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A versatile toolbox 
for semi‑automatic cell‑by‑cell 
object‑based colocalization 
analysis
Anders Lunde   & Joel C. Glover*

Differential fluorescence labeling and multi-fluorescence imaging followed by colocalization analysis 
is commonly used to investigate cellular heterogeneity in situ. This is particularly important when 
investigating the biology of tissues with diverse cell types. Object-based colocalization analysis 
(OBCA) tools can employ automatic approaches, which are sensitive to errors in cell segmentation, 
or manual approaches, which can be impractical and tedious. Here, we present a novel set of tools 
for OBCA using a semi-automatic approach, consisting of two ImageJ plugins, a Microsoft Excel 
macro, and a MATLAB script. One ImageJ plugin enables customizable processing of multichannel 3D 
images for enhanced visualization of features relevant to OBCA, and another enables semi-automatic 
colocalization quantification. The Excel macro and the MATLAB script enable data organization 
and 3D visualization of object data across image series. The tools are well suited for experiments 
involving complex and large image data sets, and can be used in combination or as individual 
components, allowing flexible, efficient and accurate OBCA. Here we demonstrate their utility in 
immunohistochemical analyses of the developing central nervous system, which is characterized by 
complexity in the number and distribution of cell types, and by high cell packing densities, which can 
both create challenging situations for OBCA.

The central nervous system (CNS) is characterized by the exceptional molecular, morphological and physiologi-
cal diversity of its constituent neurons1,2. Much progress has been made in relating distinct patterns of gene and 
protein expression to neuronal structure and function. However, the full molecular diversity of neuron types is 
far from completely described, even in intensively studied model organisms.

Multi-fluorescence imaging is used extensively to study the correlation of molecular, structural and functional 
features in neurons3–7. Multi-fluorescence imaging involves the differential fluorescent labeling of neurons using 
a variety of techniques, including retrograde axonal tracing, immunolabeling, transgene-driven expression of 
fluorescent reporter proteins, and fluorescently tagged endogenous proteins8–10. RNA expression can also be 
visualized by fluorescence in-situ hybridization11. Tissue samples can be processed with combinations of these 
techniques and subsequently imaged, allowing researchers to directly relate the different labeled components. 
With the exception of axonal tracing, the same techniques are also used to study molecular diversity in many 
non-neuronal tissues. Advances in multi-fluorescence imaging, including automated whole section microscopy 
and three-dimensional imaging, have generated increasingly more complex data sets. Accordingly, analyzing 
the data can represent a major bottleneck in the research pipeline.

To analyze multi-fluorescence imaging data, researchers commonly employ colocalization analysis, which 
seeks to quantify the degree to which different fluorescent labels overlap. Colocalization analysis usually neces-
sitates an initial segmentation of the image into biologically meaningful regions of interest, e.g. cells, nuclei, orga-
nelles, or synapses. Following segmentation, several different automatic colocalization analysis algorithms can 
be applied for quantification. These can be categorized as either pixel-based or object-based (reviewed in4,12,13).

Pixel-based algorithms are used to calculate correlation or overlap coefficients within delineated regions 
of interest, by comparing pixel-to-pixel brightness values in two or more imaging channels. This approach is 
often used to study molecular interactions inside of cells, since colocalization features of individual pixels are 
quantified. The benefits of pixel-based analysis include ease of use and rigorously defined coefficients that enable 
objective quantification of signal colocalization at the pixel level. However, image noise and artifacts can skew 
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or perturb coefficients, although methods to counteract the influence of image noise exist. A related method, 
although not normally classified as pixel-based, performs colocalization analysis by calculating aggregate pixel 
value metrics (e.g. mean brightness) inside regions of interests (e.g. cells) across image channels. Such metrics 
can be used to define the presence or absence of fluorescent labeling for each region, or even the level of labeling.

In contrast, object-based colocalization analysis (OBCA) algorithms depend on locating and defining objects 
of interest across image channels, typically as fully delineated objects or as centroids. Colocalization can sub-
sequently be quantified using a variety of metrics, for example the degree of pixel overlap between deline-
ated objects, or distances between the centroids of neighboring objects. OBCA is less sensitive to image noise, 
although image noise can influence successful localization of objects. A notable application of OBCA that is not 
satisfied by pixel-based algorithms is determining which cells co-express markers that do not overlap in space, 
for example nuclear versus cytoplasmic markers.

A critical step to ensure the success of OBCA is accurate image segmentation. To automate segmentation, a 
much used and simple first step is based on intensity thresholding, in which image pixels are classified as being 
either part of the relevant object set or part of the image background, based on pixel brightness values14,15. In 
the resulting binary image, the object set can be further segmented into individual objects by grouping together 
connected pixels, which become the basis for object delineations. For centroid based approaches, centroids can 
be calculated from delineations, but can also be estimated directly from grayscale images by algorithms that 
detect local maxima of pixel intensity. Several more advanced segmentation algorithms have been described that 
improve performance in cases where separation of objects is difficult (reviewed in15,16).

Tools and methods that employ fully automatic colocalization analysis have the benefit of providing reproduc-
ibility and speed, albeit sometimes at the cost of accuracy. A major reason for lowered accuracy is that full auto-
mation of segmentation and object identification is a notoriously difficult problem to solve, especially for complex 
objects such as neurons15,16. To address the need for a high-throughput OBCA workflow that does not rely exclu-
sively on fallible automated algorithms and that leverages human visual processing capacity, we have developed 
a set of tools for semi-automatic OBCA that combines automation for speed with visual/manual verification for 
accuracy. The tools we present use image binarization and other operations to extract and visualize meaning-
ful colocalization signals, but ultimate quantification is based on a centroid-like approach in which objects are 
defined by a single point. We emphasize the utility of visual verification and correction of automatic centroid 
placement, without the need to perform time consuming corrections to object delineations for quantification.

A schematic of the tool-chain workflow is shown in Fig. 1. The entry point to the workflow consists of a plugin 
(the Colocalization Image Creator) for the popular free and open source image analysis software ImageJ17. The 
Colocalization Image Creator enables flexible processing of image data into a visual format that is better suited to 
high-throughput semi-automatic OBCA. It can produce processed binary and grayscale signal outputs, visualize 
signal overlap across channels, and generate a special Z-projection where 3D information is condensed onto a 2D 
plane for easy visualization of 3D colocalization data, in a way that minimizes Z-projection artifacts (examples 
of such artifacts are shown in Fig. 2A). Additionally, signal overlap processing enables restricting visualization 

Figure 1.   Schematic of OBCA workflow. Each plugin/script in the workflow generates output data that can 
be further analyzed by one of the other plugins/scripts in the flow. The ImageJ Colocalization Image Creator 
generates new images enhanced for semi-automatic OBCA. The ImageJ Colocalization Object Counter enables 
semi-automatic OBCA, and generates data files with counts and colocalization information in comma separated 
value (csv) format. The Excel macro summarizes, organizes and exports the data in combined csv data files. The 
MATLAB script reads the data files and generates an interactive 3D reconstruction. All four plugins/scripts can 
function as stand-alone tools, or combined as desired.
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to labeled cellular sub-compartments, for example cell nuclei, which can improve object segmentation. This can 
also minimize artifacts that arise from partially transected objects (example in Fig. 2B). 

A second ImageJ plugin (the Colocalization Object Counter) enables OBCA quantification in any type of 
image. It uses local maxima algorithms to automatically define objects as single points, which can be edited and 
verified visually in a semi-automatic manner. The Colocalization Object Counter enables annotating which 
label(s) are associated with each object (object colocalization category). The plugin also contains basic tools for 
subsequent 3D reconstruction of object and tissue contour data.

A third tool, in the form of a Microsoft Excel macro file, enables data import overview, revision, statistical 
analysis, and export. Exported data can be imported by a fourth tool, a Matlab script that enables interactive 3D 
visualization of identified objects with their colocalization categories indicated within visible tissue contours.

Although we have designed and optimized this tool set for semi-automatic OBCA of multi-fluorescence 
imaging data from the developing central nervous system, the workflow is adaptable to other types of imaging 
data as well. The tools complement each other, but can also be used individually. Below, we describe the func-
tion of each tool, provide some examples of usage, and provide an assessment of robustness across individual 
operators. We compare our platform head-to-head with similar platforms, and we evaluate specific limitations 
associated with our platform. In the “Supplementary Information” we provide specific details on the operation 
and user interfaces of the tool set.

Results
ImageJ plugin 1: Colocalization Image Creator.  Purpose, input requirements, and output.  The colo-
calization image creator plugin allows the creation of custom binary or grayscale visualizations based on raw 
data of input multichannel images, into a format that is more suitable for semi-automatic OBCA. The output 
visualizations can be based on a single input channel, or represent signal overlap across input channels, thus pro-
viding the opportunity to assess which markers any labeled cell or cell compartment contains. The visualizations 
and the markers they represent are assigned in the form of image elements (see below), which are created dur-
ing plugin operation. An important feature is that the flexibility of the plugin facilitates visualization of cellular 
marker colocalization in various ways, accommodating different experimental frameworks.

