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Congenital Hyperinsulinism: Current
Laboratory-Based Approaches to the
Genetic Diagnosis of a
Heterogeneous Disease
Thomas I. Hewat , Matthew B. Johnson and Sarah E. Flanagan*

Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom

Congenital hyperinsulinism is characterised by the inappropriate release of insulin during
hypoglycaemia. This potentially life-threatening disorder can occur in isolation, or present
as a feature of syndromic disease. Establishing the underlying aetiology of the
hyperinsulinism is critical for guiding medical management of this condition especially in
children with diazoxide-unresponsive hyperinsulinism where the underlying genetics
determines whether focal or diffuse pancreatic disease is present. Disease-causing
single nucleotide variants affecting over 30 genes are known to cause persistent
hyperinsulinism with mutations in the KATP channel genes (ABCC8 and KCNJ11) most
commonly identified in children with severe persistent disease. Defects in methylation,
changes in chromosome number, and large deletions and duplications disrupting multiple
genes are also well described in congenital hyperinsulinism, further highlighting the genetic
heterogeneity of this condition. Next-generation sequencing has revolutionised the
approach to genetic testing for congenital hyperinsulinism with targeted gene panels,
exome, and genome sequencing being highly sensitive methods for the analysis of
multiple disease genes in a single reaction. It should though be recognised that
limitations remain with next-generation sequencing with no single application able to
detect all reported forms of genetic variation. This is an important consideration for
hyperinsul inism genetic testing as comprehensive screening may require
multiple investigations.

Keywords: hyperinsulinism, hypoglycaemia, genetic screening, genetics, next generation sequencing - NGS
INTRODUCTION

Persistent congenital hyperinsulinism (HI) is characterised by the inappropriate secretion of insulin
during hypoglycaemia which continues beyond 3 months. A prompt diagnosis of HI and effective
management of glucose levels is critical to prevent adverse outcomes (1).

Persistent HI affects approximately 1 in 13,500 to 1 in 45,000 new-borns in non-consanguineous
populations (2–5). In some isolated communities where founder mutations have been reported, and
in populations with high rates of consanguinity, the incidence can increase to approximately 1 in
3,000 (6, 7). At least 36 different genetic causes of HI have been reported which follow recessive,
dominant, X-linked, or sporadic inheritance (Table 1). The underlying genetic aetiology will
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determine whether the HI presents as isolated pancreatic disease
or occurs as part of a rare syndrome.

Many laboratories provide genetic testing for congenital HI;
however, strategies vary between testing centres both in terms of
the genes that are screened and the types of variation that can be
detected (23–25). The different approaches to testing employed
by each laboratory could help explain the differences in the
percentage of mutation positive cases between cohorts which
range from 45% to 79% (3, 4, 26, 27). Furthermore, the large
number of genes which cause HI, the variable penetrance
observed both within and between families with the same
disease-causing variants, and the multiple modes of inheritance
reported can hinder genetic interpretation which will also impact
on the pick-up rates reported by each laboratory.

In this review, we describe the genetic causes of HI and
discuss the benefits and limitations of the different
methodological approaches currently used for genetic
screening of this condition.
GENETIC TYPES OF CONGENITAL
HYPERINSULINISM

Disease-causing variants in 10 genes have been reported to cause
isolated, persistent HI (Table 1). Loss-of-function variants in the
ABCC8 and KCNJ11 genes, which encode the two subunits of the
pancreatic beta-cell ATP-sensitive potassium (KATP) channel,
are most common and reported in 30-66% of cases referred for
genetic testing (3, 4, 26, 27). A wide range of clinical severity is
associated with KATP-HI with the functionally mildest variants
causing transient disease which responds well to diazoxide
treatment (the frontline drug for HI), whilst the most
functionally severe variants cause diazoxide-unresponsive HI
that persists throughout childhood (8, 28, 29). For individuals
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with diazoxide-unresponsive HI, pancreatic resection may be
required to prevent life-threatening hypoglycaemia. For these
infants, rapid genetic testing of the KATP channel genes is
critical as it will determine the histological subtype of disease.
Identifying biallelic (two disease-causing variants on opposite
alleles) or a single dominant KATP channel disease-causing
variant confirms diffuse pancreatic disease. In contrast finding
a paternally inherited, recessive KATP channel variant, predicts
focal disease with a sensitivity of 97% (27, 30). In these
individuals the variant is rendered homozygous by a second
somatic genetic event within the pancreas (uniparental
isodisomy) (31, 32). This can be genetically confirmed by
testing the pancreatic tissue following a lesionectomy, which
proves curative in most cases.

