
RESEARCH ARTICLE

Integrative analysis for the discovery of lung

cancer serological markers and validation by

MRM-MS

Jihye Shin1,2☯, Sang-Yun Song3☯, Hee-Sung Ahn1,4☯, Byung Chull An5, Yoo-Duk Choi6,

Eun Gyeong Yang1, Kook-Joo Na3, Seung-Taek Lee2, Jae-Il Park7, Seon-Young Kim8,9,

Cheolju Lee1,4‡*, Seung-won Lee5‡*

1 Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea,

2 Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-

gu, Seoul, Korea, 3 Department of Thoracic and Cardiovascular Surgery, Chonnam National University

Hwasun Hospital, Hwasun-gun, Jeollanam-do, Korea, 4 KIST School, Korea University of Science and

Technology, Daejeon, Korea, 5 Department of Anatomy, Chonnam National University Medical School,

Hwasun-gun, Jeollanam-do, Korea, 6 Department of Pathology, Chonnam National University Hospital,

Dong-gu, Gwangju, Korea, 7 Animal Facility of Aging Science, Korea Basic Science Institute, Buk-gu,

Gwangju, Korea, 8 Personalized Genomic Research Center, Korea Research Institute of Bioscience and

Biotechnology, Daejeon, Korea, 9 Department of Functional Genomics, University of Science and

Technology, Daejeon, Korea

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* seunglee@chonnam.ac.kr (SL); clee270@kist.re.kr (CL)

Abstract

Non-small-cell lung cancer (NSCLC) constitutes approximately 80% of all diagnosed lung

cancers, and diagnostic markers detectable in the plasma/serum of NSCLC patients are

greatly needed. In this study, we established a pipeline for the discovery of markers using 9

transcriptome datasets from publicly available databases and profiling of six lung cancer cell

secretomes. Thirty-one out of 312 proteins that overlapped between two-fold differentially

expressed genes and identified cell secretome proteins were detected in the pooled plasma

of lung cancer patients. To quantify the candidates in the serum of NSCLC patients, multi-

ple-reaction-monitoring mass spectrometry (MRM-MS) was performed for five candidate

biomarkers. Finally, two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673,

respectively) and one two-marker panel generated by logistic regression (BCHE/GPx3;

AUC = 0.773) were identified. A validation test was performed by ELISA to evaluate the

reproducibility of GPx3 and BCHE expression in an independent set of samples (BCHE and

GPx3; AUC = 0.630 and 0.759, respectively, BCHE/GPx3 panel; AUC = 0.788). Collectively,

these results demonstrate the feasibility of using our pipeline for marker discovery and our

MRM-MS platform for verifying potential biomarkers of human diseases.

Introduction

Owing to its high metastatic potential and high mortality rate, lung cancer is one of the leading

causes of cancer-related deaths worldwide and is broadly divided into two classes, small cell
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lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC, which constitutes

approximately 80% of all diagnosed lung cancers, consists of two major subtypes: adenocarci-

noma (ADC) and squamous cell carcinoma (SQC). Every year, more than 900,000 deaths

from ADC and SQC combined are reported worldwide [1]. Detection of NSCLC via markers

is critical in improving prognoses and survival rates. Although serological biomarkers can be

analyzed relatively easily and economically, the discovery of biomarkers using plasma and

serum samples is challenging due to the high complexity and wide dynamic range of the

plasma proteome. Enormous efforts have been made to discover biomarkers using plasma

samples from NSCLC patients [2], but unfortunately, clinical use of those markers might be

limited.

High-throughput omics-based technologies have been widely used in the past decade,

and many groups have researched the characterization and dysregulation of tumor genomes

and differentially expressed proteins and their mechanisms. The resulting genomic, tran-

scriptomic, and proteomic data have been deposited in public databases [3]. Technological

developments in areas such as proteomics, bioinformatics, and biostatistics, coupled with

knowledge from the map of the human genome and the human proteome, are expected to

drive further improvements within healthcare, specifically with biomarkers for diagnoses

and prognoses. Among lung cancer studies, many have searched for potential NSCLC

markers using various biological specimens, including cell lines, tissues, and serum/plasma

at the discovery stage [2, 4–9]. The resulting candidates have been evaluated in human

serum/plasma using antibody-based assays such as ELISA for their diagnostic potential as

noninvasive biomarkers. However, ELISA kits are expensive and time-consuming and

allow measurement of only one protein at a time. Also, the availability of high-quality com-

mercial ELISA kits is dependent on antibody quality [10]. Recent advances in MS-based

quantification, especially selected reaction monitoring (SRM) or multiple reaction monitor-

ing (MRM), enable accurate measurements of target proteins without antibodies [11–13].

High selectivity and specificity, attained through the use of two mass-filtering quadrupoles,

have facilitated selection of target transitions from complex samples such as plasma/serum

and allowed reproducible analyses.

In this study, we hypothesized that if some proteins show quantitative changes in cancer

tissues compared to normal tissues and are present in the cell secretome, then there would

be a better chance of detecting those proteins in plasma/serum. We challenged this hypoth-

esis with NSCLC integrative tissue transcriptomes and cell secretomes, and the resulting

candidates were verified using MRM-MS and ELISA to measure the concentrations of can-

didate proteins in plasma. To find differentially expressed genes (DEGs) in NSCLC tissues,

we analyzed transcriptome data from 9 datasets deposited in the Gene Expression Omnibus

(GEO). In addition, secretomes, which have limited complexity compared to serum and

plasma, were profiled from six lung cancer cell lines. Overlapping potential candidates

from DEGs and secreted proteins were confirmed in pooled plasma by LC-MS/MS. MRM-

based target quantification was applied to evaluate the candidates using clinically collected

sera including 23 healthy controls and 23 NSCLC cases (16 ADCs and 7 SQCs). Finally,

two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673, respectively) and one

two-marker panel (BCHE/GPx3; AUC = 0.773) were verified by MRM-MS. An additional

validation study was performed on the two biomarkers (GPx3 and BCHE) using ELISA-

based protein quantitation in an independent set of samples (50 healthy controls and 50

NSCLC patients). The GPx3 and BCHE values were significantly lower in the NSCLC

group compared with the healthy controls (BCHE and GPx3; AUC = 0.630 and 0.759,

respectively, BCHE/GPx3 panel; AUC = 0.788).
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Materials and methods

Mining microarray data from the gene expression omnibus

Human arrays can be obtained from GEO at the National Center for Biotechnology Informa-

tion (NCBI), which has emerged as the leading fully public repository for gene expression data

(http://www.ncbi.nlm.nih.gov/geo/). Nine datasets (GEO accession numbers GSE12667 [14],

GSE10245 [15], GSE18842 [16], GSE10445 [17], GSE19188 [18], GSE10799 [19], GSE19804

[20], GSE27262 [21], and GSE31210 [22]) were selected to compare mRNA expression bet-

ween lung cancer and normal tissues as raw CEL files were available for those nine data sets

produced by using the same platform (GPL570; Affymetrix Human Genome U133 Plus 2.0

Array). The results are summarized in Table 1. First, raw CEL files were downloaded from the

GEO site, and rma normalization was performed using the total of 887 cel files using affy pack-

age [23, 24]. Then, heteroscedastic t-tests were performed to determine the statistical signifi-

cance of the data (p< 0.0001) and false discovery rates (FDRs) were calculated to correct the

P-value (q< 0.001) [25].