Figure 2.   Z-projection artifacts and incompletely included cells can lead to false positive and false negative 
colocalization. Cartoons of tissue sections, on the left viewed from the side, and on the right viewed from the 
top, as indicated by the X, Y and Z axes. Green ovals represent cell bodies with a cytoplasmic label, and magenta 
circles represent a labeled subcellular structure, e.g. a cell nucleus. (A) There is no colocalization of the two 
labels on the right when viewed in the ZX plane, but in the commonly used XY-plane a Z-projection artifact 
arises, presenting as a double-labeled cell. (B) The cell to the right is only partly included, with only the green 
cytoplasmic signal present in the section. Here, a false negative would arise irrespective of the angle of view. 
False observations can also occur when both labels are distributed throughout the cell if one signal is weak and 
goes undetected in cells only partially contained within the section.
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The input to the plugin must be a multichannel image in a format that is readable by ImageJ. Both 3D 
(Z-stacks) and 2D (single plane) images are accepted. When a single plane image is the input, the output is a 
processed single plane image. When Z-stacks are the input, the output is a processed Z-stack plus an additional 
special Z-projection that condenses 3D colocalization data into a single plane for ease of visualization. This 
special Z-projection is principally useful for visualizing 3D image data in a Z-stack with a limited Z-axis depth, 
since the image complexity increases as depth increases. Appropriately sized Z-stacks can be produced directly 
during image acquisition of sections, or be obtained from thicker 3D image data, for example from cleared tis-
sue blocks, by digitally extracting optical sections at desired z-positions. The special Z-projection is inserted as 
a single plane image on top of the output Z-stack. The purpose of the special Z-projection is to simplify colo-
calization analysis and reduce the time spent, by permitting quick inspection during semi-automatic OBCA 
quantification, with inspection of the underlying Z-stack being performed only if necessary or desired (see plugin 
2 for the quantification process). The special Z-projection is designed to algorithmically remove Z-projection 
artifacts (Fig. 2A). It is important to realize, however, that effective removal of Z-projection artifacts requires 
that the Z-stack input is generated with sufficient resolution, in particular in the Z-axis (optical slice thickness). 
See the “Supplementary Information” section online entitled “ImageJ plugin 1” for specific details on the plugin 
operation and user interfaces.

Image elements.  At plugin startup, the output image is initially empty of contents. To start building an out-
put image the user can add one or more image elements to the output by clicking the “Add element” button in 
the plugin main menu (Supplementary Fig. S1 online), which opens the add image element wizard. The image 
element is a central concept in the plugin, and is generated from a single or several input channels. The input 
channels are processed in various user-specified ways, for example restricting output to show overlapping signals 
across channels, applying ImageJ image filters, and setting the image element pixel color. By adding one or more 
image elements to the output, various colocalization relationships between input channels can be visualized.

The output image has one channel initially, and image elements are by default assigned to that channel. There, 
colocalization can be evaluated from image element signals representing signal overlap. It is also possible to assign 
image elements to new output channels, thus creating multi-channel output images (Fig. 3A). Colocalization can 
thus alternatively or additionally be evaluated by comparing signals across output channels and assessing whether 
pairs of objects have the same XYZ locations across channels. This is useful for example if the user creates many 
image elements that could clutter visualization in a single output channel, or that could overwrite each other and 
thus obscure information or (2) creates “verification channels” (see the section entitled “Verification channels”).

There are two types of image elements, grayscale and binary, which differ in how and in what order they are 
processed and added to the output image by the element processing algorithm (Fig. 3B). Rules that define how 
multiple image elements interact with each other (for example whether element pixels blend colors, or overwrite 
each other) are enforced by the plugin through the element processing algorithm (schematically represented in 
Fig. 3B, and further described in the sections entitled “Element mixing rules” and “The Z-projection output”). 
These rules are designed to avoid common visual errors and colocalization artifacts, and are different for gray-
scale and binary elements.

Element type 1: Grayscale elements.  Grayscale element input channels are brightness adjusted, pseudo-colored, 
and optionally filtered or macro-transformed. The order of operations is shown in Fig. 3B (top section). One or 
more input channels can be selected to become part of the element output. In the case of using multiple input 
channels, additive mixing of the pixel values between input channels is performed. However, due to problems 
associated with Z-projection artifacts (Fig. 2A) and faint grayscale signals12, mixing multiple grayscale input 
channels is highly discouraged in the plugin, and will result in a pop-up warning. Grayscale elements are instead 
primarily useful for visualizing the signal of single input channels in cases where (a) binary segmentation is 
unreliable, (b) the intensity of the signal itself is of interest, or (c) when creating “verification channels”. How-
ever, single grayscale elements can effectively be combined with one or multiple binary elements, especially with 
binary elements that have the outline option enabled (see “Element type 2: binary elements” below), allowing 
visualization of signal overlap between binary and grayscale elements. Figure 4B shows an example of an input 
image channel being transformed to a grayscale element by applying the settings shown in Fig. 4A. See the “Sup-

Figure 3.   Example and Flowchart of Colocalization Image Creator processing algorithm. (A) Illustration 
of an example of Colocalization Image Creator output. In this example, the input image has three channels 
of Z-stacks, shown in the top row. From the input channels, three image elements are created, generated by 
using the “add element” wizard (Supplementary Fig. S1 online) three times. This creates one binary and two 
grayscale elements, shown in the middle row. Two of the image elements are assigned to output channel 1 in the 
wizard, whereas one of the elements is assigned to output channel 2, shown in the bottom row. The final output 
image in this example will thus be an image with two output channels. (B) Flowchart showing the main steps 
of the image element processing algorithm of the Colocalization Image Creator. Since every output channel is 
processed separately, the schematic shows how elements assigned to the same output channel are processed. The 
top gray square details step 1, where grayscale elements are added to the output image. The bottom gray square 
details step 2, where binary elements are added, thus overwriting any signals from the grayscale elements. Note 
that binary elements are added in order according to the element’s color priority, ensuring that colors with the 
highest priority are added last, and thereby prioritized in the output (due to overwriting). Steps described with a 
blue font represent optional processing steps.

▸



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19027  | https://doi.org/10.1038/s41598-020-75835-7

www.nature.com/scientificreports/



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19027  | https://doi.org/10.1038/s41598-020-75835-7

www.nature.com/scientificreports/

Figure 4.   Menu for creating grayscale elements and example of output. (A) The menu for creating grayscale 
elements allows the user to select a specific color for each input image channel. The output channel is assigned 
with the drop down menu labeled “Output image channel”. Macro commands are added with the “Add macro 
commands” button. Clicking “Preview” displays a temporary preview of the grayscale element using the selected 
settings. (B) An example of a grayscale element output obtained by applying the settings shown in (A).
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plementary Information” section online entitled “Element type 1: Grayscale elements” for details on the user 
interface for creating grayscale elements.

Element type 2: binary elements.  Binary element input channels are thresholded/binarized, Boolean AND 
combined, optionally filtered/macro-transformed, optionally processed for small particle removal, optionally 
3D object-filtered, optionally converted to outline, and pseudo-colored. The order of operations is shown in 
Fig. 3B (bottom section), the element creation user interface is shown  in Fig. 5A, and an example output is 
shown  in Fig. 5B. The plugin only offers global automatic or manual intensity thresholding for binarization. 
More advanced segmentation algorithms, if desired, would have to be pre-applied to input channels. When more 
than one input channel is selected, the Boolean AND operation is performed between the binarized channels, 
resulting in an output that only shows the overlapping pixels. For example, when imaging cell nuclei and differ-
ent populations of labeled cells in separate input channels, binary elements can be used to visualize the nuclear 
area of specific cell types, and/or the region of overlap of specific cell types. See the “Supplementary Information” 
section online entitled “Element type 2: Binary elements” for details on the user interface for creating binary 
elements.

Note that in contrast to grayscale elements, selecting multiple input channels for a single binary element is 
unproblematic, and can be a very useful way to visualize object overlap between input channels, due to Boolean 
AND combination (see Fig. 5B—second row). This allows the user to create binary elements whose signals rep-
resent colocalization among limitless numbers of input channels. As mentioned, it is also possible to visualize 
colocalization between one binary element and other elements, including grayscale elements. This can be done 
by enabling the “Convert to outline” option (Fig. 5A), so that only the outlines of the binary objects are drawn 
(Fig. 5B—bottom row). Any colocalized pixels from subsequently added binary or grayscale elements are dis-
played inside these outlines, simulating “inspection within” the binary objects (Fig. 6). The output of a binary 
element can be assigned one of seven colors for display (Fig. 5A—top). This facilitates visualization of objects 
with distinct combinations of input channels (colocalization categories) in the output image.

Binary particles (defined by having connected pixels) of inappropriately small sizes can be removed from the 
output by defining a value for the “Remove connected particles smaller than” option. This can sometimes also be 
used to remove objects that are only partially included due to transection at a section face (Fig. 5C), since partially 
included objects on average should have areas smaller than completely included objects (Fig. 5C). However, this 
requires prior knowledge of the shape and size distribution of objects. A more robust alternative is the 3D object 
filter which leverages the “3D Objects Counter” plugin12, and can be used to exclude 3D binary objects/particles 
(defined by having 3D connected pixels) touching any of the XYZ edges of a Z-stack. Finally, additional input 
channels can be selected for the Boolean NOT operation, resulting in any signal from the NOT-selected binarized 
channels to be subtracted from the final output element.

Figure 5B shows the steps the Colocalization Image Creator plugin goes through when creating the binary 
element using the settings shown in Fig. 5A. Figure 5B also exemplifies how cell segmentation can be improved by 
restricting visualization to the nuclear domain of cells. Since cell nuclei are distinctly smaller than the cell somata 
in many cell types, restricting output signals to the nucleus often provides better separation. It is also a useful 
method for removing partially included objects that can give rise to potentially false negative signals, such as in 
the scenario shown in Fig. 2B. Restriction of output signals to the nucleus in this case would prevent an object 
count from being assigned to the exclusively green object to the right in Fig. 2B (containing only a cytoplasmic 
label), as no output signal would be produced and the object thus correctly excluded from analysis. Restricting 
signals to nuclei or other cellular sub-compartments is obviously also essential when analyzing cellular markers 
that have a compartmentalized localization (transcription factors and chromosomes are examples of potential 
nucleus-restricted markers).

Element mixing rules.  Whereas grayscale elements mix colors additively if assigned to common output chan-
nels, individual binary elements do not mix or combine in any way, nor do they mix with grayscale elements. 
Instead, specific rules determine which element is displayed when two or more occupy the same XY (and Z) 
location. The rules are enforced through the plugin element processing algorithm (Fig. 3B). An overview that 
exemplifies these rules is shown in Fig. 6.

The first rule is that binary elements are always prioritized over grayscale elements. This means that only the 
signals (nonzero pixels) from the binary element will be displayed where binary and grayscale element pixels 
overlap. The exception is when “Convert to outline” is enabled for the binary element. In this case the outline of 
the binary element is still prioritized, but pixels within the outline can be from other binary or grayscale elements.

