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SUMMARY

As renewable electricity becomes cost competitive with fossil fuel energy sour-
ces and environmental concerns increase, the transition to electrified chemical
and fuel synthesis pathways becomes increasingly desirable. However, electro-
chemical systems have traditionally taken many decades to reach commercial
scales. Difficulty in scaling up electrochemical synthesis processes comes primar-
ily from difficulty in decoupling and controlling simultaneously the effects of
intrinsic kinetics and charge, heat, and mass transport within electrochemical re-
actors. Tackling this issue efficiently requires a shift in research from an approach
based on small datasets, to one where digitalization enables rapid collection and
interpretation of large, well-parameterized datasets, using artificial intelligence
(AI) and multi-scale modeling. In this perspective, we present an emerging
research approach that is inspired by smart manufacturing (SM), to accelerate
research, development, and scale-up of electrified chemical manufacturing pro-
cesses. The value of this approach is demonstrated by its application toward
the development of CO2 electrolyzers.

INTRODUCTION

A growing coalition of countries, cities, businesses, and other institutions are pledging to achieve net-zero

emissions by 2050 or earlier. Meeting this ambitious goal will require cutting greenhouse gas emissions as

close to zero as possible, while also implementing carbon offset technologies to capture persistent emis-

sions from the atmosphere to close the carbon cycle. A major factor enabling this shift to a carbon-neutral

economy is the emergence of cost-effective renewable energy sources such as photovoltaics and wind tur-

bines that harvest renewable energy in the form of electricity. The energy landscape in 2050 is expected to

be dominated by renewable energy technologies. To enable the transition to an electric-based energy

landscape, Power-to-X and X-to-Power technologies will be needed to decouple power from the electricity

sector for use in other sectors of the economy: such as transportation fuels, industrial chemical production,

grid-scale energy storage, and eventually carbon capture (Figure 1A). The development and scale-up of

Power-to-X and X-to-Power technologies is viewed as a promising solution tomeet strong decarbonization

targets while enabling the high penetration of renewables into the different sectors of the economy.1

Great progress has been made in the electrification of residential and commercial heating, as well as the

electrification of industrial furnaces and the use of green hydrogen for metal refining.2–6 However, progress

in the scale-up of emerging technologies for the electrification and decarbonization of hard-to-abate sec-

tors, such as the production of fuels and chemicals, has been slow due to the inherent complexity of these

systems.7–12 Electrochemical systems involve many simultaneously interacting phenomena drawn from

various aspects of physics and chemistry, and require a disciplined learning of the multiple variables

affecting the process.13 Understanding the underlying effects of thermodynamics, reaction kinetics, and

transport phenomena occurring inside an electrochemical system, and how they interact across different

length and time scales, is one of the greatest engineering challenges inhibiting the Research, Develop-

ment, and Deployment (RD&D) of industrial-scale electrified chemical manufacturing systems. Current

research methods attempt to extrapolate an understanding of these complex phenomena from small,
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Figure 1. Application of AI and ML to electrolyzer Scale-up can enable a net-zero carbon future

(A) Vision of a net-zero carbon future.

(B) AI and ML for scale-up of CO2 electrolyzers.
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simple datasets.14–17 This approach has so far prevented a holistic understanding of the system. Instead,

large datasets that are commensurate to the complexity of the system should be used. This will require

the development of new techniques to enable efficient handling of large datasets, the extraction of useful

relationships, and the development of descriptive multi-scale models. Successful application of these tech-

niques in research will be crucial in accelerating the scale-up of electrosynthesis technologies from bench-

scale reactors operating at the watt scale to industrially relevant systems operating on the terawatt scale in

a timely manner (Figure 1B).

In the following sections, we will examine the research challenges that have thus far prevented the scale-up

of electrochemical reactors for CO2 reduction, and discuss why traditional research methodology may

prove to be unsuccessful in providing the understanding that is necessary to scale these systems. Having

identified the challenges of using traditional researchmethodology, we then discuss how the inspiration for

a more efficient approach can be taken from smart manufacturing (SM) methods that have been applied

successfully to complex industrial processes. The framework of the SM-inspired research methodology

is presented, followed by detailed examples of how it has been applied in efforts toward the scale-up of

electrochemical CO2 reduction devices. In this perspective, we highlight how techniques such as automa-

tion, connectivity, and advanced modeling methods can be seamlessly integrated with experimental pro-

cesses to accelerate the scale-up of electrochemical systems.

The discussion of challenges toward the scale-up of electrochemical reactors for CO2 reduction presented

in this perspective is not exhaustive. Learning curves for water electrolyzer technologies have shown that

high cost across the entire value chain have limited their rapid deployment. Electricity is the dominant

cost for on-site production of green hydrogen, but the journey to lower renewable costs is already under-

way. Efforts are shifting to the second largest cost for green hydrogen: electrolysers. Green hydrogen pro-

duction as well as electrolyzer manufacturing benefit from economies of scale. However, the lack of infra-

structure and a skilled workforce to sustain gigawatt (GW) scale manufacturing have limited the current

electrolyzer manufacturing capacity to under 8 GW/year.18 In comparison, solar modulesmanufacturing ca-

pacity in 2021 was already 240 GW/year. The same challenges in the scale-up of manufacturing capacity are

expected to limit CO2 electrolyzer manufacturing, even if all the fundamental research challenges pre-

sented in this perspective were suddenly resolved.
Challenges in existing approach to RD&D of CO2 electrolyzers

The production of fuels and chemicals from carbon dioxide, water, and renewable electricity in an electro-

chemical reactor has been proposed as a viable approach to the reduction of CO2 emissions associated

with the chemical manufacturing sector.19 Most importantly, when paired with carbon capture technolo-

gies and renewable energy sources, electrochemical CO2 reduction offers the unique possibility of closing
2 iScience 26, 106966, June 16, 2023
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the carbon cycle by recycling carbon from the atmosphere as feedstock that supports chemical

manufacturing industries.20 Industrial scale adoption of CO2 electrolysis would enable many existing pro-

cesses based on carbon feedstocks to continue operation while minimizing the need for new chemical pro-

duction and distribution infrastructures. Most notable examples include production of fuels for transporta-

tion, base chemicals for production of plastics, and grid-scale liquid-fuel energy storage for intermittent

renewable energy sources. As such, interest in developing this technology has been increasing steadily

for the last decade. While high current densities as high as 3.37 A cm�2 have been reported,13 durability

remains low with current density decreasing quickly after tens of hours, and when the scale of the system

is increased. To achieve efficient and low-cost production of chemicals at large scales, CO2 electrolysis

technologies will need further improvements in durability, efficiency, conversion, product selectivity, and

overall system design as well as the development of efficient direct air capture technologies to provide car-

bon feedstocks. One of the key roadblocks to understanding how to scale-up these systems is the devel-

opment of a practical kinetics-transport model of electrochemical CO2 reduction. The development of

such a model has thus far eluded the scientific community due to the convolution of different interactions

within CO2 electrolyzer systems.