Preparation of secretome

The lung cancer cell lines A549, Calu-1, H1299, H23, H460 and H520 were used and cultured

in RPMI 1640 (Gibco, Rockville, MD, USA) supplemented with 10% FBS (Gibco) and 1% pen-

icillin/streptomycin (Gibco) at 37˚C in a humidified 95% air, 5% CO2 incubator. Cells were

grown to approximately 70% confluence and rinsed carefully three times with serum-free

medium (SFM) at room temperature. Then, the cells were incubated in SFM at 37˚C for 12 h

to minimize the release of cytosolic proteins into the surrounding medium due to cell death.

After incubation, the conditioned media were carefully collected and 2 mM PMSF and 1 mM

EDTA were added as protease inhibitors. Floating cells and cellular debris were removed by

centrifugation (400 × g, 10 min, 4˚C), followed by sterile filtration (pore size: 0.22 μm, Milli-

pore, MA, USA). The media were concentrated and exchanged into buffer consisting of 8 M

urea, 75 mM NaCl, and 50 mM Tris (pH 8.2) by ultrafiltration using Amicon Ultra-15 centrif-

ugal filter devices (Millipore).

Plasma and serum

For all blood preparations, 3 mL of blood was collected in an EDTA tube and the plasma was

prepared as suggested by the HUPO Plasma Proteome Project [26]. The plasma samples for

prescreening were collected at Yonsei Severance Hospital (Seoul, Korea) and authorization to

Table 1. Summary of 9 transcriptome datasets obtained from the GEO.

Accession

number

Title # of samples (tumor/

normal)

reference

GSE10245 Non-small lung cancer subtypes: adenocarcinoma and squamous cell carcinoma 58 (58/0) [14]

GSE10445 Merlion lung cancer study 72 (72/0) [15]

GSE10799 Gene expression profile of lung tumors 19 (16/3) [16]

GSE12667 Discovery of somatic mutations in lung adenocarcinomas 75 (75/0) [17]

GSE18842 Gene expression analysis of human lung cancer and control samples 91 (46/45) [18]

GSE19188 Expression data for early stage NSCLC 156 (91/65) [19]

GSE19804 Genome-wide screening of transcriptional modulation in non-smoking female lung cancer

in Taiwan

120 (60/60) [20]

GSE27262 Gene expression profiling of Non-small cell lung cancer in Taiwan 50 (25/25) [21]

GSE31210 Gene expression data for pathological stage I-II lung adenocarcinomas 246 (226/20) [22]

https://doi.org/10.1371/journal.pone.0183896.t001
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use the samples for research purposes was obtained from the institutional review board (IRB).

Plasma samples pooled from 10 lung cancer patients and 10 healthy controls were used. The

top 12 abundant proteins (α1-acid glycoprotein, fibrinogen, α1-antitrypsin, haptoglobin,

α2-macroglubulin, IgA, albumin, IgG, apolipoprotein A-I, IgM, apolipoprotein A-II and,

transferrin) in the plasma were depleted using Pierce™ Top 12 Abundant Protein Depletion

Spin Columns (Pierce, Rockford, IL, USA).

The serum specimens used for the MRM study were obtained from 23 patients with

NSCLC (16 adenocarcinomas and 7 squamous cell carcinomas sampled before initiation of

treatment at Chonnam National University Hwasun Hospital) and from 23 normal healthy

controls. For an ELISA-based validation, an independent set of NSCLC cases (n = 50; all new)

and controls (n = 50; 41 samples were new and the other 9 samples were from the MRM con-

trols) was selected. Clinical information was obtained by chart review and all diagnoses were

confirmed histologically by surgical biopsy. The Institutional Board of Review of Chonnam

National University Hwasun Hospital approved this study and the need for consent was

waived by the ethics committee. Serum samples were immediately placed on ice for transport

to the laboratory where they were centrifuged, aliquoted, and immediately frozen at -80˚C

until use.

Protein digestion by trypsin

For in-solution digestions, all samples (~100 μg), such as the secretome from cell lines, plasma,

and serum, were reduced with 5 mM DTT (Sigma, St. Louis, MO, USA) at 30˚C for 1 h and

alkylated with 14 mM iodoacetamide (Sigma, St. Louis, MO, USA) at 30˚C for 1 h. The sample

was diluted five times to decrease the urea concentration to 1.6 M in solution and CaCl2 (Sigma)

was added to a final concentration of 1 mM. The protein mixture was digested by sequencing

grade modified trypsin (Promega, Madison, WI, USA) at 37˚C for 16 h (enzyme:protein = 1:50).

Tryptic peptides were desalted with a C18 spin column (Thermo Scientific, Waltham, MA, USA)

and further fractionated.

For in-gel digestions, pooled plasma was reduced in the gels with 20 mM DTT at 56˚C for 1

h, followed by alkylation with 50 mM iodoacetamide in 25 mM ammonium bicarbonate for 1

h in the dark. After treatment, the reagents were removed and gel pieces were washed with 50

mM ammonium bicarbonate and then dehydrated in acetonitrile. The dried gel pieces were

then rehydrated in a solution of trypsin (Promega) in 25 mM ammonium bicarbonate for 16

h. Tryptic peptides were extracted from the gel with 50% acetonitrile in 5% formic acid fol-

lowed by 70% acetonitrile in 5% formic acid. All digests were desalted with a C18 spin column,

dried in vacuo, and stored at -80˚C until use.