The second rule is that when two or more binary element signals occupy the same XYZ location, the conflict 
is resolved by checking the assigned colors of the individual binary elements. Only the binary element with the 
highest priority color according to the plugin’s editable “color priority table” is displayed. The default color priority 
goes from brightest to faintest colors, i.e. white > yellow > cyan > magenta > green > red > blue. Note that outline 
binary elements should be created with a color that has a higher priority than other binary elements, or they may 
be hidden by other binary elements or in the Z-projection. With the color priority rule, users can be certain that 
colored binary elements displayed in the output image are a result of the defined within-element colocalization, 
and not colocalization across elements. This can help keep track of what the various colors represent. However, it 
is usually a good idea to limit the number of image elements in a single output channel to two or three, to avoid 
multiple differently colored binary objects overlapping each other, which will result in showing only the one 
with the highest color priority. If the number of input image channels is high, it can be better to divide image 
elements among multiple output channels, and analyze the image by switching between the output channels (see 
“Examples of usage”, cases 2 and 3 below).
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The Z‑projection output.  In contrast to grayscale elements, binary elements represent a collection of pixels 
defining the presence or absence of a signal, according to the specific intensity threshold level used during ele-
ment creation. This property is used by the Colocalization Image Creator plugin to avoid Z-projection artifacts 
(Fig. 2A) when creating output Z-projections. Z-projection artifacts are avoided by displaying only one of the 
image objects (for example, a cell or nucleus) when multiple image objects occupy the same XY-location, but 
distinct Z-locations (as the two rightmost objects do in Fig.  2A). Different relevant scenarios are illustrated 
in Fig. 7, which shows that users can choose to visualize either the topmost or the bottommost object in the 
Z-projection. Importantly, Fig. 7 also illustrates that signals from two or more grayscale input channels can pro-
duce Z-projection artifacts, whereas binary elements do not exhibit this problem due to the above mechanism.

Grayscale elements in Z-projection images are treated in the same way as within single images: binary ele-
ments always take priority over grayscale elements, except when combining grayscale elements with outlined 
binary elements (Fig. 7). Additionally, any pixels inside binary outlines in the Z-projection are guaranteed to 
come from where the binary element actually colocalizes with the other elements in the XYZ dimensions (Fig. 7). 
However, using more than one grayscale input channel can still lead to Z-projection artifacts, if the binary ele-
ment object spans many Z-images, and the grayscale objects are located in multiple Z-images within the binary 
object outline (Fig. 7, scenario 4). This does not occur if there is a gap in the Z-axis between two separate binary 
outline objects (Fig. 7, scenario 3), since the two binary objects are then treated separately, and only the topmost 
or bottommost is shown.

The equivalent problem does not occur for binary elements within outlines, because binary elements never 
mix colors (Fig. 7, scenarios 5–7). Instead, either the Z-location of signals (Fig. 7, scenario 6), or the color priority 
(Fig. 7, scenario 7) is used for processing these.

If object classes are uniformly distributed within the volume image (without a bias to the top or bottom of the 
volume), and their sizes are not systematically related to specific cellular markers (such as a molecular signature), 
displaying only objects closest to the top or bottom edge will give an unbiased selection of objects, preserving 
the relative ratio of different types of binary elements that are displayed in the Z-projection image. At the same 
time, Z-projection artifacts are avoided. By restricting colocalization signals to a cellular compartment, such as 
the nucleus, the problem of object size variability can be reduced (although perhaps not eliminated, as nuclei can 
also vary in size). However, depending on the density of objects, and the total thickness of the original volume 
image, removal of Z-projection artifacts can lead to an undesired reduction of the number of objects shown in 
the Z-projection image, compared to the complete Z-stack (Fig. 7). This problem can be reduced by limiting 
the Z-depth of the input image, for example to one or two cell layers, which can be done in ImageJ using the 
Image > Stacks > Tools > Make Substack command. It is important to recognize that this will lead to more incom-
pletely included objects, which can bias counting if different object classes have substantially different sizes, since 
large objects will be incompletely included (and thus potentially eliminated) more frequently. When the density 
of objects is sufficiently low, the probability of objects stacking in the Z-axis is proportionally lowered, reducing 
the problem of object underestimation caused by eliminating Z-projection artifacts. If an accurate absolute count 
of objects is desired rather than relative counts, users can instead inspect and analyze the Z-stack (see “ImageJ 
Plugin 2: Colocalization Object Counter” below for the quantification process), or refer to the technique of 
stereology, which is specifically designed for absolute quantification of object numbers18.

Verification channels.  A highly recommended practice when using the colocalization image creator plugin is 
to add one or more “verification channels” to the output image. A verification channel is simply an input image 
channel added to the output image as a brightness-adjusted, but otherwise unaltered, unmixed, single grayscale 
element that provides an easily reviewed representation of the original image. During semi-automatic OBCA 
quantification (see plugin 2) users can then quickly compare binary elements with the original image data, by 
switching the display between the processed output image channel and the verification image channel (using 
keyboard shortcuts for speed). This allows rapid and effective visual verification of binary element segmentation 
accuracy and of colocalization in unclear cases. Verification channels are added as normal grayscale elements 
through the “Grayscale element menu”, by selecting a single input channel, and selecting “Create new” in the 
“Output image channel” box.

ImageJ Plugin 2: Colocalization Object Counter.  Purpose, input requirements, operation and out‑
put.  The Colocalization Object Counter plugin is used for the quantification part of our OBCA pipeline, and 

Figure 5.   Menu for creating binary elements and example of output. (A) The menu for creating binary elements 
allows the user to select multiple input image channels, which are manually or automatically binarized and 
treated with the Boolean AND operation. The element color is selected near the top. An output image channel 
is assigned in a drop down menu. Macro commands are added using the “Add macro commands” button. Small 
particles in the image below a specified area are filtered away by defining a minimum area size. The “Advanced 
options” menu enables the user to select input channels that are subtracted from the element output following 
binarization. Clicking “Preview” displays a temporary preview of the binary element using the selected settings. 
(B) shows the sequence of processing steps and the final element output using the settings shown in (A). (C) 
Illustration of a set of spherical objects that are increasingly less included in a tissue section, thus generating 
profiles of increasingly smaller area. On the left, the four green circles represent objects with different degrees of 
inclusion in the tissue section, seen at the XZ-plane. On the right, the same four objects are shown as they would 
appear in the XY-plane, with their diameters and areas indicated relative to a fully included object of the same 
size.

▸
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also comes with a set of tools for subsequent 3D reconstruction of data. It enables semi-automatic identification, 
quantification and XYZ-coordinate designation of image objects, and comes with a set of effective and simple 
tools for assigning specific colocalization categories for each object (associating specific cellular markers or labels 
with objects). For automatic object detection, it uses local maxima algorithms to place ImageJ multipoints (XYZ-
coordinate points) to define objects, which can be edited and verified visually in a semi-automatic manner. The 
user can choose between having multipoints assigned and displayed only on specific Z-images, or all Z-images, 
depending for example on whether a complete Z-stack is analyzed in detail, or if only a Z-projection of the 
stack is analyzed. The highest accuracy and speed are normally achieved when automatic detection is followed 
by manual verification and adjustment.

Any image readable by ImageJ can be used with the plugin, including those generated with the Colocalization 
Image Creator plugin. The plugin supports assignment of up to eight different categories per object, allowing 
for 28 = 256 possible colocalization combinations. See the “Supplementary Information” section online entitled 
“ImageJ plugin 2” for specific details on the plugin operation and user interfaces.

Following assignment of objects and categories, data can be saved as files (comma separated value format, 
CSV) that include the XYZ-coordinates and the colocalization categories of each object, the image filename and 
additional image metadata. Colocalization categories are specified by a string of digits; for example, “358” des-
ignates an object that is positive for categories 3, 5 and 8. In a typical experiment the category “1” would be used 
to designate all objects of interest, and additional category designations would be used to annotate the presence 
of additional markers (such as fluorescent labels) within the objects. This of course requires a generic marker 
for the objects of interest, such as a general cellular or nuclear marker. To help the user organize the data, all the 
output files are saved automatically in the same folder from which the image was loaded, in a subfolder called 
“Counts”. It is therefore highly recommended to store all images from the same experimental series in a single 
folder. Additional output files are generated in the same “Counts” folder after using the 3D serial reconstruction 
tools included with the Colocalization Object Counter plugin, which includes a tool for assigning the image ori-
gin coordinates and north direction, and a tool for drawing tissue contours (see below). Together with the object 
count data, these can be imported and analyzed with the Excel macro file (see below), and subsequently visualized 
in 3D with the MATLAB script (see below), both of which are automatically supplied and placed by the plugin 
in the appropriate output folders. To facilitate logging of operator interventions for later review, all operations 
involving object counting are automatically logged in a file named “Counting_log.txt” in the “Counts” folder.

Manual counting.  During manual operation of the Colocalization Object Counter plugin, multipoint markers 
are manually placed by the user over identified image objects. An appropriate colocalization category value is 
chosen and the multipoints are converted to circular overlays representing each image object, with the overlay 

Figure 6.   Examples of element mixing rules. The top row shows individual image elements before being 
combined in the output image in the bottom row. All three binary elements are prioritized over the 
magenta grayscale element. The white binary element has the highest color priority according to the table 
in (Supplementary Fig. S2 online), the green the second highest, and the red the lowest. These priorities are 
followed by the plugin when drawing the output image.
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names displayed according to their colocalization category value (Fig. 8). Additional colocalization categories 
can subsequently be assigned to subsets of the overlays by changing the active colocalization category value, and 
placing new multipoints inside the circular overlays of appropriate objects. See the “Supplementary Information” 
section online entitled “Manual counting” for additional details on the counting procedure.

Using circular object overlays to define colocalization in a centroid‑based approach.  Since detected objects 
are represented with circular overlays, and further colocalization assignments to the objects are determined 
by whether subsequent markers fall inside or outside the overlays, we have used a centroid-based approach 
to colocalization. The radius of the circular overlays can be changed by adjusting “overlay size” in the menu, 
thereby changing the threshold for the required distance for assigning colocalization between an overlay and a 
newly placed marker. For automatic detection of objects, increasing the “pre-blur” setting for the “Find Maxima” 
process tends to result in markers being placed at the center of objects. One of the benefits of a centroid-based 
approach is that colocalization can be assigned for markers that are in close proximity but do not have overlap-
ping pixels. This can be desired for example when using markers that have exclusive and highly regional domains 
(nuclear, cytosolic, extracellular matrix), allowing these to be assigned to a single cell regardless of the degree of 
pixel overlap.