Clinical characteristics can help to predict some genetic forms
of isolated HI. For example, high ammonia concentrations are a
consistent feature of GLUD1-HI (12), a family history of
Maturity-Onset Diabetes of the Young (MODY) can predict
HNF4A or HNF1A- HI (16, 17), and exercise-induced HI
suggests a role for the beta-cell disallowed gene, SLC16A1 in
disease pathogenesis (21).

Over 28 different syndromes which feature HI have been
reported with the most common being Beckwith-Wiedemann
syndrome (BWS) and Kabuki syndrome (33) (Table 2). The
proportion of individuals with syndromic disease who present
with HI varies between genetic subgroups. In some conditions HI
is reported as a cardinal feature [e.g. Beckwith-Wiedemann
syndrome (66)] whilst for others it is reported as a rare feature
of the disease [e.g. Chromosome 9p deletions (40)]. Without
genetic testing it can be hard to accurately diagnose syndromic
disease, especially when HI is the presenting feature and
dysmorphisms develop after birth, or when the clinical features
are not specific to a genetic syndrome (67). For individuals with
syndromic HI a genetic diagnosis is important as it will inform
TABLE 1 | Known genetic causes of isolated congenital hyperinsulinism and current approaches to genetic testing for this condition. A tick (✓) or cross (X) denote
whether the form of genetic variation can be detected by the screening approach. None of the variants listed will be detected by methylation studies or array-CGH
analysis. SNVs are single nucleotide variants, Indels are insertion/deletion variants and CNVs are copy number variants (deletions and duplications).

Gene Zygosity Mutation type SangerSequencing1 Next Generation Sequencing Ref

Targeted Panel Exome Genome

ABCC8 Dominant or recessive SNVs/indels ✓ ✓ ✓2 ✓ (8–10)
Large CNVs X ✓ ✓ ✓

GCK Dominant SNVs/indels ✓ ✓ ✓ ✓ (11)
GLUD1 Dominant SNVs/indels ✓ ✓ ✓ ✓ (12)
HADH Recessive SNVs/indels ✓ ✓ ✓2 ✓ (13)

Large CNVs X ✓ ✓ ✓ (14)
HK1 Dominant SNVs/indels ✓ ✓ X ✓ (15)

Large CNVs X ✓ X ✓

HNF1A Dominant SNVs/indels ✓ ✓ ✓ ✓ (16)
HNF4A Dominant SNVs/indels ✓ ✓ ✓2 ✓ (17)

Large CNVs X ✓ ✓ ✓ (18)
INSR Dominant SNVs/indels ✓ ✓ ✓ ✓ (19)
KCNJ11 Dominant or recessive SNVs/indels ✓ ✓ ✓ ✓ (20)
SLC16A1 Dominant SNVs/indels ✓ ✓ X ✓ (21)
July 2022 | Volume 13 | Article 8
1Sanger sequencing will not detect heterozygous deletions of duplications that extend beyond the targeted region. Homozygous deletions that encompass a primer binding site may be
detected by a failure to amplify the sequence, but this will require verification by an independent method.
2Exome sequencing will not detect the deep intronic mutations or promoter mutations reported in these genes (22).
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TABLE 2 | Known genetic causes of syndromic disease in which congenital hyperinsulinism can be a rare or common feature and the current approaches to genetic testing for this condition. A tick (✓) or cross (X) denote
ylation patterns (e.g. Epic array analysis, Methylation-

Sequencing Array-
CGH

Methylation
studies

Ref

ome Genome

✓ ✓ X X (34)
✓ ✓ X X (35)
✓ ✓ X X (36)
✓ ✓ X X (37)

✓ ✓ X X (38)
✓ ✓ ✓ X (39)
✓ ✓ ✓ X (40)
X X X3 ✓ (41)

✓ ✓ X X (42)
✓ ✓ X X

✓ ✓ X X (43,
44)

✓ ✓ X X

✓ ✓ X X (45)

✓ ✓ X X (42)
✓ ✓ X X

✓ ✓ X X (46)
✓ ✓ X X (47)
✓ ✓ X X (48)
✓ ✓ X X

✓ ✓ X X (16)
✓ ✓ X X (49)
✓ ✓ X X (50)
✓ ✓ X X

✓ ✓ X X (51,
52)

✓ ✓ X X

✓ ✓ X X (53)
✓ ✓ X X (54)
✓5 ✓ X X (55–

57)
✓5 ✓ X X

✓ ✓ X X (58)
X ✓ X X (59)
✓ ✓ X X (60)
✓ ✓ ✓ X (61)