Many complications preventing these improvements arise from the chemistry itself. While various transition

metals have been shown to effectively reduce CO2 to CO or formate, Cu is the only known single-element

metal to enable conversion to C2+ products such as olefins and liquid alcohols at an appreciable rate.

Because Cu offers the potential for one-step production of valuable precursors such as ethylene, ethanol,

and propanol, Cu-based catalysts have been the main material of interest for electrochemical CO2 reduc-

tion. A total of 16 different chemicals have been identified as products, with CO and hydrocarbons (CH4

and C2H4) observed in the gas phase, and oxygenates such as formate, ethanol, n-propanol, acetate,

and aldehydes observed in the liquid phase.21 CO is the key intermediate formed via two electron transfer

steps and can be further reduced to CH4, methanol, and C2+ products. However, the kinetics associated

with each intermediate step and the species involved in the reactions are difficult to elucidate conclusively,

and various mechanistic pathways have been proposed without collective agreement on a detailed mech-

anism within the research community.22

The existence of competing reactions further complicates understanding the electrochemical CO2 reduc-

tion mechanism. Hydrogen evolution reaction (HER) is inherent in the nature of aqueous electrochemistry,

as proton sources are required to reduce CO2. In aqueous electrolytes, the proton sources can be hydro-

nium ions, molecular water, and buffers that relay protons to the surface of the electrode. Formate is

another product pathway that proceeds in parallel to the CO production pathway. The production of

hydrogen and formate is affected by the CO2 and bicarbonate buffer chemistry, in which bicarbonate

can act as a proton donor and buffer in the bulk electrolyte.23 This homogeneous buffering chemistry

makes mass transport characteristics nonlinear for key reaction species including CO2, bicarbonate, and

hydroxide, creating an additional layer of complexity in describing the electrochemical environment

near the electrode surface. Even the formation of the simplest two electron transfer products (H2, formate,

and CO) consists of at least three elementary steps (i.e., adsorption, two-electron-proton transfer steps,

and desorption) which cannot be readily described by the Butler-Volmer equation, especially when con-

centrations of reactive species in the vicinity of the reaction front are unknown.

While the products of electrochemical CO2 reduction were first analyzed completely by Hori and co-

workers,24 this process did not gain mainstream attention until the last decade. In the time since Hori’s re-

sults were published, the majority of research has been performed using an H-cell configuration with low

current density. These experiments were conducted with the intention of investigating the fundamental re-

lationships governing electrochemical CO2 reduction. Early reports suggested that mass transport signif-

icantly affects the selectivity and rates of CO2 reduction.
25,26 To overcome mass transfer limitations, flow

cell-type reactors and high-pressure CO2 electrolyzers were investigated early on. Systems showing high

current density near 1 A cm�2 were demonstrated as early as the 1990s.26 Flow cells, in particular, have

consistently shown current density significantly higher than other cell types due to the improved mass

transport of CO2 to the catalyst near the three-phase boundary. These systems are better used for bench-

marking catalysts in the sense that their activity can be studied under reduced mass transport limitations.

However, scaling these reactor types remains difficult due to the lack of fundamental understanding of the

underlying relationships governing CO2 reduction rates and selectivity as the conversion of CO2 increases

along the flow path. One example that clearly demonstrates this issue is circled in the top right corner of
iScience 26, 106966, June 16, 2023 3



Figure 2. Data highlighting the difficulty in CO2 electrolyzer scale-up and the significance of mass transport

(A) Current densities for select experimental electrochemical CO2 reduction studies since Hori’s initial reports.

(B) Cathode geometric areas for the same studies shown in (A). Cell types listed in (A) and (B) are primarily categorized as

identified in their respective publication. However, H-cell and compression cell classification is not entirely clear, so the

following criteria were considered for classification. H-cell is a two or three compartment cell where high electrode area to

electrolyte volume ratio is not a priority, and where the cross section area of the membrane separating cathode and

anode is small relative to the cathode compartment cross section area. The compression cell is a small form factor reactor

targeting high electrode area to electrolyte volume ratio, where the components of the cell are sandwiched together with

compressive force to provide gas and liquid-tight connections. References for H-cell,24,28–37 compression cell,21,38–40 high

pressure,26,41 polymer electrolyte membrane (PEM) type flow cell,13,42–49 microfluidic flow cell,50–52 solid oxide

electrolyzer (SOEC) flow cell,53–55 differential electrochemical mass spectrometry (DEMS) cell,56,57 and the rotating

cylinder electrode (RCE) reactor.27

(C) A ternary plot showing that the data collected in common reactors used for electrochemical CO2 reduction falls in the

region representative of stagnant flow conditions inside the RCE, suggesting that mass transport is poorly defined in

these reactors.23,58–60
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Figure 2A. Three data points show the current densities obtained for three flow cells with the same catalyst

when the geometric surface area of the electrode is increased from 1 to 10 and then 100 cm2.13 The 1 cm2

electrode reaches current densities of 3.37 A cm�2. However, when the system is scaled to an electrode

area of 10 and 100 cm2, the current densities quickly decrease to below 1 A cm�2. Research in electrochem-

ical CO2 reduction is still very much in the fundamental research stage, as demonstrated by the fact that

nearly all research is still conducted with electrode surface areas of less than 10 cm2 (Figure 2B) and that

attempts of scaling these systems typically resulted in significant performance losses. To move beyond

this stage, the development of selective and efficient electrochemical processes will require advances in

both catalyst and device/process design.22,27 At large, the research community has generally focused on

the design of catalysts or devices separately, and rarely on understanding the coupling of both.
4 iScience 26, 106966, June 16, 2023



Figure 3. Comparing the traditional research workflow to smart manufacturing (SM)

(A) A visual representation of how research is traditionally conducted, showing how control over the electrochemical CO2

reduction reaction is attempted based on results from small datasets and modeling is often conducted separate from

data interpretation.

(B) A visual representation of the SM approach, showing how connectivity of information from all stages of the RD&D

process aid in providing the knowledge necessary to develop the control of CO2 electrolysis necessary to scale-up.
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The widespread adoption of compression-type H-cell reactors highlights this trend. The introduction of the

compression cell21 ushered in a flood of fundamental research due to the ease of experimentation and

improvement in the sensitivity for detecting C2+ liquid products. However, this reactor is limited in the

fact that it does not provide control over mass transport. Because of this, the electrochemical conditions

near the electrode surface are poorly defined. The implications of this limitation are apparent when data

generated in this electrochemical reactor is compared with results from a rotating cylinder electrode

(RCE) reactor, in which mass transport can be controlled. Figure 2C shows a ternary plot for product selec-

tivity to CO, C1, and C2+ products denoted as SCO, SC1, and SC2+, respectively. These selectivities relate to

the fractions of CO2 molecules consumed in producing the three groups of products (data extracted from

Jang et al.27). The purple and the pink curves show data collected with the RCE cell using 0.2 and 0.1 M

potassium bicarbonate electrolytes, respectively, at a constant potential of �1.41 V vs. the standard

hydrogen electrode (SHE) while varying the electrode rotation speed. As the rotation speed decreases

from 800 to 100 rpm, the mass transport coefficient of all species to and from the electrode surface de-

creases. This decrease in the mass transport coefficient also applies to the intermediate CO, slowing

down the removal of CO generated on the surface of the electrode and increasing the residence time of

CO (tCO). The increase in tCO increases the probability of further reducing CO to C1 or C2+ products,

and reduces the probability of the intermediate CO being released as a final product.27 This trend in the

selectivity shift is clearly shown for data obtained in the RCE cell. On the other hand, in electrochemical

reactors with poor mass transport characteristics, tCO is likely very long, although this cannot be well-

defined, resulting in a high conversion of CO to its further reduced products (XCO). The selectivity curves

from these reactors populate only the bottom-right corner of the ternary diagram (Figure 2C) under electric

potentials similar to experiments from the RCE cell, in the range of�1.38 to�1.44 V vs. SHE. This brings up

an important realization that what we measure experimentally is reactor kinetics, not reaction kinetics.

