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Purpose. To evaluate retrospectively the impact of diffusion weighted imaging (DWI) and (3D) hydrogen 1 (1H) MR-spectroscopy
(MRS) on the detection of prostatic cancer in comparison to histological examinations. Materials and Methods. 50 patients with
suspicion of prostate cancer underwent a MRI examination at a 1.5T scanner. The prostate was divided into sextants. Regions
of interest were placed in each sextant to evaluate the apparent diffusion coefficient (ADC)-values. The results of the DWI as
well as MRS were compared retrospectively with the findings of the histological examination. Sensitivity and specificity of ADC
and metabolic ratio (MET)—both separately and in combination—for identification of tumor tissue was computed for variable
discrimination thresholds to evaluate its receiver operator characteristic (ROC). An association between ADC, MET and Gleason
score was tested by the non-parametric Spearman ρ-test. Results. The average ADC-value was 1.65± 0.32mm2/s × 10−3 in normal
tissue and 0.96±0.24 mm2/s × 10−3 in tumor tissue (mean ± 1 SD). MET was 0.418 ± 0.431 in normal tissue and 2.010 ± 1.649
in tumor tissue. The area under the ROC curve was 0.966 (95%-confidence interval 0.941–0.991) and 0.943 (0.918–0.968) for
DWI and MRS, respectively. There was a highly significant negative correlation between ADC-value and the Gleason score in the
tumor-positive tissue probes (n = 62, ρ = −0.405, P = .001). MRS did not show a significant correlation with the Gleason score
(ρ = 0.117, P = .366). By using both the DWI and MRS, the regression model provided sensitivity and specificity for detection
of tumor of 91.9% and 98.3%, respectively. Conclusion. The results of our study showed that both DWI and MRS should be
considered as an additional and complementary tool to the T2-weighted MRI for detecting prostate cancer.

1. Introduction

In Europe as well as in the United States prostate cancer is
a very common and frequent cancer in males. According to
the American Cancer Society, it is the third leading cause of
cancer-related death in men. In 2007, 218,890 new cases are
assumed to be diagnosed and about 27,050 persons estimated
to die due to this disease [1]. In Europe the incidence of the
prostate cancer is approximately 30 per 100 000 men and also
the third frequent cause of death after lung and colorectal
cancer [2].

Several diagnostic methods have been applied in recent
years to detect the malignant changes within the prostate.

The transrectal ultrasound (TRUS) of the prostate is the
primarily used method worldwide, besides the laboratory
modus operandi. It is used not only to gain the first
impression of the organ, but also to guide prostate biopsies,
if necessary [3]. Another commonly used method is MR
imaging of the prostate using an endorectal coil and a pelvic
phased-array coil, in which the malignant sites usually show
a hypointense signal compared to the normal hyperintense
peripheral zone [4]. In contrast to the TRUS, the patients
have to undergo longer examinations, but the local staging
as well as the assessment of the surrounding tissues and
organs has shown a better sensitivity using the MRI than
the aforementioned [5]. Recent studies also showed that the
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MR-guided biopsies of the prostate are possible and are of
the same histopathologic quality as specimens obtained with
a TRUS guided biopsies [6].

Over the past few years, however, other MRI tech-
niques have been developed to improve the diagnostic
accuracy. A number of studies have shown that the three-
dimensional 1H-spectroscopy of the prostate can ameliorate
the anatomical and morphological situation as well as the
characterization of the prostate cancer [7].

Diffusion weighted MR Imaging (DWI) is a technique
to evaluate the molecular diffusion based on the Brownian
motion of the spins in biological tissues. DWI provides
information on both the perfusion and the diffusion in any
organ to characterize abnormal tissue changes within the
sites. This method can be regarded as an additive method
to T2-weighted MRI by developing image contrast through
“apparent diffusivity.” Diffusion weighted MRI is showing
potential for improving prostate cancer detection [8–10].
By adding the diffusion-weighted imaging to conventional
T2-weighted MR imaging, an improvement of detection
of prostate cancer was found [8], and diffusion-weighted
imaging at 3.0 T has also showed reduced ADC values and
increased fractional anisotropy in prostate cancer [11] as
well.