✓ ✓ X X (62)
✓ ✓ X X (63)
✓ ✓ ✓ X (64)
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Gene Zygosity Syndrome Mutation type SangerSequencing1 Next Generatio

TargetedPanel

ABCC8 Recessive Usher Syndrome Large CNVs2 x ✓

ADK Recessive ADK deficiency SNVs/indels ✓ ✓
ALG3 Recessive Congenital disorder of glycosylation SNVs/indels ✓ ✓

CACNA1D Dominant Primary aldosteronism, seizures & neurological
abnormalities

SNVs/indels ✓ ✓

CDKN1C Dominant Beckwith-Wiedemann SNVs/indels ✓ ✓
Chr5q35 deletion Dominant Sotos Large CNVs X ✓

Chr9p deletion Dominant Chr9p deletion Large CNVs X ✓

Chr11p15.5 loss of
methylation

Dominant Beckwith-Wiedemann Imprinting
abnormality

X X3

CREBBP Dominant Rubinstein-Taybi SNVs/indels ✓ ✓
Large CNVs X ✓

DIS3L2 Recessive Perlman SNVs/indels ✓ ✓

Large CNVs X ✓

EIF2S3 X-linked
recessive

MEHMO SNVs/indels ✓ ✓

EP300 Dominant Rubinstein-Taybi SNVs/indels ✓ ✓

Large CNVs X ✓

FAH Recessive Tyrosinaemia type I SNVs/indels ✓ ✓
FOXA2 Dominant Syndromic SNVs/indels ✓ ✓

GPC3 X-linked
recessive

Simpson-Golabi-Behmel SNVs/indels ✓ ✓
Large CNVs X ✓

HNF4A Dominant Fanconi renotubular syndrome 4 SNV ✓ ✓

HRAS Dominant Costello SNVs/indels ✓ ✓
KDM6A X-linked

dominant
Kabuki SNVs/indels ✓ ✓

Large CNVs X ✓

KMT2D Dominant Kabuki SNVs/indels ✓ ✓

Large CNVs X ✓

MAGEL2 Dominant4 Schaaf-Yang SNVs/indels ✓ ✓
MPI Recessive Congenital disorder of glycosylation SNVs/indels ✓ ✓

NSD1 Dominant Sotos SNVs/indels ✓ ✓

Large CNVs X ✓

PHOX2B Dominant Congenital central hypoventilation SNVs/indels ✓ ✓

PMM2 Recessive Polycystic Kidney Disease with HI SNVs/indels ✓ ✓
Congenital disorder of glycosylation SNVs/indels ✓ ✓

Trisomy 13 Dominant Patau Aneuploidy
(Trisomy)

X ✓

TRMT10A Recessive Syndromic SNVs/indels ✓ ✓
YARS Recessive Syndromic SNVs/indels ✓ ✓

45,X Dominant Turner Aneuploidy
(Monosomy)

X ✓
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on prognosis and allow for the effective monitoring of new
features of the disease.
SANGER SEQUENCING

Causative genes for HI were historically screened by Sanger
sequencing; an approach that allows a few hundred nucleotides
(typically a single exon) to be rapidly sequenced in a single
reaction. This is followed by semi-automated analysis by
alignment and inspection of the DNA sequence. These
constraints force laboratories to screen genes sequentially in
descending order of prior probability based on clinical
characteristics and how commonly disease-causing variants in
the gene are identified. Whilst this phenotype-driven approach
works well in many scenarios [for example in the rapid screening
of KATP channel genes in individuals with diazoxide-
unresponsive disease (68, 69)], the reliance of clinical features
to guide testing can delay a genetic diagnosis for individuals with
an atypical presentation. This is an important consideration for
HI, as phenotypic variability is described within most genetic
subgroups, for example the presence of normal ammonia levels
in some children with GLUD1-HI (70, 71). Using the clinical
characteristics to guide genetic testing in syndromic HI should
also be applied with caution as additional features may develop
after the diagnosis of HI (72).

A further major limitation of Sanger sequencing is its inability
to detect heterozygous deletions and duplications that extend
beyond the targeted region, changes in the number of
chromosomes (aneuploidies), and defects in methylation, all of
which have been reported to cause HI (Table 1).

