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Research spanning 100 years has revealed that learning a novel perception-action
task is remarkably task-specific. With only a few exceptions, transfer is typically very
small, even with seemingly small changes to the task. This fact has remained surprising
given previous attempts to formalise the notion of what a task is, which have been
dominated by common-sense divisions of tasks into parts. This article lays out an
ecologically grounded alternative, ecological task dynamics, which provides us with
tools to formally define tasks as experience from the first-person perspective of the
learner. We explain this approach using data from a learning and transfer experiment
using bimanual coordinated rhythmic movement as the task, and acquiring a novel
coordination as the goal of learning. 10 participants were extensively trained to perform
60◦ mean relative phase; this learning transferred to 30◦ and 90◦, against predictions
derived from our previous work. We use recent developments in the formal model of the
task to guide interpretation of the learning and transfer results.

Keywords: learning, transfer of learning, bimanual coordination, ecological task dynamics, perceptual
information for action

INTRODUCTION

This article is the second part of a series of studies designed to investigate the perception-action
mechanisms supporting learning and transfer of learning in coordinated rhythmic movement.
Leach et al. (2021) extensively trained 10 participants to produce 90◦ mean relative phase using
coordination feedback (Wilson et al., 2010b). As has been shown before (e.g., Wilson and Bingham,
2008) this training drove participants to stop trying to perceive relative phase with relative direction,
and instead to use relative position. We then tested for transfer of this learning, and for the first time
found substantial transfer to two other relative phases (60◦ and 120◦). We explained the transfer
as being supported by the use of relative position. In this article, we replicated the design of Leach
et al. (2021) but now trained participants on 60◦. We identified that this also led to them switching
information variables to relative position, but contrary to our predictions, this time the learning
supported transfer to 30◦ and 90◦.

We will first review the issue of learning and transfer, and the ecological task dynamical
analysis we use to understand these results. We will then review Leach et al. (2021) in more
detail, to motivate the hypotheses and design of the current study. We will end by considering
the implications of our results for ongoing attempts to model learning and performance in this task
(Bingham, 2001, 2004a,b; Snapp-Childs et al., 2011; Hearth et al., under review).
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Learning and Transfer
One way to study the mechanisms of learning is to examine what
else improves after training on some task. If learning one skill
improves another, then those two skills must have something
important in common that was affected by the learning
process. Transfer of learning can therefore help us identify the
components being brought together to perform these tasks.

Strangely, however, the data from hundreds of studies clearly
show that learning rarely transfers in any meaningful way beyond
the trained task; any observed transfer is typically small in
magnitude. Seemingly small changes in the task requirements can
block transfer; for example, training on a pursuit motor task at
one speed shows little transfer to the same task at different speeds
(Lordahl and Archer, 1958; Namikas and Archer, 1960). Even
tasks that seem to have large overlap in the required components
can show little transfer; for example, balancing on a slack line
does not transfer to balancing on a beam, and vice versa (Serrien
et al., 2017). The only way to observe large transfer is to keep
the goal the same, but alter the performance requirements (e.g.,
training a coordinated rhythmic movement with the arms, testing
for transfer using the legs, e.g., Kelso and Zanone, 2002).

This pattern is surprising given our typical understanding of
what a “task” is and what is required to solve it. The change in
speed in the pursuit motor task seems such a small change, but
it has such a large effect. Walking on both slacklines and beams
seems to require balance, but apparently “balance” is not a single
element that can be deployed for different tasks. The data are
clear; our current understanding of what makes something “a
task” is flawed, and we need a better way. So what is the field
currently doing, and what must we do differently?

Learning and transfer as a topic has swung in and out of
fashion several times since the earliest experimental work by
Thorndike and Woodworth at the turn of the 20th century.
The basic logic has remained the same – transfer is expected to
occur to the degree that two tasks share common elements. But
each time, researchers have conceptualised tasks with intuition
grounded in every-day language (e.g., walking on a slack line
and a beam both require balance, so balance must be a key
component of performance in both tasks) and each time, research
has revealed little if any transfer between tasks described this way
(for a detailed review, see Schmidt and Young, 1986; Perkins and
Salomon, 1992). This intuition-based method is failing to carve
nature at the joints. If we are going to break the boom-and-bust
research cycle, we need a theory of tasks that is different in kind
from the intuition-based theories that have come before. We need
an empirically based theory of what tasks look like, from the first
person-perspective of the organism.

Ecological Task Dynamics
The ecological approach to perception-action (Gibson, 1979) is a
theory of skilled action and learning that proposes a mechanism1

1Golonka and Wilson (2019) explicitly connect this ecological approach to the neo-
mechanist literature in philosophy. The key to being a mechanistic explanation (vs
a functional description) is that your model of the task only contains terms that
represent the real parts and processes that have been shown to be involved in the
task being explained. This is why we emphasise the issue of whether various parts
are “real” or not throughout the article.

for how those come about. It characterises the world-to-be-
perceived in dynamical terms; objects and events have properties
that require units of time, position (and its temporal derivatives)
and mass to characterise completely (Bingham, 1988, 1995).
Dynamical systems behave when a particular set of these
properties are coupled together, and the specifics of the behaviour
depend on the composition but also the organisation of the
properties; how they are coupled together.