These different methods were combined and compared
in several studies as well, especially the MR spectroscopy
and the DW imaging. It has been shown that there is
a positive correlation between ADC values and the ratio
for choline and creatine to citrate in men with elevated
prostate-specific antigen (PSA) levels [12]. Another study
showed that if an examined voxel contained ≥70% tumor,
the combined usage of MR spectroscopy and DW imaging
increased the specificity in detecting prostate cancer, while
the sensitivity compared to MR spectroscopy or DW imaging
alone retained [13]. Recently, Mazaheri et al. has reported
a more precise study about the same issue, using the three-
dimensional (3D) hydrogen 1 (1H) MR spectroscopy and the
DW imaging. Also in this study, it could be shown that the
combination of these two had a significant improvement in
differentiation from malignant and benign tissue [14].

The aim of this study was to apply both (3D) hydrogen
1 (1H) MRS and DWI to the prostate and to determine
the Choline-Citrate ratios and the ADC values of healthy
tissue and prostate cancer and to compare retrospectively
the results with histology, by means of the Gleason-Score,
in patients with questionable prostate cancer. Herewith, we
hope to assess the potentials with regard to the differentiation
of cancer, and to determine the ADC values and the
Choline-Citrate ratio of healthy tissue and prostate cancer in
comparison to histology.

2. Materials and Methods

2.1. Study Population. In this study, 50 patients with clin-
ical suspicion of prostate cancer underwent a combined
endorectal-body-phased-array MRI at a 1.5 T MRI scanner.
The mean age of the examined patients was 61.8 years,
with the range of 44 to 78 years. The study protocol was

approved by the local Ethics Committee, and informed
consent was obtained from all patients. From all patients,
blood samples were taken to ascertain the prostate specific
antigen (PSA) levels. The prerequisite for the examination
was that the patients would undergo a transrectal ultrasound
(TRUS) and biopsy or prostatectomy thereafter. Patients with
prior hormonal, surgical, or irradiation therapies as well as
previous biopsies within 12 weeks prior to the examination
date were excluded.

2.2. MRI Imaging Protocol. All examinations were performed
on a 1.5 T scanner (Symphony; Siemens Medical Solutions,
Erlangen, Germany) with a combination of an endorectal
coil (MRInnervu; Medrad, Indianola, USA) and a body and
spine panoramic array. No contrast medium was used. For
the morphological evaluation of the prostate including the
lymph node status of the pelvis, a T1-weighted spin echo
(SE) sequence was used. To evaluate prostatic changes a
T2-weighted fast spin echo (FSE) sequence in transversal,
coronal, and sagittal orientation was performed (Table 1).

2.3. Diffusion-Weighted Imaging. Based on the T2w images
a diffusion weighted (DW) spin echo-planar sequence was
generated in transversal orientation to include the whole
prostate using the following parameters also using the above-
mentioned coil combination: TR 3100 ms; TE 88 ms; FOV
180× 180 mm; matrix 128× 128 mm; Slice thickness 4 mm;
intersection gap 0 mm; voxel size 1.8 × 1.5 × 4 mm; b-
factors 50, 400, 800 s/mm2; 20 slices. The duration of the
examination was about 4 to 6 minutes. For DW imaging the
above-mentioned coil combination was used.

The ADC is given by the following equation:

S(I) = S(0)e − (bi · ADC), (1)

where S(I) was the signal intensity measured on the ith
b-factor image, and b1 was the corresponding b-factor. S0

estimates the signal intensity for a b-factor of 0 s/mm2, that
is, without the noise induced by the MR measurement [15].
A starting b-value of 50 s/mm2 was used to suppress vascular
signal in the initial T2 weighted EPI image. The diffusion
weighting was performed with a trace weighted sequence
type (3 orthogonal directions).

According to this equation, ADC-maps were generated
using the software attached to the scanner on the basis of
a voxelwise calculation and were interpolated to a 256 ×
256 mm matrix.