Thus, the use of Tafel analysis to study reaction mechanism in CO2 reduction experiments on copper elec-

trodes, for example, does not have any scientific foundation. Gregoire and co-workers have also recently

shown how hydrodynamics in the electrochemical cell determine the apparent Tafel slope measured dur-

ing electrochemical CO2 reduction on a copper electrode, further demonstrating that mass transport is on

equal footing with catalyst active sites in determining reaction mechanisms and the ensuing product dis-

tribution.61 Thus, the importance of collecting data across a large operational parameter space under well-

controlled transport characteristics in electrocatalytic reactors cannot be understated, as this is the only

manner in which we will be able to extract intrinsic kinetics from reactor kinetics.

In addition to the effect that reactor selection has on the quality of data collected in experimental CO2 elec-

trolyzers, it becomes apparent that the traditional research approach taken to the study of CO2 electrolyz-

ers may be inadequate to fully parameterize the kinetics for electrochemical CO2 reduction reactions. For

comparison, a generalization of the traditional approach is presented in Figure 3A. In this approach, data is

collected from an experimental reactor, using various sensors, and insights are extracted from relatively
iScience 26, 106966, June 16, 2023 5
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small datasets. However, these insights often do not translate readily to larger-scale systems, as is

becoming evident in the CO2 electrolyzer research community. In CO2 electrolysis, this is primarily because

the results collected in experimental systems are specific to the reactor properties rather than reaction

properties. This is demonstrated by the fact that identical catalysts will often show differing performances

in different experimental reactors. Frequently, density functional theory (DFT) or microkinetic modeling is

used to explain the results or to try to better understand what is happening at time and length scales that

are inaccessible to experiments in the real system. Multi-scale modeling can be a powerful tool for under-

standing what is happening in a reactor. However, accurate, high-fidelity experimental data and an excel-

lent understanding of the experimental conditions in the reactor are required to fully parameterize these

multi-scale models. In many instances, there is a disconnect between modeling and experimental groups

that prevents this from happening, leading to models that simply fit the data. As shown here, difficulty in

collecting high quality data and the typical method of conducting research, make it difficult to conclusively

understand the fundamental relationships governing the performance of CO2 electrolyzers. Accelerating

the scale-up of these systems requires an adjustment to the current research approach.
Smart manufacturing background and context for applications in scale-up research

SM refers to a holistic approach to process optimization, where advanced sensing techniques are paired with

robust data handling and modeling strategies to provide rationally optimized system operations, improved

safety and security, and reduced waste.62–65 Application of SM is built on the idea that optimal control can be

achieved through the integration of advanced operations technologies (OT) and information technologies (IT)

to develop streamlined data acquisition, handling, and interpretation processes that interconnect the individual

parts of a process.62,66–69 While implementation of SM can look very different between two systems,70 the

approach can be generalized by Figure 3B. Here we see that optimal control with SM begins with sensing

that allows for the collection of large datasets. Sensors for a given process should be chosen to provide useful

and reliable data that canbe collected in an automated fashion. Sensors applied in thisway enable the collection

of large datasets for modeling and frequent input updates for real-time system control.65 For example, a ther-

mocouple senses the temperature and produces a voltage signal that is recorded as data. However, for these

data to be useful, they need to be contextualized. By tying the data to the sensor type and the characteristics of

the process, information can be extracted to improve control of the system. An example of this would be taking

the data from the thermocouple and contextualizing it with the knowledge that the thermocouple is located in a

liquid-filled vessel, and that a certain voltage signal correlates with a specific temperature. By contextualizing

these data with knowledge of the process and the sensor, we gain the information: in this case, the temperature

of the fluid in the vessel. Next, analytics provide insights to further optimize control of the process. Using the

thermocouple example again, we could analyze the change in temperature over a period of time to gain insight

about the trajectory of the fluid temperature with time. Fluid temperature could also be tied to other sensor

types, such as pressure sensors, to further evaluate the performance or safety of the overall system using a com-

bination of hundreds or thousands of sensors across a manufacturing process. With the immense dataset pro-

vided by these sensors, modeling can provide an added degree of intelligence by building on the knowledge

from past data to predict the system’s future behavior. Models can also provide information about the current

state of the system that cannot be sensed directly. Examples of how advancedmodeling can be applied indus-

trially include the prediction of catalyst lifetime or equipment failure,71 adjusting for external factors such as

changes in real-time feedstock, product and utility pricing,72 or setting optimized system control set-points

based on predicted performance.73–75 Benefits of implementing SM in the industry have been demonstrated

for awide rangeof applications,76 and industrial adoption hasbeen successful for improvingefficiency and safety

in large scale industrial applications.77 It stands to reason that similar benefits might be gained by applying the

same principles and methodologies to RD&D of emerging electrosynthesis technologies.

Additionally, using SM techniques at the research stage can help enable SM implementation when the technol-

ogy is scaled-up.78 Many chemical manufacturing processes utilize aging infrastructure, and were not designed

with SM in mind. Even though the technology and methods have been available for decades, the industry has

been surprisingly slow to adopt SM regardless of the proven benefits. Hesitancy to adopt SM remains, primarily,

due to the technical debt that must be repaid before legacy systems can be converted to an SM infrastruc-

ture.79,80 In the context of this discussion, technical debt can be separated into two main components, intellec-

tual and physical, that describe the costs associated with upgrading existing systems to SM systems. First, the

intellectual component of technical debt comes from a lack of trained individuals who are educated on SM

methods and know how to implement and maintain them in the industry. Time, energy, and financial backing

are required to train personnel in SM practices, and educational institutions along with industry partners must
6 iScience 26, 106966, June 16, 2023



Figure 4. The smart manufacturing (SM) inspired framework for research

A framework for the application of the SM approach to accelerate scale-up and development of CO2 electrolyzers.