Fractionation after in-solution digestion. Tryptic digests from the secretome were fur-

ther separated into 12 fractions based on peptide isoelectric points using an OFFGEL 3100

fractionator (Agilent Technology, Santa Clara, CA, USA). All fractions were desalted with C18

spin columns (Thermo Scientific), dried in vacuo, and stored at -80 dried ntific), dried based

on peptide isoelectric points using an OFFGEL 3100 fractionator (Agilent Technology, Santa

Clara, CA, USA). All fractions were desalted with CAl The fractionations were performed with

XBridge C-18 columns (i.d. 4.6 mm; length 250 mm; pore size 130 130 pore size 130 ze 130

ectric points using an OFFGEL 3100 fractionator (Agilent Technology, Santa Clara, CA, UmM

ammonium formate (pH 10) and mobile phase B was 10 mM ammonium formate in 90% ace-

tonitrile (pH 10). Plasma digests were dissolved in 125 μL of mobile phase A and then manu-

ally injected into a 100-μL sample loop. A gradient of 5anually injected into a 100-d in 125 in

125 ed in 125 5 OFFGEL 3 for 10 min, and 45–90% phase B for 15 min was applied, followed

by washing the column with 100% and 50% mobile phase B for 30 min each. Throughout the
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fractionation process, eluates were collected every minute on a 96-well plate in the Frac-950

fraction collector of an AKTA Explorer (GE Healthcare Life Science) [12]. In total, 96 frac-

tions, 8 rows (Ally × 12 columns (1fractions, 8 rows (Ally injected into a 100-d in 125 in 125 ed

in 125 5 OFFGEL 3 for 10 min, and lso traced the surrogate peptide during high-pH RPLC by

monitoring the UV absorbance of the eluate at 215 nm. The fractions selected for the next step

of LC–SRM/MS were dried and stored at –20˚C until use.

Liquid chromatography and tandem mass spectrometry (LC-MS/MS)

The peptide samples were reconstituted in 0.4% acetic acid. An aliquot (~1 μg) was then

injected into a reversed-phase Magic C18aq column (15 cm × 75 μm, 200Å, 5U). The col-

umn was pre-equilibrated with 95% buffer A (0.1% formic acid in water) and 5% buffer B

(0.1% formic acid in acetonitrile) on an Agilent 1200 HPLC system (Agilent Technology).

The peptides obtained from the secretome were eluted at a flow rate of 0.4 μL/min across

the analytical column with a linear gradient of 5–40% buffer B over 90 min for each frac-

tionated peptide. The HPLC system was coupled to an LTQ-XL mass spectrometer (Thermo

Scientific, San Jose, CA). The ESI voltage was set to 1.9 kV, the capillary voltage to 30 V, and

the temperature of the heated capillary to 250˚C. The MS survey was scanned from 300 to

2,000 m/z, followed by three data-dependent MS/MS scans with the following options: iso-

lation width, 1.5 m/z; normalized collision energy, 25%; dynamic exclusion duration, 180 s.

All experiments were conducted in duplicate runs and all data were acquired using Xcalibur

software v2.0.7.

Analytes obtained from plasma were analyzed using an LTQ XL-Orbitrap mass spectrome-

ter (Thermo Scientific). The spray voltage was set to 1.9 kV and the temperature of the heated

capillary was set to 250˚C. Survey full-scan MS spectra (300–2000 m/z) were acquired from the

Orbitrap with one microscan and a resolution of 100,000, allowing preview mode for precur-

sor selection and charge-state determination. MS/MS spectra of the 10 most intense ions from

the preview survey scan were acquired concurrently from the ion-trap for full-scan acquisition

in the Orbitrap with the following options: isolation width, 10 ppm; normalized collision

energy, 35%; dynamic exclusion duration, 30 s. Precursors with unmatched charge states were

discarded during data-dependent acquisition. Singly charged precursors were also excluded.

Data were acquired using Xcalibur software v2.0.7.

Analysis of mass spectrometric data

The acquired MS/MS spectra from the cell secretome were searched using SEQUEST (Turbo-

Sequest version 27, revision 12) against the composite UniProtKB database (released in March

2012), including the human experimentally validated FBS UniProtKB database [27]. Two tryp-

sin-missed cleavages were allowed and the peptide mass tolerances for MS/MS and MS were

set to ± 0.5 and ± 2 Da, respectively. Other options used for SEQUEST were fixed modification

of carbamidomethylation at cysteine (+ 57.02 Da) and variable modification of oxidation at

methionine (+ 15.99 Da). Peptide assignment and validation were performed using the Trans-

Proteomic Pipeline (TPP, version 4.0, http://www.proteomecenter.org). The SEQUEST search

output was used as an input for TPP analyses. The MS/MS spectra acquired from plasma sam-

ples were analyzed using SEQUEST in Proteome Discoverer 1.4 (Thermo Fisher Scientific,

version 1.4.0.288). The search parameters were identical to the abovementioned parameters.

For the validation of peptide sequence matching (PSM), Percolator was used to calculate q-val-

ues as measures of statistical confidence for each PSM. We filtered the output with q< 0.01.

Discovery of lung cancer markers and its MRM-MS validation
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Bioinformatics for data mining

The identified secretory proteins were analyzed using ProteinCenter (Proxeon Bioinformatics,

http://www.cbs.dtu.dk/services). We submitted several proteins in one FASTA format file for

each program. We used SignalP (version 4.0, http://www.cbs.dtu.dk/services/SignalP4.0) to

predict the presence of signal peptides in the identified proteins [28]. The SecretomeP program

(version 2.0, http://www.cbs.dtu.dk/services/SecretomeP2.0) was used to predict the possibility

of nonclassical protein secretion [29]. In addition, the TMHMM program (version 2.0, http://

www.cbs.dtu.dk/services/TMHMM2.0) was used to predict transmembrane helices in integral

membrane proteins [30]. All of the secreted proteins were further analyzed using the Plasma

Proteome Database (PPD, http://www.plasmaproteomedatabase.org). Ingenuity Pathway

Analysis (IPA, Ingenuity system, http://www.ingenuity.com) was used to determine the sub-

cellular localizations and biological functions of the proteins.

Stable isotope standard (SIS) synthetic peptides

The MRM assay panel consisted of 8 light peptides as surrogates for 5 plasma proteins that

were obtained from prescreening LC-MRM/MS data with the corresponding 8 SIS peptides as

internal standards. Selected peptides were noted for doubly or triply charged precursor ions to

ensure stable and reproducible detection for quantification. Synthetic SIS peptides incorporat-

ing C-terminal [13C6, 15N2] lysine and [13C6, 15N4] arginine were obtained from 21st Century

Biochemical (Marlboro, MA, USA). For each peptide, amino acid analysis (AAA) was per-

formed by the vendor. These peptides were resolubilized in 20% acetonitrile with 0.1% formic

acid at a similar scale as that expected for target proteins in plasma. After pooling the 11 SIS

peptides, the mixture was spiked into plasma prior to tryptic digestion.