Organism behaviours depend on dynamical properties of the
organism, but also of the environment. These properties must
be coupled together into a system with a specific composition
and organisation for a particular behaviour to emerge from that
system. That coupling is, in general, informational, because we
are only in mechanical contact with a small fraction of our
environment. Gibson proposed, and experimental evidence has
confirmed, that perceptual information consists of higher-order
invariant information variables in ambient energy media (e.g., the
optic array). These variables can specify (map 1:1 to) dynamical
properties of the environment (Turvey et al., 1981; Runeson and
Frykholm, 1983). Organisms can therefore, in principle, learn to
use that information to couple their own bodily dynamics to the
behaviourally relevant properties of the environment, and a given
behaviour emerges from this particular distributed dynamical
system as it plays out over time and space.

There are three implications for learning and transfer in this
analysis. First, learning a behaviour entails coupling dynamical
properties distributed across the organism and environment via
information, and the form of the resulting behaviour emerges
from the composition and organisation of the entire organism-
environment system, and not just the organism. Learning will
therefore only transfer to the extent that the two organism-
environment systems share that composition and organisation.
Second, changing the organism dynamics but keeping the
environmental dynamics the same allows the same information
variables to be used in the coupling. This describes the case such
as interlimb transfer tasks, where the goal remains the same
but the performance requirements change, and as noted above,
large transfer of learning is typically observed in these cases.
Third, keeping the organism dynamics the same but changing
the environmental dynamics means that the information that
was previously available is no longer there; it is replaced by
information specifying the new environmental dynamics. This
describes the case such as the “balancing” experiment (Serrien
et al., 2017) and, as noted above, these cases typically produce
little or no transfer.

We can therefore put forward a hypothesis. If the dynamical
properties within the organism-environment system are changed
so that the informational coupling between the organism and
environment is changed, this creates a new task dynamic and
learning will not transfer. Information defines the boundaries of
tasks. This specific application of task dynamics to perception-
action systems is called ecological task dynamics.

Testing Ecological Task Dynamics
Ecological task dynamics is a new way of characterising tasks
that is based on the ecological analysis of behaviour, rather than
everyday-language based intuitions about what we do. The proof
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of the pudding is in the tasting, of course; so can this new notion
of task do better than the old in accounting for patterns of
learning and transfer?

The ecological task dynamics analysis has so far been
developed most completely in the context of coordinated
rhythmic movement (e.g., Kelso, 1995). This task asks people
to rhythmically move two limbs so as to produce a target mean
relative phase (or sometimes to move one limb at some mean
relative phase to an oscillator on a monitor). The key phenomena
to be explained are that (a) people can readily produce and
maintain 0◦ and 180◦ at a range of frequencies, although at high
frequencies people tend to transition from 180◦ to 0◦ without a
lot of effort, and (b) other mean relative phases (especially the
intermediate 90◦) must be learned using some form of feedback.

This task has been formalised in a perception-action task
dynamical model (Bingham, 2001, 2004a,b; Snapp-Childs et al.,
2011, 2015). This mechanistic model implements the real
dynamical properties of the limbs (as phase-driven, nonlinear
damped mass springs) and the real informational coupling
between them (perceived relative phase, modelled as the relative
direction of motion, conditioned on the relative speed). All of the
dynamical and information components of the model have been
empirically verified to be part of the perception-action system
from which coordinated rhythmic movement behaviour emerges
(see Golonka and Wilson, 2012 for a review) and the model
reproduces all the key phenomena of the task described above.
Most relevantly for this paper, these phenomena are caused by
the relative direction informational coupling.

Learning experiments have shown that people can improve
at 90◦, and that they do so by learning to perceive relative
phase using relative position instead of relative direction. For
example, Wilson et al. (2010a) trained participants to improve
their performance at 90◦ by improving their visual discrimination
of 90◦ movements. Wilson and Bingham (2008) then selectively
perturbed candidate information variables and showed that
performance at 90◦ was only fully disrupted by a perturbation of
relative position.

There are then two transfer studies relevant to the current
paper. The first was Snapp-Childs et al. (2015), who trained
participants at 90◦ on either the unimanual or the bimanual
version of the coordination task. Participants moved one or two
joysticks so as to produce 90◦ between two dots on a computer
monitor (in the unimanual case, the computer controlled
one dot). Participants improved in each training group, and
that training then transferred quite significantly between the
conditions (proportion transfer was 43–45%). Improvement in
performing 90◦ also transferred to improvements in visual
discrimination of 90◦. This experiment altered the organism
dynamics via training group (i.e., number of limbs) and the
informational coupling via the training (switching from relative
direction to relative position). But because both versions of
the task entailed the same informational coupling at the end
of training (relative position) there was transfer between them
at the end. Both the unimanual version of the task (Snapp-
Childs et al., 2011) and the bimanual version of the task
(Bingham, 2001, 2004a,b) have been modelled using the same
informational coupling.