Despite its limitations, Sanger sequencing remains a highly
sensitive test for the rapid detection of single-nucleotide variants
and small insertion/deletion variants (indels) in both the coding
and non-coding regions of the genome. It can also detect mosaic
variants (i.e. a genetic variant that is introduced during cell
division that does not affect every cell within the body) that are
present in the sampled tissue at a level of >8% (73). This is
important, as disease-causing mosaic variants have been
reported in the known HI genes including KMT2D, KDM6A,
NSD1, and CREBBP (74–76).
NEXT-GENERATION SEQUENCING

Since 2005, next-generation sequencing has provided a method
to allow for the simultaneous analysis of multiple genes in a
single assay (77). This technology revolutionised diagnostic
testing for genetically heterogeneous disorders such as HI by
allowing for the parallel screening of all known disease-causing
genes/genomic regions in a single assay at a much lower cost
than Sanger sequencing. This led to a paradigm shift for
conditions like syndromic HI where genetic testing can
precede the development of the full clinical spectrum of
disease, serving to make, rather than confirm, the clinical
diagnosis (67).
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Targeted Gene Panel Analysis by Next-
Generation Sequencing
A targeted gene panel typically includes all known genetic causes
of a disease and DNA samples are enriched for DNA in these loci
prior to next-generation sequencing. For most targeted gene
panels, the average coverage achieved often reaches many
hundreds of reads over each base (78). This high-depth
sequencing data can be exploited to detect changes in copy
number over targeted regions and allows for the accurate
detection of mosaic variants occurring at a level of >1% (73).
Recent studies have shown that off-target reads generated during
the sequencing process can be analysed to assess read-depth
across the entire genome allowing for the detection of large
deletions and duplications outside of targeted regions (79). These
off-target reads have been used successfully to detect disease-
causing deletions on chromosome 9p in individuals with HI (40).
The potential to identify large deletions and duplications from
off-target reads will though depend on the methodology used for
the targeted next-generation sequencing; amplicon-based
approaches that sequence PCR products will not generate the
off-target sequencing data.

The major limitation of targeted next-generation sequencing
is that it only allows screening of a predetermined list of genomic
regions, and this list often differs between laboratories. For
genetically heterogenous conditions such as HI, it is therefore
important that clinicians who order panel testing are aware of
which genes are included on the targeted panels and whether
copy number analysis has been performed as this requires a
separate bioinformatic analysis.

Exome and Genome Sequencing
The introduction of next-generation sequencing has enabled the
rapid sequencing of the coding regions of all genes (the exome)
or the entire human genome (coding and non-coding regions) at
much lower cost than previous methods. The approach to the
interpretation of exome and genome sequencing data will differ
between centres with some analysing variants called within a pre-
defined set of known disease-causing genes whilst other
laboratories will perform a gene-agnostic analysis. The latter
approach has the advantage of being able to identify new genes
for HI, with recent successes including the discovery of the
syndromic HI genes CACNA1D, PMM2, FOXA2, TRMT10A,
EIF2S3, YARS, and KMT2D by exome sequencing and more
recently the finding of regulatory variants deep within intron 2 of
the beta-cell disallowed gene, HK1, by genome sequencing in
individuals with isolated hyperinsulinism (15, 37, 45, 47, 51, 59,
62, 63). The ability of a laboratory to utilise next-generation
sequencing data for genetic discovery will largely depend on their
ability to perform robust genetic and functional studies to assess
novel variation.

Exome sequencing targets the ~2% of the genome which
codes for protein, making it a cheaper alternative to genome
sequencing. This, together with the knowledge that 85% of
known disease-causing mutations reside within coding regions,
has led to exome sequencing being widely adopted within the
clinical setting (80). For example, in the UK, rapid exome
Frontiers in Endocrinology | www.frontiersin.org 5
sequencing for acutely unwell neonates is available through the
country’s National Health Service with 38% of patients tested
receiving a rapid diagnosis (81). Unlike targeted next-generation
sequencing, which screens a predetermined list of genes, exome
sequencing provides an extremely effective method to
comprehensively analyse the coding regions and intron/exon
boundaries of all known HI genes and to assess copy number
status. The major limitation of the approach is that it will not
detect non-coding mutations such as the deep intronic mutations
reported in ABCC8, HADH and HK1 or promoter variants in
genes such as HNF4A, PMM2, and SLC16A1 (15, 21, 22, 59, 82).

Genome sequencing represents the gold standard approach to
genetic testing given its ability to detect the largest range of
genetic variation. As well as providing data on coding and non-
coding regions, genome sequencing can be used to search for
structural changes, copy number variants (large deletions,
duplications, and aneuploidies) and mosaic variants although
the lower read depth achieved makes this a less sensitive
approach for detecting low-level mosaic variants compared to
targeted next-generation sequencing.