Multiple reaction monitoring mass spectrometry (MRM-MS)

The LC-MRM-MS assay was executed by two-column switching on a nanoLC-MRM-MS

system. The LC system consisted of an Eksigent nanoLC-Ultra 2D Plus interfaced with a

NanoFlex system. Mobile phase A and mobile phase B consisted of water (solvent A) and ace-

tonitrile (solvent B), respectively, both containing 0.1% formic acid. Plasma sample digests

were reconstituted with 22.5 μL of 2% acetonitrile and 0.1% formic acid. Each sample was

picked up with a 1-μL sample loop and separated using a Nano cHiPLC ReproSil-Pur C18-col-

umn (i.d. 75 μm, length 15 cm, pore size 120 Å, particle size 3 μm; Eksigent Technologies,

Dublin, CA) with a flow rate of 300 nL/min. The columns were maintained at 40˚C. Due to

the use of a two-column switching method, the sample was loaded onto the column being

regenerated (i.e., the column where flow was not directed to the mass spectrometer) as follows:

an M-shaped gradient of mobile phase B (5–90–5–90–5%) for 10 min followed by re-equilibra-

tion with 5% B for 40 min. The sample was injected onto the loading column at 30 min. The

column was switched (i.e., flow was directed to the mass spectrometer) and the sample was

separated by the following elution method: gradient from 5% to 10% B over 4 min, gradient

from 10% to 25% B over 30 min, gradient from 25% to 60% B over 3 min, hold 60% B for 3

min, gradient from 60% to 5% B over 1 min, and hold 5% B for 9 min. The LC system was cou-

pled to a 5500 Qtrap mass spectrometer by a nanoelectrospray ion source (SCIEX, Foster City,

CA). MS detection was carried out in positive MRM mode with the following parameters: ion

spray voltage of 2200 V, curtain gas at 10 psi, nebulizer gas at 30 psi, resolution at 0.7 Da (unit

resolution) for Q1/Q3, interface temperature at 150˚C, and scan mass range of m/z > 300–

1250. The collisional energy (CE) and declustering potential (DP) were optimized by direct

infusion using Turbospray (Sciex, Foster City, CA). Quantification was performed using the
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nonscheduled MRM mode with a dwell time of 20 ms and a cycle time of 2.4 s [30]. The raw

data were deposited in the PeptideAtlas database (accession ID, PASS00767).

Analysis of MRM-MS data

Analyst software (Version 1.5.2, ABSciex) was used to generate MRM-MS data and optimized

MRM parameter data (�.wiff). Skyline (version 2.6.0) was used to analyze MRM results from

extracted ion chromatograms (XICs) [31]. Endogenous peptides were identified and quanti-

fied with the corresponding SIS peptides. We chose the single quantitative transition that had

no interference and achieved the most sensitivity. Other transitions were used for peak assign-

ments. Marker candidate proteins were statistically analyzed using Excel 2010 (version 14.0,

Microsoft Office) and R software (version 3.1.0).

ELISA-based quantification of proteins in serum specimens

The serum levels of GPx3 and BCHE were determined using commercial ELISA kits (Adipo-

Gen, Inc., Seoul, Korea; R&D Systems, Inc., MN, USA, respectively). Each microtiter plate was

coated with a human GPx3 specific polyclonal antibody or a human BCHE specific monoclo-

nal antibody. For GPx3, each patient serum sample was prepared at dilution 1:250, 100 μL of

which was added to the wells and incubated for 1 h at 37˚C. After washing the plate three

times, 100 μL of the primary detection antibody was added. After incubation at 37˚C for 1 h,

the plate was washed three more times and 100 μL of the secondary detection antibody was

added. This was followed by an additional 1-h incubation at 37˚C. After washing the plate five

times, 100 μL of the substrate solution was added. The plate was then read within 20 min at a

wavelength of 450 nm using a VERSAmax microplate reader (Molecular Devices, Sunnyvale,

CA). For BCHE, each serum sample was diluted 1:2000, 50 μL of which was added to the wells.

The plates were incubated at room temperature for 2 h on a horizontal orbital microplate

shaker set at 500 rpm. After washing the plate three times, 200 μL of the detection antibody

was added and incubated for 2 h at room temperature on a shaker. After washing three times,

200 μL of substrate solution was added to each well. This was followed by a 30-min incubation

at room temperature in the dark. The absorption at 450 nm was read in an Infinite M200 Pro

microplate reader (TECAN, Männedorf, Switzerland). All experimental procedures were per-

formed in duplicate, and measurements were averaged.

Statistical analysis

Analysis of ELISA data was performed using SOFTMax Pro version 5 software (Molecular

Devices, Sunnyvale, CA). All MRM-MS and ELISA values are expressed as the mean ± SD.

The Mann-Whitney test was used to compare age, BCHE and GPx3 levels between the control

and NSCLC groups. We used a chi-square test to assess differences in sex, history of smoking,

hypertension (HTN), and diabetes mellitus (DM) between serum sample groups. The sample

size computation for the ELISA validation was done using G�Power 3.1.9.2 [32]. Multivariate

logistic regression analysis was used to assess the association of biomarkers with the risk of

lung cancer. Spearman correlation analysis was performed to test the association of biomarker

levels with the stage of lung cancer. The AUC was estimated by receiver operating characteris-

tics curve (ROC) analysis. A p-value < 0.05 was considered statistically significant. All statisti-

cal analyses except for sample size computation were performed with SPSS Statistics 21 (IBM,

Armonk, United States).
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Results

Quantitative analysis of GEO data

A schematic for the experimental procedure used in our study is shown in Fig 1. The starting

point was the analysis of gene-expression data. Lung cancer transcriptome data were obtained

from 9 GEO datasets (GSE12667 [14], GSE10245 [15], GSE18842 [16], GSE10445 [17], GSE19

188 [18], GSE10799 [19], GSE19804 [20], GSE27262 [PMID22726390], and GSE31210 [PMID

23028479]) and used for the discovery of NSCLC-specific genes (Table 1). The analysis inc-

luded 54,613 probes from 218 normal lung tissues and 669 lung cancer tissues (S1 Table). By

applying global normalization to all datasets, heteroscedastic t-test p-values< 1 x 10−6 and over

two-fold changes, we gathered a total of 1,890 DEGs from 2,696 probes, of which 683 genes

were up-regulated (maximal log fold-change; 4.33) and 1,207 genes were down-regulated (mini-

mal log fold-change; -5.03) in lung cancer tissues relative to non-tumor tissues. A hierarchical