2.4. 3D-1H MR Spectroscopic Imaging. The spectroscopic
imaging was performed with the spectroscopic software
provided by the MR scanner (Symphony; Siemens Medical
Solutions, Erlangen, Germany), using only the endorectal
coil. This software acquires data with the point-resolved
spatially localized spectroscopy. By using spectral-spatial
pulses, choline, creatine, and citrate were excited within
the box. Water and lipids were suppressed with a shim
around the spectral box. The box was placed on the
transverse T2 weighted images, corresponding to the images
made beforehand. The magnetic field homogeneities were
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Table 1

Sequence TR [ms] TE [ms] Slice Thickness [mm] FoV [mm] Matrix

T1 SE 765 14 5 350 215× 215

T2 FSE transverse 3400 98 3 180 205× 256

T2 FSE sagittal 3000 98 3 200 205× 256

T2 FSE coronal 3000 98 3 200 205× 256

automatically optimized by shimming algorithms provided
by the manufacturer.

The following parameters were acquired for the MR
spectroscopy: TR 700 ms; TE 120 ms; Flip angle 90◦; number
of signal acquired = 1; spectral width = 1300 Hz; number of
points = 512; FOV 80 × 80 × 80 mm3, and phase-encoding
steps = 16×8×8. The voxel volume was 6.7×6.7×6.7 mm3;
SNR 100 csi-ce. The duration of the whole MR spectroscopy
was about 11.46 minutes.

The evaluation of the spectral data was made by utilizing
the manufacturer’s postprocessing software package. The
postprocessing included zero filling of the raw data in the
superior-inferior direction with a four-dimensional Fourier
transformation to yield a voxel volume of 300 mm3, spectral
apodization with a 2 Hz Lorentzian function, base line
correction, peak registration, and an alignment of 3D 1H MR
spectroscopic images to the transverse T2 weighted images.
The diameter of integration was 0.3 ppm and was adjusted
for each voxel, just to reach the optimal broadening of each
spectral peak. Metabolic ratio maps of choline, creatine, and
citrate were generated: (choline + creatine)/citrate = MET
(metabolic ratio).

The whole time duration of the MRI examination
(incl. MRI, DWI and MRS) including time for patient
placement, coil placement, and localization of the prostate
was approximately 40 minutes. The image acquisition time
for the T1 SE, and the T2 FSE was 24 minutes and that for
the DWI were 5 minutes. The MRS lasted approximately 12
minutes.

2.5. MR Image Analyses. The morphological and possibly
pathological sites of the peripheral zone of the prostate
were retrospectively assessed with the T2 weighted images
by dividing the prostate into sextants, that is, the apex,
the mid-portion, and the base, each right and left side.
Then, the grey value of the pixel corresponded to the ADC
value [mm2/s × 10−3] since a pixel-to-pixel ADC map was
automatically calculated for each slice. The value itself was
calculated with the equation mentioned above. The regions
of interest (ROI) were then manually drawn in each sextant
of the prostate guided by the T2 weighted images. The
mean ROI size was 0.8 mm2 (SD ± 0.56). Additionally,
metabolic ratio maps of choline, creatine, and citrate were
generated with the manufacturer’s software package for each
voxel, especially of suspect areas with the MR spectroscopy.
Voxels were classified as suspicious if the MET was >0.86
[16].

2.6. Biopsy/Histopathologic Analyses. All patients underwent
TRUS guided biopsies (in sextants: right and left sites of

the apical, the mid-partial and the basis of the prostate).
All biopsies were performed by urologists, and the biopsy
cores were labelled to specify the location of the biopsy.
Histopathologic analyses were made by the Institute of
Pathology for all biopsies of the prostate and the Gleason
scores were evaluated.

2.7. Statistical Analyses. The prostate was divided into 6
regions, that is, sextants: right/left apex, right/left midsec-
tion, and right/left base. Tissue probes from each site were
classified as “normal tissue” or “tumor tissue” according
to histopathology. Tumor tissue was further categorized
according to the Gleason score.

Univariate analysis of variance with ADC-values as
independent variable and tissue type (normal, tumor) and
as intersubject factors was used to compare the ADC value
between normal tissue and tumor and between different
sextants.