The costs associated with sequencing the entire genome and
the large amount of data produced (approximately 200GB of
processed data per sample versus 11GB per sample for exome
sequencing) had prohibited the adoption of routine genome
sequencing. Until recently it had been largely reserved for
genetic screening when a disease-causing variant had not been
detected by targeted next-generation sequencing or exome
sequencing. This approach successful resulted in an increase in
diagnostic yield for many rare genetic diseases (83, 84).

Improvements in sequencing capabilities leading to reduced
costs are though now leading to the emergence of genome
sequencing as a first line diagnostic test in specific healthcare
settings, for example in the screening of some rare developmental
disorders in the UK National Health Service (85). While genome
sequencing is not the current approach for investigating the
genetic cause of HI in many centres, it seems likely that this will
become the first line test in the coming years.
NON SEQUENCING BASED METHODS TO
DETECT COPY NUMBER VARIANTS AND
METHYLATION DEFECTS

Aneuploidies and large deletions and duplications (copy number
variants) are a rare but important cause of HI (Tables 1 and 2).
Unlike Sanger sequencing, next-generation sequencing can
detect these forms of genetic variation, but many laboratories
will not routinely screen for them as a separate analysis pipeline
is required. This is an important consideration when disease-
causing variants are not detected in children with HI and
particularly for those where there are additional syndromic
features (Table 2).

Multiplex-ligation dependent probe amplification (MLPA)
can detect disease-causing deletions and duplications in
individuals with HI. This approach is commonly used to
screen for deletions in the ABCC8 gene and can detect
July 2022 | Volume 13 | Article 873254
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mosaicism (9). The usefulness of MLPA is limited by its ability to
analyse a maximum of 60 different small genomic regions
(generally single exons) in a single assay thus preventing the
simultaneous analysis of all HI genes in which copy number
changes have been reported.

Microarray-based comparative genomic hybridization (array
CGH) is a well-established method that is used to detect large
deletions/duplications and aneuploidies in individuals with HI.
Unlike MLPA, array GCH is not able to detect low level
mosaicism (<30% mosaicism for deletions and duplications
and <10% for aneuploidies). The approach does however allow
for the analysis of copy number variation across a greater
percentage of the genome although the targeted region will
vary across arrays and will not always target the regions
known to cause HI with enough precision.

Current diagnostic sequencing approaches are also unable to
detect changes in DNA methylation. Individuals with clinical
suspicion of an imprinting disorder such as Beckwith-
Wiedemann syndrome may therefore require additional
methylation studies, such as methylation-specific MLPA (MS-
MLPA) (86) or Infinium Methylation EPIC array analysis (87).
Emerging technologies, such as Oxford Nanopore sequencing,
may allow for the simultaneous detection of sequence variation
and DNA methylation status but have not been widely used
clinically. This technology does offer the hope of a single
comprehensive test for genetically heterogeneous disorders like
HI although to date it has mainly been used for genes that are
hard to sequence by other methodologies (88–91).
FURTHER CONSIDERATIONS AND
CONCLUDING REMARKS

Diagnostic testing for HI is routinely performed on DNA
extracted from peripheral blood leukocytes, saliva, or buccal
samples. For conditions such as HI it is important to consider
the source of DNA being screened, given that somatic mutations
which are only present in the pancreatic tissue have been
reported (27, 92). Therefore, when a mutation is not identified
in the blood, and a pancreatectomy has been performed, re-
testing the known HI genes to search for a variant present only
within the pancreatic DNA should be considered.
Frontiers in Endocrinology | www.frontiersin.org 6
In conclusion, several different genetic approaches exist for
routine diagnostic screening in HI with genome sequencing
representing the gold standard approach to testing. For
heal thcare profess ionals managing this genet ical ly
heterogenous disorder it is important that the limitations of
each approach including genome sequencing, are recognised as
no single test can detect all known types of genetic variation
reported in HI. This is particularly important when managing
syndromic disease, where copy number variants or defects in
methylation are common. Despite there being a broad range of
genetic screening approaches that are available for HI, in reality
the testing strategy is most likely to be influenced by the
capabilities of the local genetic diagnostic laboratory,
affordability and importantly how quickly the tests can be
performed and results reported back. This is especially critical
for children with diazoxide-unresponsive disease as identifying a
paternally inherited KATP disease-causing variant suggests focal
pancreatic disease which can be cured by lesionectomy.
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