Adapted,82 Copyright 2022, with permission from Elsevier.
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develop programs to supply this workforce.81 As such, technical debt is not only associatedwith the cost of hiring

a technically skilled labor force, but also a shift in the education system to supply skilled individuals.77 Second,

the physical component of technical debt includes the hardware and software upgrades necessary to implement

SM techniques. Thismay include costs associatedwith adding sensors and the infrastructure to collect data from

them or purchasing software to process data and the equipment to run the software. In many cases, the cost

associated with implementing SM may simply be too high to justify retrofitting an existing process, especially

for smaller businesses that lack the necessary financial backing. However, the physical component of technical

debt can be eliminated for new processes if they are designed from the start with SM in mind. This provides an

exciting opportunity for the development of electrochemical manufacturing technologies that will utilize SM

industrially. Not only can the implementation of SM techniques in research of advanced reactor technologies

accelerate the experimental process by streamlining data acquisition and interpretation, but implementation

at early stages of development and scale-up can enable systems to be designed from the start to utilize SM

once commercialized.
Framework for a smart manufacturing inspired approach to RD&D

As an example of how the SM approach can be applied in research, the framework developed for electro-

chemical CO2 reduction research is provided in Figure 4.82 The individual steps defined in Figure 3B are

shown at the top of the framework in Figure 4 for direct comparison, while the parts of the process involved

in each step are defined below. This framework can be separated into four distinct phases that are high-

lighted by the background color.

Blue indicates Phase I where the experimental reactor is adapted to automate data collection and improve

connectivity to enhance experimental throughput, data accessibility, and data collection. This requires the
iScience 26, 106966, June 16, 2023 7
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selection of a reactor that can provide high-fidelity data suitable for modeling. That is, a reactor with well-

defined transport characteristics. Phase II is highlighted in orange, where machine learning (ML) and arti-

ficial intelligence (AI) are utilized along with dimensional analysis to accelerate data processing and enable

the extraction of underlying relationships between inputs and outputs. These relationships are used to

design real-time control schemes and build predictive models for the reactor. Real-time control of the

reactor is used to validate the extracted relationships, as control will not be possible without an adequate

understanding of the relationships governing the reactor performance. Green highlights Phase III, where

multi-scale modeling techniques utilize first principle relationships and the relationships extracted in Phase

II to build predictive models of the reactor. This step develops modeling methods to capture the local phe-

nomena occurring at the gas/liquid, liquid/solid, and gas/liquid/solid interfaces that will be used in param-

eterizing improved reactor designs.83 Finally, red highlights the last step, where insights gained from the

aforementioned modeling methods are utilized to guide the rational design of prototype reactors. These

designs can then be tested in silico using the methods developed in Phase III before actual construction,

reducing cost and time requirements. This is an iterative process that can then be applied to the prototype

reactor at each scale and used to accelerate further scale-up tomore industrially relevant systems over mul-

tiple iterations. Multi-scalemodels are also key for the workforce training of electrochemical engineers. The

following sections will discuss in detail how this framework has accelerated progress toward the goal of

enabling the scale-up of electrochemical CO2 reduction technologies.
Lab-scale reactor selection for CO2 reduction research

The first step in applying the SM framework to RD&D of CO2 electrolyzers is the identification of process-

relevant variables. Significant variables that are common to most fuel and chemical manufacturing pro-

cesses include pressures, temperatures, flow rates, and composition. However, electrochemical systems

require additional variables to be fully characterized, including electric potential, current, and impedance.

Other factors that must be considered in the design of larger-scale electrochemical reactors include the

effects of chemical and electrical interfaces, charge, heat and species transport, the presence of multiphase

interfaces, and the composition of the electrolyte.84 While the complexity of these systems makes them

ideally suited for utilization of an SM inspired approach, application of the framework requires a lab-scale

system designed to allow individual manipulation of each relevant process variable and efficient collection

of large datasets.

Several experimental electrochemical reactors exist for investigating electrocatalysis, but many of these

systems have limitations that make them less than ideal for investigating CO2 electrolysis. The compression

cell was introduced to improve product detection of liquid products by increasing the electrode-to-elec-

trolyte ratio compared to traditional H-cell reactors. However, the compression cell lacks control over hy-

drodynamics and mass transport conditions. Flow cells are utilized to overcomemass transport limitations,

but are too complex to extract a fundamental understanding of the underlying phenomena. Rotating disk

electrode (RDE) reactors have been widely adopted for the investigation of electrocatalysis because of the

well-understood mass transport effects provided by the Levich equation. However, RDE electrodes are

restricted to diameters of less than 5 mm and laminar flow conditions. In this case, the small electrode

area prevents liquid product quantification.

A promising alternative reactor type that provides control over mass transport while alsomaintaining a high

electrode area to electrolyte volume ratio is the gastight rotating cylinder electrode (RCE) reactor. While

the current system is limited to a small range of temperatures and pressure, it is uniquely suited to

decouple transport effects from intrinsic electrode kinetics. The main advantages provided by the RCE

can be attributed to the high degree of symmetry. Symmetry ensures that all points on the electrode sur-

face are exposed to the same hydrodynamics, resulting in a uniform and controllable mass and heat trans-

port across the entire surface. This is especially true for the hydrodynamics in the electrocatalytically active

region of the reactor, within a few micrometers of the electrode surface. Furthermore, the mass and heat

transport can be controlled by simply adjusting the cylinder rotation speed. Changing the rotation speed

increases the velocity gradient and reduces the boundary layer thickness, enhancing mass and heat trans-

port to and from the electrode surface.83 By controlling the rotation speed and evaluating the change in

rates and selectivity, the timescales of the intrinsic kinetics and transport processes can be decoupled

from each other. This allows the determination of the intrinsic reaction kinetics rather than the reactor

kinetics that have been measured in other reactor configurations. Additionally, the symmetry of the RCE

means that the hydrodynamics of the RCE is independent of the cylinder length, which enables the use
8 iScience 26, 106966, June 16, 2023



Figure 5. Automation of the experimental CO2 electrolyzer

An overview of data collection, interpretation, and utilization within the experimental electrochemical RCE system

showing how automation was incorporated for different data types.
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of a large surface area electrode while ensuring uniform mass transport conditions and current densities.

This enables the system to attain high total reaction rates, resulting in more easily detectable liquid prod-

ucts. The RCE is ideally suited to experimental studies that require mass and heat transport effects to be

decoupled from kinetics, thus providing the information necessary to optimize the conditions in larger-

scale designs. However, it should be noted that the RCE is not intended to represent the design of a

larger-scale system, and other specialized reactor designs may be needed to investigate relevant phenom-

ena other than mass and heat transport as these systems are scaled-up.

Application of automation and connectivity for enhanced data collection and processing

After identifying an appropriate reactor, the next step is to integrate automation and data connectivity in

the reactor system. At the lab scale, data collection can be tedious and time-consuming. As such, automa-

tion efforts should be focused on two results: elimination of time-consuming, human-performed tasks and

improvement of data collection reliability and accessibility. Process-relevant variables, identified in the

initial analysis of the system, should be used here to identify what data can be collected through automated

methods. This will support the efficient collection and management of large datasets to cover a wide

parameter space. Recently, efforts have been growing to automate workflows in the lab using high-

throughput screening and experimentation, as well as to develop self-driven laboratories that use ML to

guide automated test systems.85 Although primarily developed for material discovery,86 drug and vaccine

development,87 and optimization of synthesis techniques,88 a general push in the field to increase

throughput through automated techniques will be beneficial for a wide range of applications. Indeed, it

can be argued that most efforts in the automation of data collection, digestion, contextualization, and

modeling can be mapped out eventually against the SM approach to RD&D in Figure 3B.