Figure 7.   Schematic with examples of different Z-projection outputs from different scenarios of image element 
combinations in Z-stacks. The middle part contains four black squares that represent four slices of an output 
Z-stack. The Z-stack contains binary elements represented by a solid color (blue or green), grayscale elements 
represented colored gradient blobs (blue or red), and binary outline elements represented by red outlines. 
Above and below the 4-slice Z-stack are examples of Colocalization Image Creator Z-projection outputs using 
the top priority (above) and bottom priority (below). The numbers above refer to the seven shown example 
scenarios of various arrangements of image element objects, and how they affect the Z-projection outputs. 
For the top priority Z-projection, the explanation is as follows: (1) The topmost binary element is prioritized, 
green. Grayscale element pixels that do not overlap with the binary element in XY are also shown in the 
Z-projection. (2) The topmost binary element is prioritized, red outline. The Z-projection shows this red outline 
as empty since it does not overlap with any other element in XYZ. The blue and red grayscale elements mix 
pixels as shown in magenta in the Z-projection. (3) The topmost binary element is prioritized, red outline. The 
Z-projection shows this red outline containing pixels from the blue grayscale element, since it does overlap with 
this in XYZ. (4) The topmost binary element is prioritized, red outline, from a cell spanning three Z-sections. 
The Z-projection shows this red outline containing pixels mixed from the blue and red grayscale elements, since 
it does overlap with these in XYZ. (5) The topmost binary element is prioritized, red outline. The Z-projection 
shows this red outline containing pixels from the green binary element, since it does overlap with this in 
XYZ. (6) The topmost binary element is prioritized, red outline, from a cell spanning three Z-sections. The 
Z-projection shows this red outline containing pixels from the green binary element, but not from the blue 
binary element, since the green element is closer to the topmost Z-sections. (7) The topmost binary element is 
prioritized, red outline. The Z-projection shows the red outline containing pixels from the green and blue binary 
elements, but green is prioritized since it has higher color priority than blue in this example. Similar logic can be 
applied to arrive at the bottom priority Z-projection, below the 4-slice Z-projection.
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Figure 8.   Examples of how to use the three counting modes in the Colocalization Object Counter plugin. (A–
C) Step-by-step flowcharts illustrating how to use the “Add category” mode (A), the “Set category” mode (B), 
and the “Delete cell” mode (C). For the “Add category” and “Set category” mode, multipoints are marked and 
converted to circular overlays by clicking the “Convert multipoints” button. Selected categories are respectively 
added or set for existing overlays. For the “Delete cell” mode, overlays are deleted by marking them with 
multipoints and clicking “Convert to multipoint”. See main text for detailed description of the individual panels.
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Automatic object detection.  The plugin has two built-in tools for automatic object detection; one for single 2D 
images, and one for 3D images (Z-stacks). The 2D tool utilizes the built-in ImageJ function “find maxima”, and 
the 3D tool utilizes the “3D Image Suite–3D maxima finder” plugin19. Detection is activated by pressing the 
“Find 2D/3D maxima” button in the “Automatic Detection” panel (Supplementary Fig. S4 online). This results in 
the automatic placement of multipoint markers over detected objects. During semi-automatic operation, inac-
curately placed markers can be adjusted manually by moving the markers by mouse dragging, by deleting mark-
ers with alt + left-clicking, or by adding more markers by left clicking the mouse as during manual operation. 
Following detection and adjustment, the created multipoints are converted to overlays in the same way as for 
manual counting.

The “Automatic detection” tool-panel contains the following options: (1) “Noise tolerance” sets the sensitiv-
ity level of detection. (2) “Pre blur radius” applies a Gaussian blur of specified radius before detection. This can 
be useful to avoid creation of several multipoints on the same object, or to center multipoints to the middle of 
objects. (3) “Exclude on edges” ignores edges. (4) “Light background” assumes a light image background. (5) 
“Color to detect” restricts the tool to detect objects of the selected color. (6) “Only inside outlines” is intended 
for use with images from the Colocalization Image Creator plugin. Selecting a color here will restrict detection 
to within outlines of the selected color. (7) “Radius xy(z)” are detection settings for the 3D maxima. (8) “Show 
filtered output” shows the output of the performed image filtering operations.

Advanced users can develop their own object detection algorithms using custom ImageJ macros or plugins for 
multipoint creation. These can thus be combined with the basic functions of the Colocalization Object Counter 
plugin. Custom macros or plugins need only to output multipoint markers from the active image.

Serial 3D reconstruction of objects and tissue contours.  The Colocalization Object Counter plugin comes with 
two tools that are used in connection with 3D reconstruction of objects and tissue contours from image series. 
One tool assigns a reference origin coordinate and the “north” direction of images, and the other is used for 
drawing tissue (or other) contours. Data collected with these tools are automatically saved to CSV files, and used 
in preparing and visualizing the 3D data using the Excel macro file and the MATLAB script described below.

Excel macro file for data organization.  Purpose, input requirements, operation and output.  The pur-
pose of the Excel macro file (Supplementary Fig. S5 online) is to import data created with the Colocalization 
Object Counter plugin, assign Z-axis levels to the images, translate XY coordinates according to reference origin 
and north, edit data points if needed, summarize and display counting data, and export the combined data in 
files for subsequent 3D reconstruction in MATLAB or other programs. The Excel file (“ColocalizationObject-
Counter_Importer.xlsm”) is automatically placed by the Colocalization Object Counter plugin in the “Counts” 
folder for the respective image series, from where it will be able to automatically locate and read any data files 
it needs. All the input and output data files are stored in CSV format. After opening the Excel file, click “Enable 
macros” if a security warning is displayed. See the “Supplementary Information” section online entitled “Excel 
macro file for data organization” for details on the macro file operation and user interfaces.

MATLAB script for 3D visualization.  Purpose, input requirements, operation and output.  The purpose 
of the MATLAB script is to generate and visualize an interactive 3D reconstruction of object and contour data, 
with the different colocalization categories of objects visualized in separate colors. The 3D figure can be rotated, 
zoomed, panned and animated. The script requires appropriate input CSV files containing object and contour 
data, which are generated by the Excel macro file described above. A graphical version of the script launches a 
simple graphical menu, from which the 3D reconstruction can be generated (Supplementary Fig. S6 online). An 
additional version without a graphical menu that is compatible with MATLAB versions older than R2018a (9.4) 
is also available, in which display options have to be set by editing the .m file in a text editor. All MATLAB script 
files required for operation is automatically placed by the Colocalization Object Counter plugin to the images 
“/Counts/Export” folder. See the “Supplementary Information” section online entitled “MATLAB script for 3D 
visualization” for details on the macro file operation and user interfaces.

Examples of usage
To illustrate these tools in action, we present here three examples of usage taken from our own research on the 
molecular determinants of brainstem-to-spinal cord projection neurons20. Examples 1 and 2 illustrate different 
uses of the Colocalization Image Creator, whereas example 3 illustrates use of our complete analysis pipeline, 
which includes all four plugins and scripts. We point out that our material has been sectioned at 20 μm to pro-
mote full penetration for immunohistochemical staining, but that the analysis platform can be used with thicker 
sections or even unsectioned tissue that is appropriately cleared and contains labeled objects21.

The input image in examples 1 and 2 is a confocal Z-stack of a small area of a cryosection of mouse brainstem, 
with four image channels showing respectively the following fluorescent labels: nuclear staining with the dye 
Hoechst 33258, tdTomato expression activated in a population of Cre-expressing neurons, neurons retrogradely 
labeled from the spinal cord using fluorescein–conjugated dextran amines, and immunohistochemical labeling 
of the nuclear protein Lbx1 (Fig. 9). The image consists of 35 optical slices of 1 μm thickness taken at 0.48 μm 
intervals (in accord with the Abbe diffraction limit and the Whittaker–Nyquist–Kotelnikov–Shannon sampling 
theorem), from a 20 μm thick tissue section.

Example 3 uses three images from the same mouse brain stem with the same fluorescent labels, but are tile-
scanned confocal Z-stacks of whole transverse brainstem sections. These show retrogradely labeled neurons on 
one side of the brain stem. They each consist of 28–33 optical slices of 1 μm thickness taken at 0.48 μm intervals, 
from a 20 μm thick tissue section.
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See “Data availability” for access to the example images and Colocalization Image Creator settings files.

Example 1: Visualizing colocalization between two neuronal cell populations using the Colo‑
calization Image Creator.  In this example we want to compare a population of neurons retrogradely 
labeled with a fluorescent tracer to a population of neurons expressing a fluorescent reporter protein, and to 
determine which neurons are labeled with both markers, and which are only retrogradely labeled. To do this, 
we will use two binary image elements: one to represent colocalization of retrograde labeling and nuclei, and 
another to represent colocalization of retrograde labeling, reporter expression and nuclei (Fig. 10). Although not 
strictly necessary, for purposes of clarity in the example we restrict visualization of colocalization signals to the 
nuclei of the neurons, since neuronal somata in close proximity can be difficult to distinguish. This is recom-
mended whenever an image channel of nuclear staining is included in the image data. Although not included 
in this example, it can be helpful to output the neuronal somata as grayscale elements/verification channels in 
addition, to help discriminate abutting neurons.

We choose the binary image element representing retrograde/reporter/nuclear colocalization to be colored 
white, and the binary image element representing retrograde/nuclear colocalization to be colored green. Since 
the binary color priority of white is higher than green by default, white elements are automatically “overwriting” 
green elements. However, this does not hide any objects per se, since retrograde/reporter/nuclear objects (white) 
is a colocalization combination superset of retrograde/nuclear objects (green). In other words, all triple-labeled 
neurons are by necessity also double-labeled.

