the efficacy 
of a BRAF inhibitor than BRAF mutation alone, which is frequently used as a predictive biomarker in preclinical 
studies and clinical trials (Fig. S6).

Several studies have reported that MITF plays important roles in cell cycle progression by activating down-
stream genes in melanoma21,22. Consistent with our findings, forced expression of MITF conferred melanoma 
cells with sensitivity to BRAF/MEK inhibitors23. However, there is also a conflicting report that MITF activation 

Figure 3.  Differences in co-modules between compounds and related biomarkers. (a) Difference between 
sensitivity profiles to PLX4720 and AZD6244. The x-axis shows JNMF meta-profile levels and the y-axis shows 
40 JNMF co-module IDs. Co-module #12 is enriched with both PLX4720 and AZD6244, and co-module #30 
is an AZD6244-specific co-module. (b) Difference between sensitivity profiles to erlotinib and lapatinib. Co-
module #28 is enriched with both erlotinib and lapatinib, and co-module #5 is a lapatinib-specific co-module.
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might be involved in the mechanism of resistance to BRAF inhibition therapy24. Thus, our candidate biomarker 
should be evaluated in additional preclinical studies as well as in clinical trials.

With respect to lapatinib, JNMF clearly identified two major responder groups, breast cancer and lung cancer 
cells. This result is supported by the fact that lapatinib has been approved for use in clinical settings for treating 
HER2-positive breast cancer, and was shown to be effective in some types of lung cancer in a preclinical experi-
ment25. Nevertheless, traditional chemotherapeutic agents did not show a peak in any of the co-modules since the 
majority of the included cell lines are sensitive to these agents. Therefore, it is still difficult to determine the char-
acteristics of responder cell lines to broadly active compounds based on genomic and transcriptomic information.

Elastic net regression analysis was previously shown to effectively predict drug sensitivity based on several 
genetic features3. However, this approach selects one representative feature among highly correlated features, 
which makes it difficult to select the correlated MITF target genes simultaneously (Fig. 3). In the CCLE report, 
although the BRAF mutation emerged as a strong predictor of response to the PLX4720 compound, the MITF 
target genes and MITF amplification (except GAPDHS expression) were not selected as significant predictors, 
which is possibly because these features are sufficiently correlated with BRAF mutation.

As represented by the NCI DREAM challenge, drug sensitivity profiles are typically predicted using compre-
hensive multi-omics data with incorporation of available biological knowledge. However, there is still a substan-
tial gap between such basic research and companion diagnostic development through clinical trials. One possible 
reason for this limitation is that a predictive model must be sufficiently interpreted and explained to both the 
patients and doctors when used for patient selection in a clinical setting. Thus, a future challenge might be how 
to best explain a diagnostic result derived from multi-omics biomarkers in a clinical situation. Accordingly, in 
addition to refining multi-omics itself, another crucial task for practical realization is to establish a user-friendly 
interpretable format for outputting the data.

Prediction of missing values by JNMF is expected to be a useful feature for inferring a mutation status or drug 
sensitivity profile from other types of multi-omics information such as expression profiles. Given that our JNMF 
approach could efficiently predict missing values from simulated data, and the clustering was useful for detecting 
co-modules for datasets containing missing values, it is necessary to further verify whether this missing value 
prediction using JNMF is applicable to actual data.

There are several successful examples of drug development using a biomarker-based strategy, including the 
development of third-generation EGFR inhibitors and PARP inhibitors. Molecular and clinical profiles of the 
investigational drugs themselves were similar with respect to the mode-of-action (MOA). However, the patient 
stratification strategy for clinical trials based on the biomarker differed for different drugs, signifying the impor-
tance of a useful predictive biomarker for successful drug development. The proposed approach of incorporating 
the JNMF method with biomarker selection could help to increase the success rate of drug development by pro-
viding a differentiated and superior biomarker strategy compared with those used previously for investigational 
drugs with a similar MOA.