There are threemodes of data collection: fully automated, semi-automated, andmanually recorded. Exam-

ples of easily automated data types for electrochemical CO2 reduction reactors82 are displayed in green in

Figure 5. These include potential, current, electrode rotation speed, temperature, and CO2 gas flow rates.
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Other data types, such as product concentrations, may require a degree of manual interaction for data

collection or interpretation. Establishing automation and data connectivity with experimental systems re-

quires an initial time investment, but will quickly pay for itself when collecting large datasets.

An example where automation significantly improved the workflow in CO2 electrolysis research, is the auto-

mation of data collected using a gas chromatograph (GC). Before automation efforts, GC results were

manually integrated using GC-specific software. In a typical experiment, four GC injections were measured

approximately 20 min apart. While the physical task of integrating and logging the data from an injection

only took 5–10 min, the intermittency of this task and the short length of time between each injection made

it difficult to conduct outside work during experiments. To automate the GC data collection, a Python-

based script was used to automatically baseline the GC spectra, identify peaks, and extract product con-

centrations (orange path in Figure 5). This Python script was connected with a LabVIEW user interface that

would upload data in real-time to the Clean Energy Smart Manufacturing Innovation Institute (CESMII)

Smart Manufacturing Innovation Platform (SMIP) for centralized data storage, as explained by Çitmaci

et al.82 With the help of OT/IT specialists, these data collected through the LabVIEW interface were also

connected with equipment profiles in the SMIP that connected the data to information about the individual

sensor they were collected from, thus providing context for the data generated. From this platform, data

can be easily accessed in a centralized location and in a standardized format along with relevant sensor in-

formation, which is very important when building models of the reactor performance. This setup has been

demonstrated in the real-time control of ethylene concentration in the RCE reactor effluent using propor-

tional integral (PI) control72 and multi-input-multi-output (MIMO) control of ethylene and CO

concentrations.89

Data types that are typically collected manually include tasks such as recording sample preparation

methods or material properties. These types of data are often recorded once at the beginning of the exper-

iment. However, models may need to access these data for contextualization, so they should be tied to

real-time data collected during experiments. This data type can also be integrated with the online data

collection with a centralized user interface like LabVIEW. Data such as electrolyte pH, pressure, impedance,

electrolyte concentration, and the unique identifier for the reference electrode can be entered once at the

beginning of the experiment and automatically connected to the real-time data when transferred to the

SMIP. In the CO2 electrolyzer system, the only data type not automated is nuclear magnetic resonance

(NMR) measurements of the liquid product composition. Since these data are processed ex situ, the

data must later be entered manually (black path in Figure 5). However, data collection for liquid products

could be automated using high-performance liquid chromatography in the future.

The principles of automation and connectivity are broadly applicable for accelerating research by enabling

more efficient data collection and accessibility. Many demonstrations of this principle have proven useful,

especially in the discovery of catalysts and development of new materials.90–92 Automation of data collec-

tion and storage has shown promise in basic research and should be implemented when possible to reduce

the need for human interaction and the possibility of human error, to streamline the process of data collect-

ing, and to improve management of large experimental datasets.
Application of machine learning to lab-scale reactor modeling and control

ML allows modeling, control, and optimization in CO2 electrolyzer development. The collection and struc-

turing of data must be designed well and should be pre-processed before the models are built. For both a

dynamic and steady-state model, experimental conditions for generating training data should be compre-

hensive. Training data should include data from the highest and lowest operational limits, and safety can be

increased by adding data points from slightly higher and lower operational input regions. For example, the

electric current values of an electrolyzer might be higher than the training data limits, depending on surface

potential. Furthermore, the data collection points should be well-distributed. If the training set is consid-

erably more populated around a specific operational region and sparsely sampled around other opera-

tional regions, the model is not expected to generalize well to all conditions. Thus, a more balanced data-

set is the objective of designing experiments. On the other hand, preprocessing encompasses, but is not

limited to, techniques such as outlier detection and correlation extraction. A correlation matrix is an effec-

tive way of exploring linear relations between experimental parameters. By checking covariance and stan-

dard deviation for two parameters, it is possible to gain intuition about the process. However, it is impor-

tant to keep in mind that a correlation matrix might not be efficient in very nonlinear processes. Jensen and
10 iScience 26, 106966, June 16, 2023



Figure 6. Examples of successful applications of ML techniques to CO2 electrolyzer scale-up

(A) Correlation matrix showing the degree of linear correlation between the production rates of nine CO2 reduction

products and the surface potential, rotation speed, and electric current.

(B and C) Expected concentration for ethanol and formate at different operational points. Continuous lines show

predictions at different rotation speeds, and solid markers show averaged experimental data.

(D and E) Relative gain arrays that demonstrate the coupled values. (D) Shows that coupling production rates of ethylene

with potential and carbonmonoxide with rotation speed works well for controlling the systemwith two PI controllers since

RGA values are close to 1 across all conditions. However, (E) has varying RGA values at different operational regions,

indicating that two PI controllers can control the process only in a small region of the parameter space between�1.18 and

�1.23 V vs. SHE and 100 to 500 rpm where RGA values are close to 1. For the remaining operational ranges, an MPC is

needed.
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co-workers93 automated an experimental flow reactor system for nucleophilic aromatic substitution of mor-

pholine onto 2,4-dichloropyrimidine reactions to estimate kinetic parameters. A correlation matrix

approach was used on the effects of pre-exponential factors and activation energies of 4 kinetic constants

to comprehend the uncertainties in kinetic parameter predictions. An example of a correlation matrix for

CO2 electrolysis in the RCE reactor is shown in Figure 6A. This correlation matrix is based on steady-state

data for two process inputs (surface potential and catalyst rotation speed) and nine products. The intuition

about process variable correlations provided by relative gain array (RGA) can be used at early stages to

inform the building of models.

AnMLmethod that might be used for building steady-state operational models is feedforward neural networks

(FNN), due to their ability to capture complex nonlinear relationships. Since FNNs are high-fidelity models, they
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can easily overfit data, especially for small datasets. In the electrochemical CO2 reduction, FNN was used to

model the steady-state production of thirteenproduct species andoxygenate selectivity.94Given the large num-

ber of product species and reactor variability, an FNN was chosen for this model because the steady-state per-

formance of the reactor is assumed to be independent of time. The inputs to the FNN are the applied potential

and rotation speed since these are independent variables that quantify the kinetic and mass-transfer rates,

respectively. To improvemodel prediction, the FNN loss functionwas designed to account for the statistical vari-

ability of the data. This FNN is trained tomaximize the probability that the model predicts the data. Specifically,

the loss function is the mean-squared error, but each term is weighted by the standard deviation of the data

point generated by repeating experiments at specific inputs three times. The FNN model is described in

more detail by Luo et al.94 Figure 6B shows the concentration predictions of ethanol, one of the most valuable

products in this electrochemical reactor, and Figure 6C shows the formic acid model without an overfit in the

operational range described.89 Additionally, this model can be used for management-level control and optimi-

zation. The energy consumption of the reactor is related to the applied potential, so set-points can be selected

by solving a nonlinear optimization problem that maximizes the energy efficiency or profitability of the reactor.