Sensitivity and specificity of ADC-values for identifica-
tion of tumor tissue were computed for variable discrimina-
tion thresholds to evaluate its receiver operator characteristic
(ROC). The histologically determined tissue type served
as gold standard. The area under the ROC curve was
computed as an overall performance measure. An association
between the ADC value and Gleason score was tested by the
nonparametric Spearman ρ-test. The analysis was restricted
to the tumor-positive probes.

The statistical analyses were repeated with MET instead
of ADC-value as independent variable.

An effect was considered statistically significant if the
significance level α = 0.05 was reached. All statistic
computations were performed using SPSS 15.0.1 for MS
Windows.

In order to test whether the combination of DWI and
MRS might improve the accuracy for detection of tumor
tissue compared to both DWI and MRS alone, stepwise
binary logistic regression was used with histopathology
(normal tissue, tumor) as dependent variable and ADC
values and MET as possible regressors (P for inclusion .05,
P for exclusion .10).

3. Results

The mean value of the prostate specific antigen (PSA)
taken from blood samples was 7.19 μg/L (SD ± 5.2), where
the mean PSA level in patients with prostate cancer was
10.41 μg/L (SD± 5.1) and those in healthy ones 4.1 μg/L (SD
± 4.2).

All MR examinations were performed successfully, and
although some images had susceptibility artifacts due to
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Figure 1: Patient (45 y.o.) with prostate cancer (2.6 cm): PSA-level
9.7 μg/L (free PSA-level 14.56 μg/L); Gleason-Score 4 + 5 = 9. In
the T2w image (a) the prostate cancer is demonstrated in the right
peripheral zone. In the correspondent ADC-map (b) the prostate
cancer is clearly shown as a hypointense area. The left peripheral
zone looks hyperintense on the T2w image, but the ADC-map
reveals the remaining healthy prostate tissue.

the endorectal coil, all images could be used for analyses.
The image acquisition time for the T1 SE, and the T2 FSE
was 24 minutes and that for the DWI were 5 minutes. The
MRS lasted approximately 11 minutes. As demonstrated in
Figure 1 the ADC maps show hyperintense in benign and
hypointense in malignant tissue in the peripheral zone.

Histopathology identified tumor tissue in 21 of the 50
patients (42%). All 6 sextants were infiltrated by the tumor
in 3 of these patients, 4 sextants in 3 patients, 3 sextants
in 5 patients, 2 sextants in 7 patients, and in 3 patients
tumor tissue was detected in only 1 sextant. Thus, in total
62 of the 300 tissue probes were tumor positive according to
histopathology (20.7%).

The rate of tumor-positive tissue probes ranged between
14% (left apex) and 28% (right midsection). However,
this variation was not significant statistically (Pearson’s
“portmanteau” χ2 test: χ2 = 4.066, df = 5, P = .540).

The Gleason score of the tumor-positive tissue probes
was 5 in 3 sextants (4.8%), 6 in 16 sextants (25.8%), 7 in
22 sextants (35.5%), 8 in 6 sextants (9.7%), 9 in 11 sextants
(17.7%), and 10 in 4 sextants (6.5%).

Univariate analysis of variance revealed a highly signif-
icant difference of ADC-value between normal tissue and
tumor tissue (F = 224.5, df = 1, P = .000), but no difference
between the sextants (F = 0.138, df = 5, P = .983)
(Figure 2). There was also no significant interaction effect of
tissue type and sextants on ADC values (F = 0.356, df = 5,
P = .878). Averaged overall sextants, ADC-value was 1.65 ±
0.32 in normal tissue and 0.96 ± 0.23 in tumor tissue (mean
± 1 standard deviation).

MET also showed a highly significant difference between
normal tissue and tumor tissue (F = 198.4, df = 1, P = .000)
(Figure 2). The analysis of variance suggested a significant
effect of the sextants (F = 4.5, df = 5, P = .001) as well
as a significant interaction effect of tissue type and sextants
on MRS (F = 3.4, df = 5, P = .006). However, post hoc
comparison of MET between any pair of sextant did not
reveal any significant effect, neither in normal tissue nor in
tumor. Therefore, the sextants were not taken into account
in the further analyses. MET was 0.418 ± 0.431 in normal
tissue and 2.010 ± 1.649 in tumor tissue.