Overall, we have presented an NMF-based unsupervised approach for discovering useful biomarkers using in 
vitro multi-dimensional cell line data. The generated JNMF co-modules are based on meta-profiles derived from 
whole genomic and pharmacological data. Therefore, candidate biomarkers are derived from the relationship 
between multi-therapeutic targets and multi-genetic alterations. This concept is quite different from a single ther-
apeutic model of a compound such as ANOVA and elastic net regression. Our JNMF simultaneously detects dif-
ferences between compound profiles and should thus be useful for exploring drug development strategies while 

Figure 4.  MITF-BRAF in the input data. Correlation between the PLX4720 sensitivity profile and alteration 
of the BRAF/MITF pathway in the JNMF input set. The x-axis shows cell lines according to their PLX4720 
sensitivity. The y-axis represents the PLX4720 sensitivity profiles, BRAF mutation, MITF amplification, MITF 
activation signature, and expression profiles of the MITF target genes. The score of the MITF activation 
signature is defined as the averaged and normalized expression profiles of the MITF target genes. JNMF selected 
these features as belonging to the BRAF mutation and PLX4720 cluster.
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revealing genomic characteristics or therapeutic targets for unmet medical needs. Furthermore, the proposed 
biomarker discovery scheme will be useful for finding pharmacodynamic biomarkers and for MOA analysis at 
the preclinical stage. Together, this approach and similar developments should accelerate translational research 
and mining for clinical significance using clinical response data.

Methods
Data summarization, normalization, and preprocessing.  Mutation, copy number alterations, mRNA 
expression, and compound sensitivity profiles were collected from the CCLE (Table S1). Mutation profiles were 
converted into binary data of mutant type (1) or wild type (0) for each gene. Copy number profiles generated by 
the GISTIC algorithm26 were divided into amplification (GISTIC score: +2) and deletion (GISTIC score: −2) 
profiles to obtain respective binary datasets of amplification and deletion. mRNA expression profiles were nor-
malized from the log2 intensity values to a 0–1 score for each gene. The concentration at which the drug response 
reached an absolute inhibition of 50% (IC50) was used as an index of the compound sensitivity. The IC50 values 
were converted to a score of insensitive (0) and sensitive (1) according to the following formula:

Figure 5.  PLX4720 sensitivity profile and alteration of the BRAF/MITF pathway in melanoma cells. The 
melanoma cells are listed according to their PLX4720 normalized sensitivity profiles (1: sensitive, 0: insensitive), 
BRAF mutation status as reported in the COSMIC database, MITF copy number amplification as predicted by 
GISTIC, MITF activation score as obtained from our MITF gene signature, and the three categories classified 
according to the BRAF V600 mutation status and MITF activation score. Melanoma cells with a BRAF V600 
mutated status and a high MITF activation score had higher sensitivity to PLX4720 than cells in the other two 
categories (Kruskal-Wallis test, p-value < 0.001).
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A tumour-type binary matrix was also obtained based on the CCLE lineage information. Thus, a total of 
six 0–1-normalized matrices X1, X2, …, X6 were obtained: compound sensitivity, mutation, amplification, copy 
number deletion, mRNA expression, and tumour type. A total of 504 cell lines with sensitivity data for at least one 
compound were subjected to subsequent analysis.

JNMF and mask matrix.  JNMF was performed for N matrices. The objective function of JNMF is a squared 
Euclidean error function and formulated as
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The NMF procedure was modified to handle matrices containing missing values using a mask matrix. In brief, 
we used a weighted NMF approach27. The mask matrix M has the same dimensions as the input matrix X, with 1 
in the case where there is a value in X in each matrix element and 0 in the case where there is not. For the execu-
tion of JNMF, the product of each matrix element of X and M is obtained so that the normal JNMF calculation is 
executed when the value of X exists and is ignored when the value of X does not exist.
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This JNMF update procedure for W and each HI is executed at 5,000 iterations with an appropriate factoriza-

tion rank k, and a convergence is observed (Fig. S2). It is repeated for a prescribed number of times T  and a result 
is selected in which the difference between X and WH is minimal among the T results. In addition, a consensus 
matrix and its cophenetic correlation coefficient from all T results were obtained to examine the reproducibility.

Pathway and gene signature analyses.  IPA16 was used to predict the activated pathways in JNMF 
co-modules. IPA upstream and IPA protein-protein interaction analyses are used to elucidate the common regu-
lators of gene sets in the JNMF co-module. For a gene set (ng genes), the average expression level was taken as the 
gene signature representing pathway activation according to the following formula:
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where xij indicates the mRNA expression level of a gene j in a cell i.
Signature score is calculated for ng genes in mRNA profiles X5, obtained by integrating the JNMF co-module 

and IPA knowledge.

Data availability.  The data that support the findings of this study are available on the Cancer Cell Line 
Encyclopedia (https://portals.broadinstitute.org/ccle)3 and the cBioPortal for Cancer Genomics (http://www.
cbioportal.org/)28,29.

https://portals.broadinstitute.org/ccle
http://www.cbioportal.org/
http://www.cbioportal.org/
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