To remove signals from axons, dendrites, cell borders, and to remove some background, we add the “Mini-
mum filter” ImageJ macro command with a radius = 1 pixel, and the “Fill holes” command to both binary 
image elements. We also remove particles smaller than 20 μm2 (2 SDs smaller than the mean of complete nuclei 

Figure 9.   Maximum intensity Z-projections of input image channels used in examples 1 and 2. The panels 
show brightness adjusted maximum intensity Z-projections of the confocal Z-stack image used in Examples 
1 and 2. The image is of a 20 μm thick transverse cryosection taken from the brain stem of a prenatal mouse 
(see “Materials and methods”). (A) Channel 1, showing all nuclei stained with Hoechst 33258. (B) Channel 
2, showing fluorescent protein expression (tdTomato) in all neurons that have expressed Cre. The tdTomato 
label is distributed throughout the cytoplasm. (C) Channel 3 showing retrograde labeling with a fluorescein-
conjugated dextran amine applied to the cervical spinal cord. The fluorescence label is distributed throughout 
the cytoplasm. (D) Channel 4, showing immunostaining for the nuclear protein Lbx1.
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Figure 10.   Example of usage 1. Visualizing Colocalization between two neuronal populations using the Colocalization Image 
Creator. Overview of the element settings (A) used with the Colocalization Image Creator plugin, and the Z-projection output (B). 
Three channels of the input image (see Fig. 9) are used: channel 1 showing nuclear staining (Hoechst 33258), channel 2 showing 
neurons labeled with tdTomato expression, and channel 3 showing retrogradely labeled neurons. (B) Z-projection output using the 
element settings in (A). White objects represent colocalization of nuclear, retrograde, and tdTomato labeling. Green objects represent 
colocalization of nuclear and retrograde labeling only. Arrowheads and numbers in (B) indicate the neurons shown in (C,D). (C) 
Standard maximum intensity Z-projection of the grayscale data of the two neuronal populations, using the built-in ImageJ tool 
(Stacks- > Zproject- > Maximum). Retrogradely labeled neurons are green, tdTomato-expressing neurons are magenta. White pixels 
indicate overlap, either due to true colocalization or Z-projection artifacts. (D) XZ orthogonal views of the neurons indicated in (B,C), 
which are colored as in (C). The different rows show examples of true colocalization, Z-projection artifacts, and neurons whose nuclei 
have been transected during tissue sectioning. Note how only neurons 1–4 have true colocalization of signal in all three input channels, 
and are completely included in the section, which is clearly shown in (B). Note also that the images in (C, D) are not outputs of the 
Colocalization Image Creator plugin, but only presented to evaluate the efficiency of the Z-projection artifact removal.
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profiles—determined empirically for the data set), which generally eliminates nuclei that are only partially 
included within a section (see Fig. 5C). The settings for the image elements are shown in Fig. 10A.

The generated output Z-projection (Fig. 10B) removes several Z-projection artifacts, and only shows truly 
triple-labeled neurons as white (in this case only their nuclei, which are separated and easily distinguished). By 
comparison with a standard grayscale Z-projection (Fig. 10C), and a XY-orthogonal view of neurons, it is clear 
that several cases of Z-projection artifacts and partially included nuclei have been removed.

Example 2: Visualizing colocalization of immunostaining, retrograde labeling and reporter 
protein expression using the Colocalization Image Creator.  In this example, we want to visualize 
colocalization between immunohistochemical staining for a nuclear protein (Lbx1) and retrogradely labeling, 
and compare it to the expression of a fluorescent reporter protein (tdTomato) (Fig. 11). We use the same input 
image as in Example 1, using this time all four input channels. Since Lbx1 protein is restricted to the nucleus, 
it is critical to restrict visualization to only the nuclei of retrogradely labeled neurons. Otherwise, false negative 
counts can arise from neuronal somata lacking nuclei, due to incomplete inclusion within a tissue section (see 
Fig. 2B). Moreover, many staining methods, including immunohistochemical staining, may have a low signal to 
noise ratio, making it difficult to segment effectively by thresholding. We will therefore visualize the anti-Lbx1 
and the tdTomato signals as grayscale elements. We output the grayscale elements to separate output channels 
to avoid visualization errors that can occur when combining grayscale elements. To represent the nuclei of ret-
rogradely labeled neurons, we create binary elements as in Example 1, but with the “Convert to outline” option 
set to “Thick outlines”.

We first generate the two binary outline elements, one for each of the two output channels, but otherwise 
identical. The settings are the same as for element 2 in Example 1, except that the “Thick outlines” box is checked 
and the color magenta is chosen instead of green. Next, we add the anti-Lbx1 signal as a white grayscale element 
in output channel 1, and the tdTomato signal as another white grayscale element in output channel 2. The set-
tings for the image elements are shown in Fig. 11A. Finally, we add two verification channels that can be used to 
verify the binary segmentation behind the magenta outlines as necessary. These are added as a white grayscale 
element showing the raw signal from the retrogradely labeled neurons (as seen in Fig. 9C), which we assign to 
output channel 3, and as a white grayscale element showing the raw signal from the nuclear staining (as seen in 
Fig. 9A), which we assign to output channel 4.

Since we will use the image element settings created here again for multiple images in Example 3, we save the 
settings to a file by clicking the “save settings” button in the main menu (“example2_settings.json”).

The resulting output Z-projections (Fig. 11B,C) are devoid of Z-projection artifacts and false negatives due 
to incompletely included nuclei, and clearly show which retrogradely labeled neurons express Lbx1 or tdTomato 
(compare with Fig. 11D). Switching between channels 1 and 2 using the keyboard shortcuts Q and W facilitates 
the comparison of Lbx1 and tdTomato labeling, and shows that Lbx1 signal (Fig. 11B) is only present in neurons 
that also contain tdTomato signal (Fig. 11C). The validity of the magenta outlines can be verified by comparing 
channel 2 (keyboard shortcut W) with the verification channels in channel 3 and 4 (keyboard shortcut E and A).

Example 3: Working with large images, batch processing, semi‑automatic colocalization 
quantification and 3D reconstruction.  In this example we will apply the element settings from Example 
2 to three large Z-stack images of serial transverse sections using batch processing. We will then semi-automat-
ically quantify the different colocalization categories of retrogradely labeled neurons using the Colocalization 
Object Counter plugin, import and organize the data with the Excel macro file, and visualize the combined data 
in a 3D reconstruction using the MATLAB script. The workflow is summarized in Fig. 12A. For tips and details 
on operations and user interfaces related to this example, see the “Supplementary Information” sections online 
entitled “Working with large images”, and “Notes on reusing, adjusting, and verifying threshold and brightness 
level settings for batch processing”.

Batch processing.  In the batch processing menu we click “Load element profile” to load the settings file from 
Example 2 (“example2_settings.json”), and specify the input image folder and the output folder. We click “Start 
batch processing”, and monitor the progress in the ImageJ log window. Each input image is about 11 GB in size, 

Figure 11.   Example of usage 2. Visualizing colocalization between immunostaining, retrogradely labeled 
neurons, and reporter protein expression using the Colocalization Image Creator (A) Overview of the element 
settings used with the Colocalization Image Creator plugin to create the output shown in (B,C). Four channels 
of the input image (see Fig. 9) are used: channel 1 showing nuclear staining (Hoechst 33258), channel 2 showing 
neurons expressing the tdTomato reporter protein, channel 3 showing retrogradely labeled neurons, and 
channel 4 showing immunostaining for the transcription factor Lbx1. (B) The Z-projection output of channel 1 
of the output image, comprising elements 1 and 3, visualizing respectively outlines of the nuclei of retrogradely 
labeled neurons (magenta) and Lbx1 immunostaining (white). (C) The Z-projection output of channel 2 of the 
output image, comprising elements 2 and 4, visualizing respectively outlines of the nuclei of retrogradely labeled 
neurons (magenta) and tdTomato reporter expression (white). (D) XZ orthogonal views of neurons from the 
output image stacks in output channel 1 (left column) and output channel 2 (right column). These images are 
not part of the plugin output, but are shown to aid in evaluating the efficiency of Z-projection artifact removal. 
Neurons are numbered as indicated in (B,C). Different rows show examples of true colocalization and examples 
of Z-projection artifacts in each output channel.

▸
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Figure 12.   Example of usage 3. Working with large images, batch processing, semi-automatic colocalization 
quantification and 3D reconstruction. (A) Overview of the workflow. The input comprises 3 image Z-stacks of transverse 
sections through the left half of a mouse embryo brain stem. The imaging channels and fluorescence labels are the same 
as in examples 1 and 2. (B) Settings used for automatic detection of all nuclei of retrogradely labeled neurons in output 
channel 2. (C) Automatically marked magenta outlines, using the parameters shown in (B). Note the high accuracy of the 
multipoint markers. (D) A whole brainstem section after conversion of multipoints to overlays, representing all the nuclei 
of retrogradely labeled neurons. (E) Summary of the object count data after importing into the Excel macro file. (F) The 
3D reconstruction of the data processed in the previous steps, seen in the transverse plane (right) and from the side (top 
left). The message box at bottom left indicates the relationship between the point colors and object categories.
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takes about 45 min to process with the example element settings, and has a peak memory consumption of about 
110 GB.

Semi‑automatic OBCA with the Colocalization Object Counter plugin.  After processing the images, we open 
them one by one in ImageJ and start the Colocalization Object Counter plugin. We start by marking multipoints 
on the nuclei of all the retrogradely labeled neurons. These are indicated with magenta outlines in channel 1 
and 2. Since there are over a hundred such neurons in each image, we can speed up this process by using the 
plugin’s automatic detection tool. In this case, we can detect the signals (background or strongly labeled) inside 
all magenta outlines in channel 2 to automatically mark them. We set a low “noise level” of 5 to include detection 
of background signals, and a “pre-blur” to 5 to bias multipoints to the center of the outlines. We set “Only inside 
outlines” to “magenta” to restrict detection to within magenta outlines. These settings are shown in Fig. 12B. 
Finally, we click “Find maxima” which results in automatic multipoint marking. We then manually verify that 
the automatically marked outlines are accurate (Fig. 12C) by comparing outlines in channel 2 with raw retro-
grade signal in channel 3 and raw nuclear staining in channel 4. Using keyboard shortcuts enables quick verifica-
tion and correction of any mistakes made by the automatic detection. After removing a few multipoints that were 
falsely assigned due to instances of retrogradely labeled axons overlapping labeled nuclei in the Z-axis, we click 
the green button labeled “Convert multipoints to cells”. This converts the multipoints into persistent circular 
overlays each with a number in the middle that indicates its colocalization category (Fig. 12D).