4. Sensitivity and Specificity of
DWI and MRS Separately and Combined

Sensitivity and specificity of DWI and MRS were evaluated
separately using ROC analysis; a combined evaluation of
both methods was performed using a stepwise binary logistic
regression.

The ROC curves of DWI and MRS for identification
of tumor tissue irrespective of the sextants are given in
Figure 3. The area under the ROC curve was 0.966 (95%-
confidence interval 0.941–0.991) and 0.943 (0.918–0.968) for
DWI and MRS, respectively. For DWI a sensitivity of 0.92
and a specificity of 0.93 were provided using discrimination
threshold of 1.208 mm2/s× 10−3. With a threshold providing
the same sensitivity, that is, 0.92, MRS provided a specificity
of 0.85. With a threshold providing the same specificity, that
is, 0.93, MRS provided a sensitivity of 0.68.

Stepwise binary logistic regression included both DWI
(P < .001) and MRS (P < .001) for the differentiation
between normal tissue and tumor is demonstrated in
Figure 4. The regression model classified 291 of the 300
probes correctly (97.0%). Only 4 of 238 normal tissue probes
were misclassified as tumor, and 5 of 62 tumor probes were
misclassified as normal. Thus, the regression model provided
a sensitivity and specificity for detection of tumor of 91.9 and
98.3, respectively.

There was a highly significant negative correlation
between DWI and the Gleason score in the tumor-positive
tissue probes (n = 62, ρ = −0.405, P = .001) (Figure 5). In
contrast, MRS did not show a significant correlation with the
Gleason score (ρ = 0.117, P = .366).

5. Discussion

However, the fact that the MRI of the prostate might be more
advantageous than the transrectal ultrasound for staging the
cancer has also been discussed in the past (especially for T2
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Figure 2: Box-and-whisker plot of DWI (a) and MRS (b) as
a function of tissue type (normal tissue, tumor) and region of
interest (ROI). Outliers (1.5–3 box lengths) are indicated by a circle;
extreme values (>3 box lengths) are indicated by an asterix.

and T3 tumours) [17, 18]. The T2 weighted MRI images
of the prostate has been applied more often to improve the
validity of the staging in prostate cancer [19]. The prostate
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Figure 3: Receiver operator characteristic (ROC) curve of DWI (a)
and MRS (b) for differentiating tumor tissue from normal tissue.
The analysis included all 300 tissue probes irrespective of the ROI.

is one of the few organs in humans which can be examined
by MRI without any contrast media. Benign tissues in the
peripheral zone show hyperintense signals in T2 weighted
imaging, whereas malignant changes show hypointense
signals, of which the reason could be the cellular density as
well as the malfunction of the gland when the malignant
change had occurred. The cause of the decrease in diffusion
in malignant tissue has a histopathologic origin. Some
attributes are: hypercellularity, enlargement of the nuclei,



6 Radiology Research and Practice
D

W
I

Normal tissue

250

200

150

100

50

0 2 4 6

MRS

Tumor

Figure 4: Scatter plot of DWI versus MRS in normal tissue probes
and tumor-positive tissue probes.

hyperchromatism, and angulation of the nuclear contour,
which lead to a reduction of diffusional displacement of
water molecules (Anderson JR. Muir’s textbook of pathology.
London, England: Edward Arnold 1985). Commonly, the
prostate produces 20 to 30% of the ejaculate secretions. In
patients with known prostatic cancer, the amount of the
ejaculate can be less than in healthy patients. However, this
is difficult to determine since the secretions vary from 0.5 to
13 mL.