Fig 1. Schematic workflow.

https://doi.org/10.1371/journal.pone.0183896.g001
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cluster analysis of the DEGs is presented as a heat map in Fig 2A. The up-regulated genes in

cancer tissues were involved in protein binding, small molecule binding, carbohydrate deriva-

tive binding and transferase activity, while the down-regulated genes were concerned with pro-

tein binding, carbohydrate derivative binding, receptor activity, macromolecular complex

binding and signaling receptor activity (Fig 2B). The up-regulated genes were primarily com-

partmentalized in the cell and organelle parts and some were in the extracellular region, while

the down-regulated genes were in the extracellular region and membrane part (Fig 2C)

Identification of lung cancer cell secretomes by LC-MS/MS

The secretomes of six lung cancer cell lines (A549, Calu-1, H1299, H23, H460, and H520) were

profiled by LC-MS/MS (Fig 1). The main purpose of this analysis was to identify proteins that

might be secreted from NSCLC cancer cells. As a negative control, α-tubulin was examined in

cell secretomes by Western blot analysis. The cytoskeleton protein was clearly detected in cell

extracts but not in conditioned media (Fig 3A), indicating that our secretome was rarely con-

taminated with intracellular proteins released from ruptured cells. In total, 2,992 non-redun-

dant human proteins were identified from the six cell lines, among which 942, 1498, 1114,

1390, 1328, and 1128 proteins were from A549, Calu-1, H1299, H23, H460, and H520, respec-

tively (Fig 3B and S2 Table).

Integration of DEGs and cell secretome data

The DEGs identified from the public gene expression data were integrated with the proteins

obtained by profiling cancer cell secretomes (Fig 1). After combining the 1,890 DEGs with the

Fig 2. Analyses of 9 transcriptome datasets from the GEO. (A) A heat map of 2,696 differentially

expressed probes between tumor (n = 669) and non-tumor tissues (n = 218) collected from 9 GEO data sets

(p-values < 1 x 10−6 and over two-fold changes; red: up-regulation; green: down-regulation) (B) Classification

of DEGs based on their molecular function as suggested by DAVID. (C) Subcellular locations of DEGs (grey:

up-regulated genes in NSCLC; black: down-regulated genes in NSCLC).

https://doi.org/10.1371/journal.pone.0183896.g002
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2,992 secreted proteins, 312 proteins overlapped between the two lists (141 up-regulated DEGs

and 171 down-regulated DEGs; Fig 3C). Since these 281 genes/proteins showed quantitative

changes in cancer tissues compared to their levels in normal tissues and were also present in

the cell secretome, we hypothesized that these proteins would be appropriate lung cancer bio-

markers in plasma/serum. Therefore, these 312 proteins were considered as potential marker

candidates for lung cancer.

The 312 proteins were further analyzed using bioinformatics programs designed to predict

protein secretion pathways and 68% (213 of 312 human proteins) were expected to be secreted

via various secretory pathways (Fig 3D and S2 Table). Briefly, based on the SignalP program,

39% of the proteins were secreted via classical secretory pathways based on the presence of a

signal peptide (D-cut-off values for SignalP-noTM networks > 0.45 or SignalP-TM networks

> 0.5 as the default cut-off for signal peptide = ‘Yes’) [28]. The SecretomeP 2.0 program pre-

dicted that 26% of the proteins were released via non-classical secretory pathways (SignalP sig-

nal peptide = ‘No; and SecretomeP score > 0.5) [29]. An additional 3% of the proteins were

determined to be integral membrane proteins through TMHMM [30]. Of these, 259 proteins

(83%) are reported as plasma proteins in PPD, among which 7.4% (23 proteins) were also evi-

dent in MRM-MS spectra.

Detection of candidate proteins in plasma by LC-MS/MS analysis

We next assessed the detectability of the 312 proteins in human plasma or sera (Fig 1). A sam-

ple prepared by combining the plasma from 10 lung cancer patients and 10 healthy persons

was depleted of the top 12 abundant proteins and the resultant protein samples were analyzed

by LC-MS/MS after fractionation via two independent methods, partly by GeLC (25 gel pieces

shown in Fig 4A) and partly by in-solution trypsin digestion followed by high-pH fraction-

ation (12 fractions shown in Fig 4B). All of the LC-MS/MS runs were performed with a prede-

fined inclusion list. The inclusion list contained the m/z values of proteotypic peptides for

Fig 3. Analyses of conditioned media harvested from NSCLC cell lines. (A) Proteins (10 μg) in the

conditioned media (CM) and cell extracts (CE) were analyzed by Western blot analysis using an anti-α-tubulin

antibody. (B) The number of identified proteins in the cell secretome (FDR a 1%). Secretion pathways were

predicted by SignalP, SecretomeP, and TMHMM. Bovine contaminants were distinguished using the human-

FBS database. (C) Venn diagram of DEGs in tissues and identified proteins from cell secretomes. (D)

Predicted secretion pathways of identified secretome proteins in all cell lines.

https://doi.org/10.1371/journal.pone.0183896.g003
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some of the proteins that corresponded to DEGs and also detected in the secretome. In total,

524 non-redundant proteins were identified (Fig 4C and S3 Table) from this plasma proteome

profiling, 314 were by GeLC, 457 by high-pH fractionation, and 247 by both. From the 312

candidate proteins, 31 proteins were finally selected based on integrative analyses combining

publically available gene-expression data, cancer cell secretomes, and plasma proteomes of

lung cancer patients (Fig 4D).

Optimization of LC-MRM-MS for the detection of candidate proteins

The protein candidate list was narrowed down by applying several criteria at both protein and

peptide levels. We first removed proteins with less than 10 PSMs. This is because, in general,

the lower the PSM value, the less detectable in the MRM, and our proteome profiling condi-

tions fitted to that cutoff according to previous experience. Some obviously unlikely proteins

such as keratins and pregnancy zone protein were also removed. The proteotypic peptides and

MRM transitions for the remaining proteins were chosen based on the results of plasma prote-

ome profiling. Sequences of 6–20 amino acids in the Uniprot database (released as of 2014.02)

and unique doubly charged tryptic peptides were preferentially selected. Peptides containing

prolines at P2 (xxxxPK/R) or P3 (xxxxPxK/R) sites, proline after the tryptic site, basic amino

acids at the P1’ site, and known single amino acid polymorphisms (SAPs) or post-translational

modifications were excluded from the lists [13]. Finally, 39 peptides of the 8 proteins were

selected as targets for LC-MRM-MS.