Now that we have marked all retrogradely labeled neurons with persistent overlays, we want to identify 
which ones are positive for both, none, or either of the other two labels. Still in channel 2, which visualizes the 
tdTomato signal inside the retrogradely labeled neurons, we change the colocalization category to 2 (near top of 
the main menu), and clear previous multipoints by clicking “clear multipoints”. By changing the active category, 
new multipoints created inside already existing overlays will indicate colocalization with the selected category 
(tdTomato). Again, we use automatic detection to speed up this process. We set “Pre-blur radius” to 2, “Noise 
tolerance” to 60, and “Only inside outlines” to magenta, and click “Find maxima”. To remove multipoints that 
are created outside of overlays generated in the first step we click the “Toggle multipoints inside/outside/all cells” 
once. We inspect the automatic detection as before, removing a few unintended multipoints generated by weak 
signals, add some that didn’t discriminate merged cells, and click “Convert multipoints to cells”.

Finally, we change to channel 1, which visualizes the Lbx1 signal, and change the active colocalization category 
from 2 to 3. We change “Noise tolerance” to 150, click “Find maxima”, toggle once to hide multipoints marked 
outside of overlays generated in the prior two steps, and verify markers. Finally, we click “Convert multipoints 
to cells”. We now have the counts, coordinates, and categories of all retrogradely labeled neurons, according to 
colocalization with either tdTomato, Lbx1, or both. To save these data to a file, we click “Save counts”.

Indicating origin and north direction and drawing contours for 3D reconstructions.  To generate a 3D model with 
the MATLAB script, we also draw the contour around the tissue, indicate the coordinate origin (x = 0, y = 0), and 
the “north” direction of the image, using the appropriate buttons in the Colocalization Object Counter plugin. 
See the “Supplementary Information” sections online entitled “Serial 3D reconstruction of objects and tissue 
contours” for details on this operation. We repeat the process for the two other images, clicking “Reset all sets/
counts” between images.

Importing and organizing data with the Excel macro.  The above steps automatically save the data files for cell 
counts and 3D reconstruction to the “Counts” folder, which is located in the same folder as the image files. 
To import and summarize the data, we open the “ColocalizationObjectCounter_Importer.xlsm” file, and click 
“Enable Content” in the macro security warning. In the image series, we have analyzed every 6th serial section 
of 20 μm thickness, giving us a value of 6 × 20 μm = 120 μm Z-level distance between sections. Columns I and J 
tell us that the XY-unit of our input images is 0.21 μm/pixel.120 μm/0.21 μm/pixel = 571 pixels.

We therefore write “571” in cell D5, “yes” in cell D6, and click button 1. For step 2, we add some Z-level jitter 
to each object (to “randomize” positions so they do not line up strictly with section planes) by writing “190” (571 
pixels/3 = 190 pixels) in cell D22, click button 2, and thereafter button 3. This brings us to the “Data summary” 
sheet, which shows us the total and per section counts for each of our categories (Fig. 12E).

3D visualization with MATLAB.  By clicking button 3 in the Excel macro, we automatically generated 3D visu-
alization data files in the “\Counts\Export” folder. We navigate to that folder and run the MATLAB .m file. We 
adjust the scatterpoint size to 30, and alpha value to 1200, and click “Visualize”. In the newly created window we 
can clearly see the contours of the tissue as the alphashape, and the retrogradely labeled neurons as scatterpoints. 
Clusters of different categories of retrogradely labeled neurons are clearly seen on the ipsilateral (same side) and 
contralateral (opposite side) (Fig. 12F). Information regarding color codes is displayed in a message box.

Assessment of output consistency across users of semi‑automated quantification.  To assess 
the consistency of output across different users employing semi-automatic OBCA with the Colocalization Object 
Counter plugin on image output from the Colocalization Image Creator plugin, we recruited five different naïve 
users to independently analyze the three images used in Example 3 (Table 1). Their results were compared to 
ground truth values, determined by an expert, and to values obtained from the plugin’s fully automated detec-
tion capabilities, using detection parameters assigned by an expert. The results showed that even with minimal 
training in using the plugin, results were highly consistent, with accurate colocalization assignments ranging 
from 95 to 99%. The semi-automatic quantification was substantially more accurate than the fully automated 
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quantification (80%). This shows that semi-automatic OBCA using our tools provides accurate and consistent 
results across different users.

Comparison to an existing automated colocalization analysis platform.  Having shown that 
using our platform in fully automated mode gave substantially less accurate results than using it in semi-auto-
matic mode, we decided to make an additional comparison to a fully automated analysis pipeline with the widely 
used CellProfiler software22. As with the fully automated mode in our platform, the fully automated mode in 
CellProfiler gave substantially lower accuracy (80%, Table 1) than our platform in semi-automatic mode.

Discussion
The expression of distinct sets of genes is a defining characteristic of different cell types and sub-types1,2. Analysis 
of this molecular diversity in a spatial context, particularly at the protein level, can be performed through dif-
ferential fluorescence labeling and multi-fluorescence imaging, followed by colocalization analysis3,12,13,23. Many 
available colocalization analysis tools and algorithms are designed to function fully automatically. This is great 
for speed and objectivity, but can compromise accuracy, as witnessed by our assessment of output consistency, 
for which automated counting was substantially less accurate than semi-automated counting. Pixel-based colo-
calization algorithms do not facilitate the definition of object categories. Object-based colocalization analysis 
(OBCA) is usually preferred because it defines objects, but most OBCA platforms require high fidelity object 
segmentation. This can be difficult to achieve automatically, and time-consuming to do manually.

There is a general lack of tools, algorithms, and workflows for semi-automatic OBCA that enable cell-by-
cell assessment using multiple labels and that rely less on automatic object segmentation. Development of such 
tools can help remove the image-analysis bottleneck in experimental pipelines that involve complex image data 
sets. This would facilitate more ambitious experimental designs and more efficient and accurate processing of 
complex data. In our experience, such tools would be particularly valuable for analyzing the molecular diversity 
of cell types in the developing central nervous system (CNS), but they would be generally applicable to other 
tissues as well.

To create a useful OBCA platform for our own studies of the molecular diversity of neurons in the embryonic 
CNS20, we developed the four tools presented here, designed to work together in a streamlined OBCA workflow. 
We developed two ImageJ plugins that (1) process multi-label imaging data into a visual format that is more 
suitable for semi-automatic OBCA (the Colocalization Image Creator plugin), and (2) facilitate semi-automatic 
identification and quantification of colocalized objects (the Colocalization Object Counter plugin). We developed 
a Microsoft Excel macro script for importing, summarizing, and organizing the OBCA data, and a MATLAB 
script for visualizing 3D reconstructions of the OBCA data along with tissue contours.

These tools represent a novel platform for OBCA that is notable for its (1) optimization for cell-by-cell 
analysis, (2) combination of automatic and visually verified object segmentation, thus combining speed and 
accuracy, (3) ease of use with multiple labels, (4) minimization of Z-projection artifacts and artifacts due to 
transected objects, and (5) provision of a complete workflow for semi-automatic OBCA, including tools for 
image processing, object identification and quantification, data organization and object-based 3D reconstruc-
tion and visualization.

Comparison with other colocalization analysis platforms.  A major difference between our plat-
form and existing OBCA platforms is the divergence from fully automatic analysis4,12,22,24–33. For fully automatic 
OBCA, objects have to be defined either as points or as fully segmented objects. This has been attempted in 

Table 1.   Assessment of output consistency across users of semi-automated quantification, compared with fully 
automated methods. The table shows quantification results of the three images used in Example 3 generated 
by an expert (ground truth), a CellProfiler22 pipeline (see methods), automated counts with our plugin, and 
five independent users. Target cells represent all retrogradely labeled neurons containing colocalized nuclear 
staining, which were assessed for the tdTomato marker activated in a population of Hoxb1Cre-expressing 
neurons, and immunohistochemical labeling of the nuclear protein Lbx1. Ground truth distribution of markers 
in target cells were 29 Lbx1−/Hoxb1− neurons, 9 Lbx1+/Hoxb1− neurons, 34 Lbx1−/Hoxb1+ neurons, and 212 
Lbx1+/Hoxb1+ neurons. Parameters for 2D automatic counting with the Colocalization Object Counter plugin 
were for (a) target cells: noise level 1, blur radius 8, only inside magenta, (b) Lbx1: noise level 63, blur radius 8, 
only inside magenta, (c) tDTomato: noise level 63, blur radius 8, only inside magenta.

Ground truth CellProfiler Automatic User 1 User 2 User 3 User 4 User 5

Non-target cells (not counted) Thousands (nc) nc nc nc nc nc nc nc

Correctly assigned target cell and colocal-
ized markers 284 195 223 272 265 272 264 266

Correctly assigned target cell, incorrect 
colocalized markers 0 13 48 1 4 1 9 8

Non-target cell assigned as target cell 0 36 8 3 4 3 6 2

% Accurate assignments 100.0% 79.9% 79.9% 98.6% 97.1% 98.6% 94.6% 96.4%

Target cell not assigned (omitted) 0 76 13 11 15 11 11 10

% Target cells not assigned (omitted) 0.0% 26.8% 4.6% 3.9% 5.3% 3.9% 3.9% 3.5%
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various ways, but it has been difficult to develop a universal algorithm that functions across diverse image condi-
tions, and the accuracy rate rarely reaches levels that match visually guided manual approaches15,16. The Colocal-
ization Image Creator plugin uses a binarization step to separate objects from image background, but in contrast 
to fully automatic methods, does not depend on fallible automatic segmentation into individual objects. Instead, 
identification of individual objects is performed using an effective combination of automatic and visually guided 
manual detection using the Colocalization Object Counter plugin. This plugin allows users to approach object 
segmentation and identification either fully manually or fully automatically, or a combination of the two. This 
broadens the applicability of our tools, in contrast to other tools that are typically designed for more narrowly 
defined applications. Additionally, since the Colocalization Image Creator plugin enables visualization and ele-
ment definition to be restricted to cell compartments (such as nuclei), better separation of abutting cells can be 
achieved, thus improving object separation and identification.