Diffusion weighted MR imaging has been clinically
applied in several organs. Not only is it used to show the
affected tissue after a stroke, it is also to differentiate brain
tumours [20, 21] or also vertebral metastases in, for example,
prostate cancer [22]. In diffusion-weighted MRI (DWI) the
image contrast is determined by the random microscopic
motion of water protons, that is, the Brownian motion. The
diffusion can be measured in vivo by using the MRI because
of its sensitivity to motion. This sensitivity to motion can be
increased by the addition of strong magnetic field gradient
pulses to the pulse sequence [23]. Shimofusa et al. applied
the DWI of the prostate with parallel imaging and with a
high b-value (b = 1000) for the first time [8]. In this study
they have not used an endorectal coil, but the sensitivity as
well as specificity was higher than in other former studies
with endorectal coil [24–27] or a dynamic study [28]. Since
then, several prostatic MR imaging modules were performed
to increase the detectability of cancerous tissue. The results of
these studies demonstrate that the ADC value may provide
information about the malignant changes in the prostate
[29–31].

MR spectroscopy is a relatively new method in diagnos-
ing prostate cancer and has been a part of clinical routine
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Figure 5: Scatter plot of DWI (a) and MRS (b) versus Gleason score
in tumor-positive tissue probes.

since 1980s. Since then, MR spectroscopy has been effective
in improving the accuracy of MR imaging in prostate cancer
localization and staging [32–34]. In the healthy prostate,
malign and benign tissues can be differentiated by the MR
spectroscopy on the basis of the metabolic ratio of choline,
creatine, and citrate. The ratio is calculated by the equation
MET = (choline + creatine)/citrate. The MET is increased in
malign tissue whereas a lower MET can be found in benign
tissue [35, 36].

In this present study, 50 patients with suspected cancer
of the prostate were examined with the DW MRI and the
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MR spectroscopy, and then compared retrospectively with
pathohistological results, especially with the Gleason score.

Two recent studies compared and analyzed the combined
usage of diffusion-weighted MRI and 1H MR spectroscopy.
The one study examined 42 patients with prostate cancer
using a 2D chemical shift imaging and isotropic apparent
diffusion coefficient (ADC) maps [13]. In this study the
regions of interest were drawn around the whole gland,
central gland, and the peripheral zone tumor. The mean
ADC value of the normal tissue in this study was 1.51 mm2/s
× 10−3 [SD: ±0.27].

If the tumor was greater than 30% of the whole voxel
the mean ADC value was 1.19 mm2/s × 10−3 [SD: ±0.24],
and if the tumor was greater than 70% of the whole voxel,
the value was 1.03 mm2/s × 10−3 [SD: ±0.18]. The mean
MET in normal gland was 0.065 ± 0.052, whereas the value
was much higher in malignant tissues; 0.814 ± 2.202 in
tumor ≥30% of the voxel and 0.917± 1.276 in tumor ≥70%,
respectively. The MET was significantly higher (P < .001)
and the ADC values were significantly (P < .006) lower
in tumor-containing voxel. The area under the ROC curves
using both the ADC and MET was 0.81, similar to only
MET (0.79), whereas ADC alone showed an area of 0.66 and
was inferior. An interesting point, however, is the significant
improvement in specificity for the combination of ADC and
MET, when voxels containing 70% or tumor were considered
positive and cutoffs to achieve a 90% or greater sensitivity
were chosen [13].

The other study performed a retrospective measurement
of ADC and MET in 38 patients with prostatic cancer.
The mean ADC value and MET for malignant tissue were
1.39 mm2/s × 10−3 [SD:±0.23] and 0.92±0.32, respectively.
For benign tissue, the values were 1.69 mm2/s × 10−3 [SD:
±0.24] and 0.73 ± 0.18 (P < .001 for both). In this
study, areas under the receiver operating characteristic curves
(AUCs) were performed to evaluate the accuracy. Obviously,
the combination of ADC and MET performed significantly
better (AUC = 0.85; P = .005) than ADC or MET alone (AUC
= 0.81 and AUC = 0.09, resp.) [14].