Tandem mass spectra of the 39 chosen peptides were retrieved from the Global Proteome

Machine (GPM) and National Institute of Standards and Technology (NIST) databases and

used to compose MRM transitions. Since we intended to exclude the affinity-based depletion

process from the MRM analysis to maintain high reproducibility, we had to evaluate the feasi-

bility of accessing the peptides via MRM in whole plasma/serum without prior immunodeple-

tion. We monitored 191 transitions of 39 peptides by employing 3- to 14-min scheduled

Fig 4. Analyses of proteomes from pooled plasma by mass spectrometry. (A) SDS-PAGE (protein

10 μg) of plasma pooled from 10 healthy control patients and 10 lung cancer patients, divided into 25

fractions. (B) Schematic diagram of the high-pH RPLC fractionation (protein 10 μg) setup. The eluates were

combined by column (1–12 columns, 12 fractions). The surrogate peptides were monitored by measuring the

UV absorbance of the eluates at 215 nm. (C) Venn diagram of the number of proteins identified by GeLC-MS/

MS and high-pH RPLC fractionation. (D) Venn diagram of the number of analyzed molecules among DEGs,

secretomes, and plasma proteome.

https://doi.org/10.1371/journal.pone.0183896.g004
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LC-MRM runs [33]. Eight peptides of five proteins were clearly detected and thus considered

to be detectable and quantifiable marker candidates to include in the following validation pro-

cess by LC-MRM-MS. Accordingly, we synthesized heavy isotope-labeled standards for the 8

target peptides (S4 Table), and optimized instrumental parameters such as declustering poten-

tial (DP), collisional energy (CE) and collision cell exit potential (CXP) [33].

Baseline and demographic characteristics of serum samples

Baseline and demographic characteristics are listed in Table 2. For measurement of biomarkers

by MRM-MS, 46 individuals were enrolled in this study. The 23 subjects enrolled in the control

group visited our hospital for regular health screening tests. No subject in the control group had

any previous history of malignant disease. The mean age of the control group was 56.5 ± 14.9

years. Fourteen subjects were male (56%) and six had a smoking history (26%). Five persons

had HTN (22%) and one person had DM (4%). The 23 persons, enrolled in the NSCLC group,

included 16 (70%) adenocarcinoma patients and 7 (30%) squamous cell carcinoma patients.

The mean age of the NSCLC group was 60.3 ± 9.8 years; 10 patients (43%) were male and 6

patients (26%) had a smoking history. Eight persons had HTN (35%) and four had DM (21%).

The sample size computed from the mean and SD (Table 3) of the two groups in the BCHE and

GPx3 MRM data (α = 0.05, 1-β = 0.80) were 56 and 78, respectively. Therefore, an independent set

Table 2. Demographics of control and non-small cell lung cancer (NSCLC) groups.

MRM-MS ELISA

Control NSCLCa p-value Control NSCLCa p-value

Number 23 23 50 50

Age 56.5±14.9 60.3±9.8 0.66d 56.9±10.2 59.2±8.4 0.23d

Gender

(M/F)

14/9 10/13 0.24e 26/24 17/33 0.07e

Smoke

(Yes/No)

6/17 6/17 1.00e 13/37 14/36 0.82e

HTNb

(Yes/No)

5/18 8/15 0.33e 12/38 19/31 0.13e

DMc (Yes/No) 1/22 4/19 0.35e 7/43 8/42 0.78e

a NSCLC–the MRM group includes 16 ADCs and 7 SQCs and the ELISA group 40 ADCs and 10 SQCs. (ADC: adenocarcinoma, SQC: squamous cell

carcinoma)
b HTN: hypertension;
c DM: diabetes mellitus
d Mann-Whitney test (NSCLC vs. control)
e Pearson Chi-Square test (NSCLC vs. control)

https://doi.org/10.1371/journal.pone.0183896.t002

Table 3. Values of four biomarker candidates in the control and NSCLCa groups by MRM-MS and ELISA.

MRM-MS ELISA

(μg/mL) Control NSCLCa p-valueb Control NSCLCa p-valueb

BCHE 4.87 ± 1.27 3.91 ± 1.17 <0.05 4.50 ± 0.93 4.04 ± 1.12 <0.05

C7 40.72 ± 12.79 32.61 ± 14.00 0.11

CP 2006.94 ± 538.75 1934.31 ± 631.82 0.49

GPx3 11.20 ± 2.27 9.79± 1.98 <0.05 13.79 ± 5.25 9.01 ± 4.27 <0.01

a NSCLC: non-small cell lung cancer
b Mann-Whitney test (NSCLC vs. control)

https://doi.org/10.1371/journal.pone.0183896.t003
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of control (n = 50) and NSCLC (n = 50) samples (i.e., 100 in total) was selected for the ELISA mea-

surement of two biomarkers. The mean age of the control group was 56.9 ± 10.2 years. Twenty-six

were male (52%), and 13 had a smoking history (26%). Twelve persons had HTN (24%) and seven

had DM (14%). The NSCLC group (n = 50) included 40 (80%) adenocarcinoma patients and 10

(20%) squamous cell carcinoma patients. The mean age of the NSCLC group was 59.2 ± 8.4 years;

17 patients (34%) were male and 14 (28%) had a smoking history. Nineteen persons had HTN

(38%) and eight had DM (16%).

Validation of marker candidates for NSCLC by MRM-MS assay

Through MRM-MS assays, we monitored eight surrogate peptides of five target proteins in the

abovementioned samples without immunodepletion or fractionation. All samples were ran-

domized and then analyzed sequentially. In addition, seven randomly chosen samples (five

from healthy controls, and two from adenocarcinoma patients) were analyzed in triplicate to

evaluate the reproducibility and precision of our analytical procedure (S1A Fig). The XICs of

the endogenous peptides were compared to those of the corresponding SIS peptides to obtain

final quantitation values (Fig 5A). Of the eight peptides that were monitored by MRM, one

peptide, GGH.YYIAASYVK, showed very low signal-to-noise ratio of less than three in more

than 50% of both the normal and NSCLC sera samples and the CV of two triplicate runs

exceeded 30%. The CVs of the remaining seven peptides were below 20% with a median of

3.8%. For three proteins, BCHE, CP, and GPx3, for which two peptides were monitored simul-

taneously, the peptide showing the higher MRM signal was used in the final protein-level

Fig 5. Systematic evaluation of serum MRM assays. (A) Total ion chromatogram (TIC) of endogenous

(red) peptides and their respective SIS peptides (blue). (B) Circular heatmap of the relative expression of four

proteins in the two groups. The 46 clinical samples are shown in the circular heat map, clockwise from the top:

23 controls and 23 NSCLCs (16 adenocarcinomas and 7 squamous cell carcinomas). Indexing was followed

by the sequence of LC-MRM runs. (C) Serum levels of BCHE in the control and NSCLC groups (D) Serum

levels of GPx3 in the control and NSCLC groups. (E) ROC curves of BCHE, GPx3, and the combination of the

two proteins. NSCLC: non-small cell lung cancer

https://doi.org/10.1371/journal.pone.0183896.g005
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quantitation. The only remaining protein, C7 had only one representative peptide (S4 Table).