This approach was demonstrated by selecting cost-optimal set-points to conduct multivariable control

experiments.72,89

Another step up in complexity is the use of recurrent neural network (RNN) models. RNNs are a class of

deep learning neural networks that are specifically suited for handling a series of data points, such as

time-series data. To capture the time dependencies, the RNNs feed the neural network output of the pre-

vious states as an additional input to the next unit. This recursive nature of the RNN is usually explained as

its memory of the previous data in the series. The more advanced RNN structure is the long short-term

memory (LSTM) unit.95 For process data regression, LSTMs check the time-dependent relations between

two respective inputs and learn how the process should dynamically develop for the next time steps. Spe-

cifically, LSTMs check a specific time window from the past data and learn the inherent relations from this

time window.

RCE cell dynamics vary depending on specific operating conditions. For example, the dead time in the RCE

cell depends on the specific rotation speed or the amount of change in rotation speed.89 RNNmodels were

shown to adapt to variable dynamics and are able to capture the dynamic behavior of the RCE well. Alter-

natively, the transient behavior of product concentrations in the effluent of the RCE cell can be approxi-

mated using a continuous stirred tank reactor (CSTR) approximation.72 However, this type of approxima-

tion is not an accurate description of the real reactor and adds error to predictions. Thus, a model built

only with electrochemical cell data can represent inherent reactor dynamics better than hybrid model ap-

proximations. However, to build a deep learning model such as RNN, voluminous datasets are required.

Although the applied potential, current, and rotation speed values are recorded at per-second basis,

the output gas concentrations are measured via GC, which only provides results in long discrete time in-

tervals (e.g., 20 min). To overcome the scarcity of the GC data, the dataset was augmented using polyno-

mial fits to approximate a probable dynamic experimental trajectory between GC data points.89 After en-

riching the dataset with the polynomial fits, more than a hundred thousand artificially generated data

points were generated from the initial hundreds of GC data points. This increase in the amount of data en-

ables training of a dynamic deep learning model and can be useful in the dynamic modeling of any electro-

chemical process with gas products. RNNs have been shown to model the dynamic behavior of chemical

reactors and to make robust models for use with model predictive control (MPC) or multiple PI controllers,

even when faced with data variability.95,96 For example, two PI controllers were used for multi-input-multi-

output (MIMO) control using feedback from the LSTM models of the RCE89 and Xavier and Trimboli used

MPC in an electrochemical system to charge a lithium-ion battery in the shortest time under voltage con-

straints using a circuit model.97
Benefits of machine learning for scale-up research

A black-box ML model itself can be operationally very useful, yet would not be very informative about the

underlying mechanisms. Efforts to discover the first-principle equations of electrochemical CO2 reduction

can be accelerated and supported by black-box steady-state models. A candidate kinetics model can be

derived from a proposed reaction mechanism, and this mechanism can be validated by experimental data

at various operational regions. However, in complex processes such as CO2 electrolysis, there are many

possible candidate reaction mechanisms, and it would be very costly and time-consuming to experimen-

tally validate each model. Instead, the results of a proposed kinetic model can be compared to the
12 iScience 26, 106966, June 16, 2023
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predictions of steady-state ML models at numerous operational conditions. Thus, a strong generalizer

model built with well-distributed data from experiments can produce infinitely many accurate predictions

within the operational range and replace a myriad amount of physical experiments.

Additionally, due to the non-linear nature and high degree of complexity in developing electrochemical

synthesis processes, new control schemes may be necessary to control these devices effectively when

scaled-up. Thus, the development of robust, system-specific models and control techniques alongside

the development of the reactor provides an integrated approach to developing both the reactor and

the methods of controlling it. The control strategy of a system can be decided based on an RGA. In

RGA, one of the process inputs is coupled with one of the process outputs for each input and output.

The RGA results for a nanoporous copper cylinder electrode in the RCE are presented in Figure 6. If the

RGA results are close to one in a broad range of operation regions, then multiple PI controllers can be im-

plemented for feedback control. On the other hand, if the RGA array consists of a broad range of values

including negative numbers and values greater than 1, a more advanced controller scheme such as MPC

should be implemented.

The objective of showing successful control in RCE is to develop control strategies and intuition for a

scaled-up system. Model-based control may be particularly useful for nonlinear system scale-up efforts,

as in the implementation of MPC. If there is a dynamic model available, an MPC scheme can be con-

structed, and ML methods have been proven to build accurate dynamic models in the absence of first prin-

ciples. In the context of scale-up, an MPC control system can leverage information frommulti-scale models

of the reactor and external factors in its control actions. For example, the controller can stabilize the system

while simultaneously minimizing the energy consumption, maximizing selectivity of desired products,

avoiding unsafe operating regions, etc. Likewise, this multi-scale modeling and optimization approach

could allow better integration of complex reactor interactions and be used to guide the optimized design

of industrial reactors, as well as implement control for nonlinear electrochemical reactors once

constructed.
Understanding underlying relationships through dimensional analysis

In addition to the black-box-type ML models discussed in the previous section, dimensional analysis is a

powerful, reduced-order modeling method for understanding underlying relationships in electrochemical

reactors. When used properly, dimensional analysis enables the description of intrinsic relationships be-

tween variables in a system using dimensionless numbers: i.e., groups of physical variables that reduce

to dimensionless descriptors for specific phenomena. By establishing scale-invariant relationships between

physical variables, the same characteristics can be defined for systems of different scales by ensuring that

the dimensionless value that describes that characteristic is the same in both systems.98,99 Additionally,

these dimensionless numbers can provide an effective way of investigating the influences of physical vari-

ables on a process by reducing the order of parameters to be studied. For example, changing temperature

has multiple effects on the electrochemical CO2 reduction process including the diffusion coefficients of

species, the viscosity and density of electrolytes, the solubility of CO2 in the bulk electrolyte, the kinetics

of homogeneous buffer reactions, and the kinetics of heterogeneous electrochemical reduction reactions

on the electrode surface. Among the aforementioned effects, the temperature effect on diffusion with

respect to changes in material properties can be segregated using the Schmidt number (Sc). As defined

in Table 1, the Schmidt number reduces three parameters (diffusivity, viscosity, and density) down to a sin-

gle grouped parameter, simplifying the tracking of temperature effects. Since it is a material property, Sc

can also normalize the effects of diffusing species and electrolyte media on the overall mass transport char-

acteristics represented using another dimensionless number, the Sherwood number (Sh).