Analogue to these prior studies, our results of the ADC
values were significantly lower (P < .001) and the results
of the mean MET were significantly higher (P < .001)
for malignant prostatic tissues than for benign tissues. In
our study, the average ADC value in benign tissue was
1.65 mm2/s × 10−3 [standard deviation (SD): ±0.32] and
that in malign tissues 0.96 mm2/s × 10−3 [SD: ±0.24]. The
significantly (P < .001) lower ADC values in malign tissues
compared with the benign signify some promising results
in detecting the cancer. These results were similar to other
prior studies, although different b-values (0 and 1000 s/mm2

and 0, 300, 600 s/mm2) [30, 37] were used in our study
(i.e., 50, 400, 800 s/mm2). The cutoff value of the mean
ADC value between cancerous and noncancerous tissue in
the present was at approximately 1.2 mm2/s × 10−3, which
can be seen on the ROC-Analyses (Figure 3). Compared to
the aforementioned studies our results of the ADC value
for malignant tissue were remarkably lower. The MET of
malignant tissues showed an average value of 2.010 ± 1.649
in our study, and is significantly higher than in healthy

tissues (0.418±0.431). This result can also be compared with
previous studies.

In this present study, a relatively larger number of
patients were examined than other studies. The combination
of DWI and MRS performed significantly better in detecting
cancer in the periphery zone of the prostate than MRS
alone [14] in one study. In our study with 50 patients, the
combination of DWI and MRS seems also to have a better
accuracy in detecting cancerous tissue. The regression model
classified 291 of the 300 probes correctly (97.0%). Only 4 of
238 normal tissue probes were misclassified as tumor, and
5 of 62 tumor probes were misclassified as normal. Thus,
the regression model provided sensitivity and specificity for
detection of tumor of 91.9 and 98.3, respectively (Figure 5).

If the results were correlated with the Gleason-score,
there was a highly significant negative correlation between
DWI and the Gleason score in the tumor-positive tissue
probes (n = 62, ρ = −0.405, P = .001) (Figure 4). However,
MRS did not show a significant correlation with the Gleason
score (ρ = 0.117, P = .366). One explanation could be that
in the present study the MET values were extracted using a
very short TR sequence (700 ms) which keeps the scan time
tolerable but results in spectra that are fairly heavily T1-
weighted. Perhaps that is why the other groups [38] found
a weak correlation between Gleason and MET.

There are some problems and limitations in our study
like in other MR studies of the prostate. First limitations
are based on MR technique itself. Common artefacts for the
DWI are white pixel noise, low SNR (signal-to-noise ratio),
and susceptibility artefacts. In MR spectroscopy common
artefacts are lipid contamination and susceptibility artefacts.
These artefacts could be reduced by new methods in the
future. Second limitation is the discrepancy in voxel sizes
between the ADC map and the 3D 1H MR spectroscopy. In
the future new spectroscopic techniques with increased spa-
tial resolution without increasing the examination duration
[39] could be used to overcome this problem. The present
study was a retrospective analysis of the prostate cancer. The
malignant sites were known when analyzing the ADC map
and the MET. Chronic changes, such as chronic prostatitis
or atrophy of the gland itself, usually show similar changes
in MRI [4, 27] to prostatic cancer. Prospective studies
are another research task for succeeding studies with the
DWI and MRS, especially in patients with several negative
biopsies. The last limitation of this study was the usage of
sextant biopsy, since biopsies can be easily false negative so
that the tumor localization might not be very exact. These
methods can then be combined with the dynamic contrast-
enhanced magnetic resonance imaging, since first studies
have shown that it may be an accurate technique for detecting
and quantifying intracapsular transition or peripheral zone
tumor foci greater than 0.2 cc [40].

6. Conclusion

The results of our study showed that both diffusion-weighted
Imaging and MR spectroscopy should be considered as
an additional and complementary tool to the T2 weighted
MRI not only for detecting prostate cancer, but also for
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guiding more specific biopsies without taking several samples
from the organ. The combination of these methods can
improve the specificity and may prevent uncomfortable as
well as painful biopsies for patients. The DWI is furthermore
advantageous over the present examination methods, such
as the MR spectroscopy, regarding the considerably shorter
examination time (approximatly 5 minutes in case of this
study) and the correlation with the Gleason score.
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