The relative standard deviations (RSDs) (%) of the retention times of the four quantotypic pep-

tides were less than 6% (S1B Fig). The levels of the four target proteins are displayed in Fig 5B

as a circular heat map in the order of sample assessment. After obtaining these results, we per-

formed further statistical analysis (S5 Table).

The levels of the four biomarker candidates were compared between the two groups (control

and NSCLC) using the Mann-Whitney test (Table 3). The only two proteins (BCHE and GPx3)

whose levels were significantly different between the control and NSCLC groups were selected.

The mean BCHE levels of the control and NSCLC groups were 4.87 ± 1.27 μg/mL and 3.91 ±
1.17 μg/mL, respectively (p< 0.05); the GPx3 levels of the control and NSCLC groups were

11.20 ± 2.26 μg/mL and 9.79 ± 1.98 μg/mL, respectively (p< 0.05) (Fig 5C and 5D and Table 3).

With the selected proteins BCHE and GPx3, multivariate logistic regression analysis was done

to further test the association of biomarkers with the risk of lung cancer (S6 Table). This test

showed that both biomarkers statistically significantly decrease the risk of lung cancer: for

BCHE, Exp(β) = 0.525 (p< 0.05) and for GPx3 Exp(β) = 0.735 (p = 0.059). Based on the ROC

analysis, the AUC for BCHE was 0.713 (95% confidence interval (CI): 0.563–0.862, p< 0.05).

The AUC of GPx3 was 0.673 (95% CI: 0.517–0.828, p< 0.05). When these two values were

combined, the AUC increased to 0.773 (95% CI: 0.631–0.915, p< 0.01) (Fig 5E).

Validation test with ELISA-based quantification of GPx3 and BCHE

The two biomarkers selected by MRM (BCHE and GPx3) were validated by ELISA with an

independent group of control and patient (NSCLC) samples (S6 Table). The levels of BCHE

and GPx3 were compared between the control and NSCLC groups by the Mann-Whitney test

(Table 3). The BCHE level of the control group was significantly different from that of the

NSCLC group (p< 0.05). The mean BCHE levels of the control and NSCLC groups were

4.50 ± 0.93 μg/mL and 4.04 ± 1.10 μg/mL, respectively (Fig 6A and Table 3). The GPx3 level of

Fig 6. Quantitation of the two proteins in an independent set of the control (n = 50) and NSCLC

(n = 50) samples using ELISA. Serum levels of (A) BCHE and (B) GPx3 in the control and NSCLC groups.

(C) ROC curves of GPx3, BCHE, and a combination of the two proteins. NSCLC: non-small cell lung cancer

https://doi.org/10.1371/journal.pone.0183896.g006
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the control group was also significantly different from that of the NSCLC group (p < 0.01);

the mean GPx3 levels of the control and NSCLC groups were 13.79 ± 5.25 μg/mL and 9.01 ±
4.27 μg/mL, respectively (Fig 6B and Table 3). Multivariate logistic regression analysis was

done to further test the association of BCHE and GPX3 with the risk of lung cancer (S7

Table). The result was that they do statistically significantly decrease the risk of lung cancer:

for BCHE, Exp(β) = 0.571 (p < 0.05) and for GPx3 Exp(β) = 0.803 (p < 0.01). ROC curves

were constructed for GPx3 and BCHE in the validation population. The AUC for BCHE

was 0.630 (95% CI: 0.520–0.740, p < 0.05); the AUC for GPx3 was 0.759 (95% CI: 0.665–

0.852, p < 0.01). In the compound model of GPx3 and BCHE, the AUC was 0.788 (95% CI:

0.700–0.876, p < 0.01) (Fig 6C).

Discussion

Quantitative analyses of gene expression combined with profiling of cell secretomes might

improve discovery of disease-related markers. In this study, we started with the gene expres-

sion data of nine NSCLC transcriptome datasets from the GEO database [14–22]. Quantitative

information on the differential gene expressions of tumor tissues and normal tissues were then

merged with cancer cell secretome data and patient’s plasma proteome data. We hypothesized

that if any protein found in the lung cancer cell secretome showed quantitative differences in

its gene expression between normal and NSCLC tissues, it might be a suitable serological

marker. Although protein abundance is not a simple function of DNA copies and mRNA lev-

els, genes that are dysregulated at the level of DNA or RNA are also generally dysregulated at

their protein level [3]. This supports the validity of our strategy used to identify cancer bio-

markers. A limitation of our study is that we used the cell line secretome to infer the cancer

secretome in circulation. It is difficult to assess the degree of relevance between the in vitro
secretome and the in vivo cancer secretome. However, several sampling methods such as tissue

explant, 3-dimensional cell culture, and coculture have been developed, which more closely

reflect in vivo conditions [34]. These methods will thus enable evaluation of the possible cross-

talk between cancer cells and their surroundings.