In the RCE reactor, when Sc and Sh are characterized as a function of rotation speed (non-dimensionalized as the

Reynolds number, Re) using simple reactions with facile kinetics producing a single product, a universal relation-

ship can be extracted frommass transport limited reaction rates (Figure 7) as demonstrated by Jang et al.27 and

Richard et al.83 This dimensionless correlation is useful in three ways. First, once established using facile and sim-

ple reactions, convectivemass transfer rates of species involved inmore complicated reactions can bequantified

since all the species are affected by the same hydrodynamics. This is particularly useful in understanding mass

transport in CO2 electrolyzers where mass transport limited reaction rates cannot be readily extracted from

experimental data, and homogeneous reactions occur involving multiple buffering species. Second, this rela-

tionship can be used to evaluate whether a specific reaction or reaction step ismass transfer limited. If a reaction
iScience 26, 106966, June 16, 2023 13



Table 1. Dimensionless numbers used in research with the RCE reactor

Name Description Symbol and Equation

Reynolds number Inertial forces

Viscous forces
Re =

rUcyldcyl

m

Schmidt number Viscous transport

Diffusive transport
Sc =

m

rDi

Sherwood number Convective transport

Diffusive transport
Sh =

km
Di=dcyl

= 0:204Re0:59Sc0:33

Damkhöhler number Reaction rate

Mass transfer rate
Da =

ri
kmCi;b

Here r is the electrolyte density, Ucyl is the surface velocity of the electrode, dcyl is the cylindrical electrode diameter, m is the

electrolyte viscosity, Di is the diffusivity of species i, ri is the rate of reaction for species i, and Ci,b is the bulk concentration of

species i in solution. km is the mass transfer coefficient derived from the limiting current (jlim) by jlim= zFkmCi,b where z is the

number of electrons involved in the reaction, and F is Faraday’s constant.
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is mass transfer limited, the rates will align with the universal correlation, while if it is kinetically limited, the rates

may be lower and will not scale with Re. Lastly, the correlation between Sh and Re is empirically derived and will

only hold for the specific reactor geometry and flow pattern in which it was developed. However, when paired

withmulti-scale modeling techniques such as computational fluid dynamics (CFD) this correlation can be tied to

specific physical phenomena such as the hydrodynamic or diffusion boundary layer thicknesses.83 Knowing this

relationship between Sh and the phenomena governing it can then enable the same correlations developed in

the RCE tobeapplied in systemswith different geometry, enabling rational decisions tobemadewhen selecting

new reactor configurations.

The Damköhler number (Da) is another dimensionless parameter that has been useful in evaluating the

mechanisms driving reaction and selectivity for CO2 reduction products. Da represents the ratio of time-

scales for reaction and convective mass transport, and is used to evaluate if a reaction is kinetically or trans-

port limited at given conditions. In the RCE reactor,Da has revealed that CO2 reduction is not limited by the

convective transfer of CO2 from the bulk to the electrode surface (DaCO2< 1) at �1.41 V vs. SHE for elec-

trode rotation speeds within 100 and 800 rpm. On the other hand, the residence time of CO near the elec-

trode surface, which decreases with Sh2, has been identified as a critical parameter in determining the

selectivity of reactions toward products involving transfer of more than two electrons (>2e�) or toward
the intermediate CO. As the Sherwood number decreases, longer residence time of CO leads to higher

Da > 2e- and conversion of CO.27,61 This relationship between Da > 2e- and Sh has significant implications

in the design and scale-up of CO2 electrolyzers, since the rate of production for > 2e� products can now be

estimated by the production rate of the intermediate CO and Sh, representing the local mass transport

around the catalyst. Further details on thedevelopment of a model capturing this relationship and demon-

strating the application of this estimation will be covered in a follow-up report.

In addition to the traditional approach discussed so far, dimensional analysis has the potential to be inte-

grated with the ML approach. There is an analogy between dimensional analysis and ML in the sense that

they remove the variance in dimensions to better capture the underlying relationships. Recently, there have

been attempts to incorporate or replace the traditional Buckingham Pi theorem using the physics-informed

neural network (PINN) to identify independent dimensionless parameters that are significant to the system.

PINN could incorporate principles of the Buckingham Pi theorem directly in the training algorithm,100 or

replace the theorem by iteratively solving for both the physical dimensional constraints and exponents

of the governing equations.101 This makes the PINN a powerful tool since the traditional Buckingham Pi

theorem does not provide information on the dominance and power-law exponents of each independent

dimensionless number.101 Another approach to implementing dimensional analysis in PINN is through

solving physical laws in the form of dimensionless partial differential equations. There are several advan-

tages to non-dimensionalizing equations and unknown variables. Such an approach reduces the computa-

tional pressure on neural networks and is less sensitive to simulation instabilities arising from changes in the

scales of physical parameters (e.g., diffusivity, mass transfer coefficient, rate constants, etc.).100,102

This perspective has focused primarily on issues related to mass transport. The principles of similarity for

mass and heat transfer establish that the level of turbulence experienced by a particle as it traces out similar
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Figure 7. The dimensionless universal correlation for

mass transport limited reactions in the rotating

cylinder electrode (RCE) reactor

The dimensionless correlation between mass transfer

and rotation speed for the RCE reactor showing CFD

simulation results overlaying experimental data. This

correlation applies to any reaction occurring under

mass transport limited conditions inside the RCE

reactor. Copied with permission, Elsevier copyright

2022.
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paths in reactors at multiple scales should be kept constant so that mass and heat transfer rates are similar

at all scales. This is key for reactor scale-up. The reader is directed to the chapter on ‘‘Principles of similarity

and their application for scale up’’ in ‘‘Design of multiphase reactors’’84 for a review of dimensionless anal-

ysis in process scale-up frommodel to prototype scales. When scaling up electrolyzers from a model scale,

it will not be sufficient tomaintain the similarity of mass and heat. Rather, chemical similarity (rate of product

formation to the rate of bulk flow, and rate of product formation to the rate of convective mass/heat trans-

fer) must bemaintained. In practice, it is very difficult to maintain chemical similarity between amodel and a

prototype. These challenges are become more significant in electrochemical systems where charge trans-

port between the working and counter electrode also becomes important as this affects concentration po-

larization and ionic resistance, which in turn affect energy efficiency and heat generation in the cell. The

different mass, heat, and charge transport phenomenamust be controlled and optimized at each scale dur-

ing reactor scale-up, and here is where extraction of relationships in a bench-scale system using dimension-

less numbers can be powerful, as dimensionless correlations can be useful in determining the similarity

principles that are most relevant to the performance of the system. Combined with multi-scale models,

dimensional analysis can be further integrated into the optimal design, control, and operation of pilot scale

systems using SM methods. This is very similar to what has been shown in industry. Undoubtedly, heat and

charge transport management will likely become more important at larger scales and will need to be opti-

mized to control selectivity and rates for desired products while minimizing overpotential.
Multi-scale modeling aided research and design

The previous modeling techniques using AI and dimensional analysis are powerful tools for understanding

how the process-relevant variables in a system affect its performance, but can be difficult to connect with

the underlying phenomena in complex systems. To overcome this difficulty, well-parameterized, physics-

based, multi-scale models can be developed to tie these reduced order relationships to physical phenom-

ena and allow the design of optimized larger scale systems. Multi-scale modeling incorporates physics-

basedmodeling techniques to capture local phenomena in detail that cannot be evaluated experimentally.