Previously described tools designed for types of use similar to ours, including cell-by-cell analysis and 3D 
imaging, utilize an automatic object segmentation process that can be adjusted by the user19,34,35. However, these 
rely on segmentation delineations for ultimate quantification of colocalization, which is typically reported by 
automatically calculated metrics, and are thereby highly sensitive to segmentation accuracy. Moreover, these 
and other OBCA methods normally require segmentation to be performed on each image channel, which is 
not always feasible. In contrast, the Colocalization Image Creator can be used with hard-to-binarize images, 
by allowing up to one image channel to be displayed as a grayscale image/element in each output channel (see 
examples in Figs. 6, 11, 12C). Overlaying additional grayscale elements in a single output channel is discouraged 
to avoid colocalization artifacts12. However, additional hard-to-binarize image channels can be output separately 
as demonstrated in Fig. 11B,C from Example 2, which show separate output channels displaying a single grayscale 
image/element each. Even if none of the image channels can be effectively binarized or segmented (diminishing 
the benefits of preprocessing with the Colocalization Image Maker), the Colocalization Object Counter, Excel 
macro, and MATLAB script can still be used to perform OBCA, by manually or semi-automatically identifying 
objects from the raw image data.

Much effort has focused on the automatic image segmentation problem, particularly as applied to biological 
tissue15,16. This is both a highly valuable and a highly challenging research area. The binarization/segmentation 
method used in the Colocalization Image Creator is relatively simple, featuring manual or automatic global 
intensity thresholding. Nevertheless, other image segmentation tools can be integrated easily into the workflow 
by using them to pre-process images prior to using the Colocalization Image Creator. The ImageJ “Auto local 
threshold” or “Trainable weka segmentation” plugins are good tools for this.

Supplementary Table S1 online presents a comparison of our platform with several other colocalization 
platforms. Although not a systematic review of all the available tools for colocalization analysis, the comparison 
highlights some clear trends in the existing software packages. Almost all packages define objects as fully deline-
ated 2D or 3D objects, only a few of them facilitates manual adjustment of object delineation.

Most packages cannot handle more than two or three input image channels, with the exception of some more 
advanced packages, such as CellProfiler, TANGO, and QuPath. In these three, colocalization analysis across 
multiple input channels can be done by measuring pixel values within object delineations across channels, com-
bined with detection threshold levels for defining signal presence. Potential downsides of this approach include 
a dependency on segmentation accuracy, high signal quality, image resolution, and minimal signal artifacts in 
all measured channels. These packages are furthermore not optimized for manual inspection or intervention 
to adjust the output of automated procedures, making the output challenging to verify. These packages can also 
report distance metrics between objects, which can be used for colocalization analysis between pairs of image 
channels. However, this requires fully delineated objects in all analyzed image channels, which can be challeng-
ing when working with multiple channels.

In summary, the trend for colocalization analysis has been to rely on fully automated segmentation and 
measurements, and on defining objects by their complete delineation. In contrast, although our method enables 
an initial definition of objects by full delineation (through binary elements), and includes the option to detect 
overlapping pixel regions across segmented image channels, this is not mandatory. In the Colocalization Object 
Counter plugin objects are ultimately defined as single points. Although this eliminates any possibility to perform 
pixel measurements of complete objects (for which there are many other available packages), it has the advantage 
of diminishing the importance of segmentation accuracy and signal noise, and makes manual inspection and 
intervention faster and simpler. Colocalizing objects are defined by the distance between object points, and in 
practice determined by whether automatically or manually placed points across channels fall within or outside 
the object’s circular overlays of user-defined radius. Moreover, our platform has been designed from the outset 
with multiple image channels and 3D capabilities in mind.

Many previously described colocalization analysis tools specialize on a specific application within a larger 
procedure, and sometimes require substantial technical training and experience for installation and efficient 
operation. We present here an entire workflow, covering all aspects of OBCA, including tools for data organi-
zation and for 3D reconstruction of identified objects that requires very little technical training and utilizes 
widely used and available software. A major benefit of the workflow is that each of the four tools can be used 
independently, or combined with other tools. In addition to integration with more advanced segmentation 
methods as mentioned above, the Colocalization Object Counter lends itself well to integration with more 
advanced automatic detection methods that can be based on ImageJ macros or plugins that output multipoints 
on image objects. Moreover, the Colocalization Object Counter is designed for use with any image readable by 
ImageJ, permitting input from other image preprocessing tools or even from raw multi-fluorescence imaging 
data. Finally, data storage using the common CSV file format allows data files generated by our OBCA pipeline 
to be input to alternative 3D visualization tools, or conversely our 3D visualization tool can be used with CSV 
data files generated by other programs.
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Additional features.  The Colocalization Image Creator is designed with built-in rules and restrictions to 
help avoid common errors that can occur during OBCA3,12. These include the discouragement of visualizing 
more than one grayscale element in any given output channel, and particular pixel-mixing rules for binary ele-
ments. Nevertheless, the Colocalization Image Creator is developed to be as flexible as possible, allowing users 
to process multi-label imaging data in a number of different ways, suiting particular experimental conditions 
or the individual style of the user. Although optimized for use with 3D multicellular imaging data, the plugin is 
well suited for use with 2D images, and with any type of object, including other cell types, organelles, synapses 
and even non-biological structures. Furthermore, the Colocalization Image Creator plugin enables saving and 
loading of employed image processing parameters and plugin settings to a descriptor file, enabling standardized 
reporting of image processing methods and facilitating reproducibility.

By leveraging a combination of automatic and manual/visual OBCA, accurate, high speed analysis can be 
achieved. In images of well-separated objects, automatic detection is usually efficient, allowing for hundreds 
of objects per minute to be quantified. In images where object segmentation is less straightforward, a higher 
degree of manual verification and adjustment of automatic detection is required, thus decreasing throughput 
per unit time. However, by becoming proficient with the keyboard shortcuts used to zoom, pan, change image 
channels, change Z-stack section sequences, manipulate detection markers, and more, high throughput can still 
be achieved. Moreover, additional time is saved with the efficient data organization tool provided through the 
Excel macro file, which can quickly summarize large data sets.

Limitations of the platform.  The segmentation of abutting objects, such as touching or overlapping cells, 
is a particularly difficult problem in the case of certain cell types such as neurons, and is one of the major chal-
lenges in OBCA applied to neural tissue. When creating binary elements with our Colocalization Image Creator 
plugin, abutting cells may present as single objects. This is a limitation in all object segmentation algorithms. 
However, we encourage the use of three practices to help separate cells accurately. First, if a label is restricted to a 
cell (or other object) compartment, such as the nucleus, object definition can be restricted to that compartment. 
When using the nucleus as a marker for neurons, this usually results in greatly improved object separation (com-
pare Fig. 10B,C). Second, the generation of “verification channels” (see “Verification channels” in the “Results” 
section) can facilitate efficient comparison of binary images/elements with the original image data, allowing for 
rapid, visually guided manual verification of object definition. Third, depending on object density, Z-projections 
should be generated from a restricted number of layers along the Z-axis, to avoid excessive object overlap. A 
Z-stack can be split into smaller sub-stacks in ImageJ using the Image > Stacks > Tools > Make Substack com-
mand (see, however, some caveats associated with substacks in the “Results” section entitled “The Z-projection 
output”).

When using the Colocalization Image Creator to generate processed images, it is important that users are 
aware that certain settings can lead to the obscurement of objects in the output image. If not taken into consid-
eration, this can significantly confound interpretation. All possible cases of object obscurement stem from the 
particular pixel-mixing rules for binary elements used (see Figs. 6 and 7). The cases are as follows.

(1)	 When two or more binary elements occupy the same XYZ location in a single output channel, only the 
element with the highest prioritized color is drawn (see Fig. 6, Supplementary Fig. S2A online). To avoid 
this problem, (1) limit the number of binary images/elements per channel to one, or (2) limit the number 
to two binary elements, and enable outlines for one of them. However, if the prioritized binary element 
represents a “colocalization combination superset” of the deprioritized element, no information is lost fol-
lowing object obscurement. This is demonstrated in example 1 (Fig. 10B), where the white “nucleus AND 
retrograde AND reporter” labeled objects are prioritized over the green “nucleus AND retrograde” labeled 
objects.

(2)	 When two or more binary objects occupy the same XY location, but have separate Z locations, only the 
object closest to the Z-stack top will be drawn in any generated Z-projections (see Fig. 7). Such a selection 
occurs even in images with a single binary element type (a single color), thus potentially reducing the 
absolute number of objects drawn in the Z-projection compared to the Z-stack. To better quantify absolute 
numbers of objects from image Z-stacks, (1) limit analysis to single Z-stack optical slices, or inspect all 
slices, or (2) depending on object density, generate Z-projections from restricted numbers of optical slices 
along the Z-axis (substacks). However, it is important to note that if objects are uniformly distributed along 
the Z-axis and do not vary greatly in size, a selection based on Z-stack position represents an unbiased 
selection, and preserves the relative ratio of different object types in the Z-projection. If object obscure-
ment becomes excessive, and it is critical to get an accurate absolute count of objects, users should consider 
stereological approaches18.

(3)	 When a binary element is combined with a grayscale element in a single output channel, the binary objects 
are always prioritized and drawn over any grayscale pixels. To avoid this problem, (1) enable outlines for 
the binary element, or (2) output the grayscale element to a separate channel.

When using the Colocalization Object Counter plugin, or any semi-automatic OBCA, one drawback is that 
manual intervention can introduce subjective bias. However, whenever possible, efforts to control for subjectivity 
should be implemented, such as blinding researchers to the experimental conditions of the image data, or having 
multiple independent researchers quantify the same data.