Although MRM-MS and ELISA were not performed using the same sample set, the mea-

sured concentration scales in serum and the down-regulated patterns in NSCLC patients

compared to healthy controls were similar, regardless of differences between experimental

techniques. Most validation processes used in the discovery of marker candidates and diagnos-

tic applications in clinical practice have employed antibody-based ELISA methods. However,

such methods suffer from throughput limitations, as each assay can monitor only one protein

at a time and requires well-qualified antibodies. The emerging development of MRM analysis

has gradually fulfilled the steadily rising demand for quantitative proteomic data, due to its

high-throughput capability and low cost compared to immunoassay-based approaches [33,

35–38]. Recently, some groups have published MRM-based marker validation in the plasma/

serum of lung cancer patients [39, 40]. Li et al. presented a 13-protein, blood-based classifier

that differentiates malignant nodules from benign lung nodules as a diagnostic tool that would

obviate invasive biopsies on benign lung nodules [40]. In our study, 46 serum samples repre-

senting two sample groups (23 NSCLC patients and 23 controls) were analyzed by mass spec-

trometry, in which eight surrogate peptides from five proteins were quantified by MRM

analysis. Peptides were selected based on their observation in standard LC-MS analyses of

plasma. We then applied stringent peptide selection criteria, such as the length of the peptide

sequence, charge state and position of specific amino acids, and the number of missed cleavage

sites to identify the peptides most suitable for use as biomarkers. Optimized sample prepara-

tion and an analysis workflow were developed and successfully applied to the relative
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quantification of candidate biomarkers in the serum of patients. In addition, without fraction-

ation of the human serum digests, surrogate peptides of marker candidate proteins were

detectable via MRM–MS. Finally, one peptide per protein was selected according to its spectral

intensity to minimize any statistical bias.

Glutathione peroxidase, anti-oxidant scavenging ROS (reactive oxygen species), is known

to play an important role in signaling of molecules in cell physiology [41]. The selenocysteine-

containing protein GPx3 accounts for the only extracellular form of glutathione peroxidase

activity in blood [42]. GPx3 is mainly synthesized in the proximal tubules of the kidney and is

usually down-regulated in cancer tissues [43]. It has been reported that its activity is signifi-

cantly reduced in the blood of patients with breast, gastric, prostate, thyroid, and colorectal

cancer [44]. It has also been reported that GPx3 promotes hypermethylation, and its down-

regulation is commonly observed in human cancers [45–47]. In a previous study, we found

that the mean serum GPX3 levels were lower in the lung cancer group compared to control

group [48]. And other recent studies showed the involvement of GPx3 in the pathogenesis of

other human cancers such as gastric, ovarian and prostate cancer [45, 49, 50]. Since GPx3 is

highly expressed in healthy tissues, this suggests it may exhibit tumor suppressive activity.

Vertebrates contain two cholinesterases, acetylcholinesterase (AChE) and butyrylcholines-

terase (BChE). AChE prefers acetylcholine as a substrate and its function is critical for termi-

nating cholinergic responses [51]. Experimental evidence supports the involvement of

cholinesterase in cancers such as leukemia, ovarian cancer, brain tumors, breast cancers, and

lung cancers. Martinez-Moreno reported that BCHE activity decreased by 40–50% in adeno-

carcinoma, squamous cell carcinoma, and large cell carcinoma extracts [52]. However, in the

reports of Zanini et al., BCHE activity was not altered in lung cancer patients when compared

to a control group [51]. Kaniaris et al. also examined cholinesterase levels in cancer patients.

They found that serum cholinesterase activity was significantly lower in patients with cancer

in correlation with the extent of disease [53].

To insist on our strategy for biomarker discovery to be right, it may be necessary to confirm

the two genes selected on their mRNA expression level in cancer/normal tissue are expressed

in protein level concordantly. We looked, to address this issue, into the expression patterns of

the two proteins in the Human Protein Atlas (http://www.proteinatlas.org/search/GPx3 and

http://www.proteinatlas.org/search/BCHE). According to the data on this web site, the expres-

sion levels of GPx3 in lung cancer and adjacent normal tissue are Not-detected (level 1) and

Low (level 2), respectively. And the BCHE expression level is Medium (level 3) to Low (level 2)

in lung cancer and Low (level 2) to Not-detected (level 1) in adjacent normal tissue. For the

case of BCHE, it could look like the BCHE protein was locally more expressed in cancer tissue.

However, please see other reference [52], supporting that the BCHE activity (enzyme activity)

was lower in ADC (5.85 ± 3.20 mU/mg) and SCC (4.49 ± 2.30 mU/mg) when compared to the

adjacent non-cancerous tissue (9.56 ± 3.38 mU/mg in ADC; 6.56 ± 4.09 mu/ml in SCC). This

result matched with the fact that the two genes, first selected on the basis of their expression in

mRNA level between cancer and its adjacent normal tissue, are displaying their protein expres-

sion concordantly in tissue and thereafter in blood.

Our results from MRM-MS and ELISA clearly show that BCHE and GPx3 levels were sig-

nificantly lower in the NSCLC group than in the control group. In addition, we investigated

whether there is any correlation between lung cancer stage and biomarker levels in the MRM

and ELISA data (S8 Table). The test showed that BCHE and GPx3 have no statistically signifi-

cant correlation with the stages of NSCLC patients. Next, we further looked into any associa-

tion of smoking history and biomarker levels in NSCLC. According to previous publications,

the tissue activity of BCHE was higher in ADC than in SQC patients [52] and the blood level

of GPx3 was lower in ADC than in SQC patients [48]. Considering together the fact that the
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number of cell type (ADC and SQC) were not matched in the groups of smoke and non-

smoke, we therefore performed cell type-stratified analysis of biomarker levels in NSCLC (S9

Table). The result was that there was no significant difference in the level of BCHE and GPx3

in the groups of smoke and non-smoke. We nevertheless think that it is necessary to confirm

this result because the numbers of samples enrolled in this test.

With the advent of screening tests that include chest computerized tomography (CT), the

chances of discovering benign lung nodules are increasing. In particular, sub-centimeter lung

nodules are difficult for differential diagnoses of cancer. There are some guidelines for the

management of lung nodules that are detected incidentally. However, most of these guidelines

are based on findings associated with chest CT images. In the presence of suitable biomarkers

for NSCLC, more accurate diagnoses of cancer are possible, leading to improved therapeutic

results [54–57]. This pipeline finally led to the validation of two marker candidates for

NSCLC. As per our experimental observations, if persons with benign lung nodules can be

included in the control group, the discriminating power of these biomarkers will be more

meaningful clinically, and such analysis can also be used as a supplementary tool with lung

cancer screening tests via CT analysis. The validation process described herein was however

conducted with a retrospective selection of limited-sized samples (S2 Fig). A prospective study

including lung nodules is still required to validate further the utility of biomarkers for clinical

use. Moreover, since the effect size (computed from mean and SD) between the control and

NSCLC groups in the BCHE and GPx3 data were not high, the sensitivity and specificity (i.e.,

AUC in ROC analysis) of the two biomarkers are not so impressive. This indicates that even

though they are statistically significant classifier between Control and NSCLC, BCHE and

GPx3 may not be too robust to be applicable right on the clinical field soon. We think that it is

needed to conduct a more comprehensive study with an independent patient cohort with

appropriate sample size.
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