These models can be used to identify the local conditions that correspond to specific experimental results,

and then to ensure that the desired local conditions are present in a larger-scale design. By building these

multi-scale models based on first principle relationships and ensuring that experimental behavior is repli-

cated, these models can help to generate rational designs that can be tested in silico with multi-scale

models before construction.

An example of how multi-scale modeling can be used to better understand the local conditions governing

reactor performance is in the evaluation of boundary layer conditions at the RCE surface. As mentioned

previously, this small region governs the rates at which species move to and from the electrode surface.

The universal relationships between Sh and Re discussed in the previous section help us understand the

effect of rotation speed on the rate of mass transfer, but only apply to systems where similar definitions
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Figure 8. Multi-scale modeling can provide insights across the relevant length and timescales to guide intelligent

design of advanced electrochemical synthesis reactors

(A) CFD provides information about the system effects, like boundary layer conditions. Reprinted, Copyright 2023, with

permission from Elsevier.83

(B) MD can provide information about the local environment at the electrode interface. Reprinted with permission,103

Copyright 2020, American Chemical Society.

(C) DFT provides information about the energetics of different reaction pathways. Springer Nature, 2022, reproduced

with permission from SNCSC.104

(D) Models can provide information for each other to span various scales and guide intelligent system design.
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of Sh and Re can be used.While we know that the boundary layer is responsible for this behavior, we cannot

easily observe this phenomenon during experiments. To probe the boundary layer region, a CFD simula-

tion of the RCE reactor was constructed that is capable of replicating the experimental behavior of the cell

under well-defined mass transfer limited reaction conditions.83 This model was developed to capture both

the transient and steady-state behavior to ensure that both the average and variations in local conditions

could be evaluated. With this simulation, not only can a connection be made between mass transfer rates

and the rotation speed, but the physical conditions in the boundary layer region can be defined for the

mass transport rates observed. These include the velocity and concentration gradients at the wall, the ve-

locity and concentration boundary layer thicknesses, and the influence of small vortexes near the boundary

layer region (Figure 8A). With this information, local conditions in other systems can be identified, and the

mass transport rates can be predicted regardless of geometry.

Further efforts are being directed at adding complex reaction schemes involving both heterogeneous and

homogeneous reactions to these simulations. These simulations will help to understand how the local con-

centration and residence time of species in the boundary layer affect selectivity in the multi-step reaction

mechanisms of CO2 electrolysis. Together, this information will enable the extraction of intrinsic reaction

kinetics from experimental data, by revealing the local conditions at the electrode surface and removing

the bulk characteristics that are influenced by the reactor geometry. Finally, the kinetics and simulation

techniques used to describe the existing system can be applied to developing new reactor designs that

optimize rates and selectivity for desired products.

In the case of CO2 electrolysis, mass transport has a significant influence over the product distribution and

reaction rates. Once this influence is accounted for, other effects may require further investigation to

achieve industry-relevant performance. Molecular dynamics (MD) simulations can provide insight into phe-

nomena occurring at the electrode surface near the electrical double layer, where hydrodynamics are

essentially stagnant (Figure 8B).103 DFT can provide insight into the energetics of specific reaction path-

ways on the electrode surface (Figure 8C), guiding the development of more selective catalysts.104
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Typically, modelingmethods such as CFD, MD, and DFT are individually investigated, but each can provide

complimentary information for each other (Figure 8D).105 CFD can provide continuum scale information

about the concentrations of species near the electrode surface. MD can incorporate this information to

evaluate the local environment within nanometers of the electrode surface to capture stochastic processes

relevant to catalysis. DFT provides the energetics of different reaction pathways, but utilizing information

from theMD and CFDmodels can help to determine if a species is available to react on the electrode. Addi-

tionally, AI and ML techniques can be incorporated into these modeling methods to reduce the computa-

tional cost and increase the accuracy of these models.106 At larger scales, these techniques can be further

integrated into the optimal control and operation of pilot scale systems using SM methods. For example,

heat management will likely become more important at larger scales and will need to be optimized to con-

trol selectivity and rates for desired products. Industrial applications for controlling temperature distribu-

tions in a steam methane reformer have shown how the integration of advanced sensing, data manage-

ment, ML, and multiscale modeling can be utilized to optimize such operations.75 Likewise, the

techniques discussed here could be applied to similar problems in the operation of larger scale electro-

chemical systems. Only through a coordinated incorporation of these models across multiple scales with

high-fidelity experimental data can intelligent designs be developed to bring complex electrochemical

conversions to industrial scales.

Conclusions

Emerging CO2 electolyzer technologies have proven to be particularly difficult to scale-up due to the con-

voluted interactions of mass, charge, and heat transport with complex reaction pathways. Tackling the diffi-

cult task of scaling up electrochemical synthesis methods requires a more holistic scientific approach that

incorporates high-fidelity experimental results with big data and advanced modeling techniques spanning

from the atomic to the reactor scale. In this perspective, we evaluate an approach to accelerate research

targeted at the scale-up of complex electrochemical reactors that is inspired by the same techniques

used to apply SM in the industry to tackle complex process optimizations. This approach not only provides

an improved research methodology but also provides a pathway for the parallel development of strategies

to apply SM in industrial electrosynthesis processes.

In summary, this approach is divided into four phases. In Phase I, automation of data collection and

handling is applied to the experimental reactor system to accelerate the data collection process and

enable easy access to the data when building models. Next, AI and ML techniques along with dimensional

analysis are used in Phase II to interpret the large datasets and extract useful relationships governing the

reactor performance. For example, RGA provides insights into the dependency of product concentrations

on the potential or rotation speed of the electrode, and dimensional analysis reveals a universal correlation

between the rotation speed andmass transport rates. These relationships are used in Phase III to inform the

development of physics-based multi-scale models that cover a spectrum of time and length scales relevant

to the reaction process. Additionally, these models allow phenomena that cannot be directly observed

experimentally to be quantified and tied to the relationships developed in Phase II. The same modeling

techniques can be applied in Phase IV to evaluate the performance of scaled-up reactor designs in silico

before materials are committed to construction. Finally, these four phases can be applied iteratively at

each new scale to address additional challenges as they arise.

When applied independently, each of these steps can provide limited insight into how to improve an electro-

chemical synthesis process. However, when incorporated as part of this holistic approach, the use of these tools

can efficiently accelerate the development of industrial-scale electrochemical reactors. To show the utility of this

approach, we have provided an example of how it has been applied so far to RD&D of CO2 electrolyzers. While

CO2 electrolysis has been the focus of this demonstration, the same methodology can be applied to RD&D of

any electrosynthesis technology, as the same underlying phenomena will be influential in the scale-up of any

electrosynthesis process. Each step of the approach presented in this perspective provides key advantages in

accelerating the research necessary to scale up electrochemical systems, and we hope such an approach will

be applied by others to accelerate new discoveries in the field of electrochemistry.
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