Finally, the accuracy of semi-automatic OBCA, both in our and other platforms, crucially depends on the 
quality and resolution of the raw image data. In cases where image quality is poor, unambiguous object iden-
tification may be doomed to fail, whether employing manual or automatic methods. Apart from the ability to 
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pre-process images using ImageJ macro commands, our plugins are not designed to enhance image quality. Best 
practices for microscopy and image acquisition are therefore always recommended before using our platform or 
any other colocalization analysis tools3,12.

Conclusion
In conclusion, the tools and workflow we present here will enable researchers to employ OBCA on complex multi-
label imaging data in a way that is significantly faster than manual inspection, while maintaining high accuracy 
that can be difficult to achieve using fully automatic methods. It is our hope that the ImageJ community will be 
able to build upon and expand the functionalities and advantages of these tools.

Materials and methods
ImageJ plugin development.  The Colocalization Image Creator and Colocalization Object Counter 
plugins for ImageJ were implemented in Java Development Kit 8 as ImageJ 1 plugins, ensuring compatibility 
with all major versions of ImageJ, including Image1, Image2, and FIJI17,36. The source code with comments is 
available at https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Objec​t_Count​er and https​://githu​b.com/Ander​
s-Lunde​/Coloc​aliza​tion_Image​_Creat​or.

Excel macro file development.  The macro for import, summarization, and export of object quantifica-
tion data was written in Visual Basic for Application version 7.1 in Microsoft Excel 2010. The source code is 
embedded in the ColocalizationObjectCounter_Importer.xlsm file, and can be viewed and edited by opening 
the file in Excel and pressing Alt + F11 to open the code editor.

MATLAB script development.  The MATLAB scripts for visualization of 3D reconstructed data were 
developed in MATLAB Release 2018b, The MathWorks, Inc., Natick, Massachusetts, United States. The source 
code embedded in the .m files can be viewed and edited using a text editor or the MATLAB editor, whereas the 
.fig file that contains the graphical user interface data can be edited with the GUIDE tool in MATLAB.

Procedures related to generation of sample images.  All animal procedures were approved by the 
Norwegian Animal Research Authority (Forsøksdyrutvalget, FDU ID 8473), were performed in accordance 
with the regulations of the University of Oslo animal care committee and followed the Federation of European 
Laboratory Animal Science Associations (FELASA) guidelines. The microscopic images used in examples 1, 2, 
and 3 were taken from our own research on the molecular determinants of brainstem-to-spinal cord projection 
neurons20. In brief, the samples were generated as follows.

For generating embryonic mice with a red fluorescent protein (tdTomato) expression restricted to a subpopu-
lation of brainstem neurons, the b1r4-Cre transgenic mouse line37, which expresses Cre recombinase exclusively 
in rhombomere 4-derived cells under the control of the Hoxb1 rhombomere 4 enhancer38, was crossed with the 
Ai14 Cre reporter line harboring a loxP-flanked STOP cassette preventing transcription of a CAG promoter-
driven tdTomato gene (strain 7914, Jackson Laboratories). Following mating of the two mouse strains, the 
morning of vaginal plug observation was defined as embryonic day (E)0.5, and embryos were harvested at E16.5. 
Pregnant dams were anesthetized with isoflurane before cervical dislocation. Dissected embryos were kept in ice-
cold (4 °C), oxygenated (95% O2–5% CO2), artificial CSF [containing the following (in mM): 128 NaCl, 3 KCl, 11 
d-glucose, 2.5 CaCl2, 1 MgSO4, 1.2 NaH2PO4, 5 HEPES, and 25 NaHCO3]. Brain stems with cervical spinal cord 
attached were dissected out in cold ACSF under a dissection microscope. Mice positive for tdTomato expres-
sion were retrogradely labeled from one side of cervical segment 1 with fluorescein-conjugated dextran amine 
(FDA, 3 kDa; Invitrogen) as described in20,39. This results in green fluorescence in a subpopulation of brainstem 
neurons (bulbospinal projection neurons), which share some overlap with the tdTomato-positive population.

Following retrograde labeling, brain stems were immersion fixed in 4% paraformaldehyde in PBS at 4 °C for 
30 min, incubated in 20% sucrose in PBS to equilibration, embedded in Tissue-Tek OCT embedding compound 
(Sakura), frozen in liquid nitrogen, and sectioned transversely at 20 μm using a cryostat. Note that when analyz-
ing objects smaller than the cellular level, the fidelity of microscopy images may suffer, since fixation for 30 min 
in 4% paraformaldehyde will not allow fixation sufficient to stop antibody-induced rearrangement of molecules. 
Sections were processed for immunohistofluorescence as described in20. The primary antibody used was guinea 
pig anti-Lbx1 (gift from Dr. Thomas Müller), which was detected using Cy5 donkey anti-guinea pig IgG (706-
175-148, Jacksons, England) as secondary antibody. Staining of nuclei was done with 1 μg/ml Hoechst 33342 
(Sigma-Aldrich).

The Z-stack image used in Examples 1 and 2 was acquired with a Zeiss 710 laser confocal microscope (Jena, 
Germany) using a 40× 1.2 N.A. water immersion objective, and consists of 35 optical slices of 1 μm thickness 
taken at 0.48 μm intervals, with a XY pixel resolution of 0.21 μm. The Z-stack images used in Example 3 were 
acquired by tile scanning with a Zeiss 710 laser confocal microscope with a 40× 1.2 N.A. water immersion objec-
tive. Each image consists of 28–33 optical slices of 1 μm thickness taken at 0.48 μm intervals, with a XY pixel 
resolution of 0.21 μm. Excitation and emission ranges used for all images were: Hoechst 405 nm, 419–477 nm; 
fluorescein 488 nm, 497–545 nm, tdTomato 561 nm, 584–622 nm; Cy5 633 nm, 643–713 nm.

Fully automated counting with a CellProfiler pipeline.  A custom 3D pipeline was created to segment 
all nuclei into 3D objects, consisting of successively performing RescaleIntensity, Resize (factor = 0.125), Medi-
anFilter (window = 3), Threshold (adaptive, Otsu, default parameters), MedianFilter (window = 3), Watershed 

https://github.com/Anders-Lunde/Colocalization_Object_Counter
https://github.com/Anders-Lunde/Colocalization_Image_Creator
https://github.com/Anders-Lunde/Colocalization_Image_Creator
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(distance, footprint = 10, downsample = 4), MeasureObjectIntensity, ExportToSpreadsheet, ConvertObjectsTo-
Image, SaveImages. A custom ImageJ algorithm was used to extract object volumes. For each of the non-nuclei 
channels in the Example 3 images (retrograde dextran channel, Hoxb1 channel, Lbx1 channel), the measured 
raw median signal intensity from within the area of all segmented nuclei, together with object volume was used 
to determine presence of positive labeling. Minimum median intensity values were 0.04 (retrograde dextran), 
0.022 (Hoxb1), and 0.03 (Lbx1), whereas acceptable object volume was between 500 and 12,000 voxels.

Download and installation
The two ImageJ plugins require downloading and installing ImageJ (https​://image​j.nih.gov/ij/downl​oad.html), 
or the recommended and more feature-rich version of ImageJ2 called FIJI (https​://image​j.net/Fiji/Downl​oads). 
If FIJI is installed, the easiest and best way to install the plugins is to open FIJI and click Help > Update > Man-
age Update Sites > Add update site, and add https​://sites​.image​j.net/Objec​tColo​caliz​ation​Plugi​ns/ as the URL. 
Alternatively, manual installation can be done by downloading the most recent “Colocalization_Object_Counter.
jar” and “Colocalization_Image_Creator.jar” files from https​://sites​.image​j.net/Objec​tColo​caliz​ation​Plugi​ns/plugi​
ns/, and saving them to the “/Plugins/” folder of an ImageJ or FIJI installation. After installation, the plugins are 
available under the “Plugins” menu in ImageJ/FIJI.

The Excel macro file is automatically placed into the “/Counts/” folder where analyzed images are located 
by the Colocalization Object Counter plugin. Alternatively, the most recent version can be downloaded from 
https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Objec​t_Count​er. Running the macro requires installation of 
Microsoft Excel. It has been tested on Microsoft Windows with Excel 2010 and Excel 2016. Earlier versions or 
other operating systems might not be applicable.

The MATLAB scripts require a MATLAB installation. A full MATLAB license can be purchased from https​
://se.mathw​orks.com/produ​cts/matla​b.html. Alternatively, the latest version of the MATLAB runtime (enables 
running MATLAB scripts) can be freely downloaded from https​://se.mathw​orks.com/produ​cts/compi​ler/matla​
b-runti​me.html. The MATLAB scripts are automatically placed into the “/Counts/Export/” folder where analyzed 
images are located by the Colocalization Object Counter plugin. Alternatively, the most recent versions can be 
downloaded from https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Objec​t_Count​er. Execute the “Colocali-
zation_Visualization_3D_GUI.m” file to start a version with a graphical user interface (GUI), compatible with 
MATLAB version R2018a (9.4) or later. Execute the “Colocalization_Visualization_3D_non_GUI.m” file to start 
a version without a graphical user interface (GUI), compatible with MATLAB version R2013b (8.2) or later. In 
this version, visualization parameters can only be adjusted by editing the file in a text editor, as explained by 
comments in the file.

Data availability
Source code for the ImageJ plugins is available online on https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Objec​
t_Count​er and https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Image​_Creat​or. The MATLAB and Excel files 
with embedded source code is available online on https​://githu​b.com/Ander​s-Lunde​/Coloc​aliza​tion_Objec​t_
Count​er. The input image and the Colocalization Image Creator settings file used for Examples of Usage 1 and 2 
can be downloaded from the “Examples of Usage data” folder at https​://githu​b.com/Ander​s-Lunde​/ Colocaliza-
tion_Image_Creator (click the button labeled “Clone or download” and click “Download Zip”). The input images 
and settings file used in Examples of Usage 3 can be downloaded from https​://www.dropb​ox.com/sh/8ah00​8sgkf​
ffiwx​/AAB1i​hprbG​q2xxR​okqqb​Lra2a​?dl=0. Any other data is available on request.
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