Most recently, and directly preceding the current study, Leach
et al. (2021) extensively trained 10 participants to produce
bimanual 90◦. We tested their performance of 0◦, 30◦, 60◦,
90◦, 120◦, 150◦, and 180◦ and their visual perceptual thresholds
for 90◦ in three Assessment sessions (Baseline, Post-Training,
Retention). In the two post training sessions, we also tested their
visual perceptual thresholds for 90◦ under the perturbation of
relative position. We found the following main results:

1. All participants learned to produce 90◦ well, and this
was accompanied by a decrease in their visual thresholds
for discriminating 90◦ (replicating Snapp-Childs et al.,
2015). Post-training, the improvement in the visual
discrimination of 90◦ was entirely wiped out by the
position perturbation, confirming that the participants
had improved at 90◦ by learning to use relative position
(replicating Wilson and Bingham, 2008).

2. Learning to produce 90◦ transferred substantially but
asymmetrically to 60◦ and 120◦. We observed a massive
81% transfer to 60◦, and a still large 65% transfer to 120◦.
(We explained the asymmetry as the result of relative speed
still acting as a noise term on the perception of relative
phase; relative speed increases linearly from 0◦ to 180◦;
Snapp-Childs et al., 2011).

Overall, the results of these two transfer studies support the
dynamical analysis of what a perception-action task is, from
the first-person perspective of the organism. Learning alters the
overall task dynamic of the system producing the behaviour,
specifically in this case by altering the informational coupling
between the limbs. We know that learning transfers to other
versions of the task that entail different limb dynamics but
can still use the new information coupling (e.g., between the
unimanual and bimanual versions of the task); we therefore
explained the results of Leach et al by hypothesising only
60◦ and 120◦ could be produced using relative position to
couple the limbs.

The current experiment is the next step in understanding
what happens to the perception-action dynamics responsible
for coordinated rhythmic movement after learning. We exactly
replicated the design of Leach et al. (2021), but this time we
trained participants to produce bimanual 60◦ and examined the
pattern of transfer across six other relative phases. Based on our
understanding of the changes in the dynamics so far, we made the
following predictions:

1. Participants would be able to learn 60◦, and this would
entail a switch to using relative position to perceive
relative phase. This is tested using the perturbation
method, whereby perturbing relative position in a two
forced alternative judgement task will completely disrupt
trained performance.

2. We know that only 60◦, 90◦, and 120◦ have been shown
to benefit from using relative position to perceive relative
phase. We therefore predicted that learning to perform 60◦
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would transfer only to 90◦ and 120◦, with the proportion of
transfer conditioned by the relative speed2.

MATERIALS AND METHODS

This experiment’s design and analysis plan was preregistered
(Leach et al., 2017). Sample size (N = 10) was justified with a
power analysis in which the results of Leach et al. (2021) informed
the expected transfer effect sizes (see section “Appendix 1”).

Participants
Eleven adults participated in this study, one of whom chose
not to complete the entire procedure leaving a total of 10
participants (19–33 years old, M = 26.1; Male = 3, Female = 7).
All participants were free from known neurological defects or
motor disabilities, had normal or corrected-to-normal vision and
were right-handed (measured with the Edinburgh Handedness
Inventory; Oldfield, 1971; Dragovic, 2004). All participants
were naïve to the experimental questions. Prior to training, all
participant’s relative phase production matched the predefined
criterion for participation (see section “Criteria”). All participants
were recruited using a convenience sample in the surrounding
area of Leeds, United Kingdom and paid £15 upon competition of
the study. Ethical approval was granted by the Psychology Ethics
Committee at Leeds Beckett University, United Kingdom.

Design
The design was identical to that used in Leach et al. (2021)
except that the target relative phase being trained was now
60◦. All participants performed two types of experimental task;
coordinated rhythmic movements (Action) and two-alternative
forced choice (Judgements).

For the Action tasks, there were two within-subject variables.
The first is Session (three levels; Baseline, Post Training, and
Retention). These sessions were referred to as Assessment
sessions, to distinguish them from the Training sessions. The
second was Target Phase (seven levels; 0◦, 30◦, 60◦, 90◦, 120◦,
150◦, and 180◦). The dependent variable was the Proportion
of Time on Target phase ± 20◦ (PTT20), a valid measure of
performance (see Snapp-Childs et al., 2011, 2015 for explicit
comparisons of this to other commonly used measures, which
motivates us to prefer PTT20).

For Judgement tasks, there was one within-subjects variable,
Session (three levels; Baseline, Post Training, and Retention). The
dependent variable was the estimated Threshold to identify 60◦
in the Judgement tasks (the lower the threshold, the greater the
ability to discriminate 60◦).

2Phase cycles that incur movement of opposing directions (oscillators moving
toward or away from one another) incur the presence of relative speed. The more
the phase cycle incurs movements of opposing direction, the greater the presence
of relative speed. This occurs in a linear fashion; at 0◦ the motion of both oscillators
always remains fixed in the same direction, thus the relative speed at 0◦ is zero.
Relative speed is at its highest throughout the movement cycle of 180◦, whereby
the motion of both oscillators always remains fixed in the opposite direction
(Bingham, 2004b; Wilson et al., 2005; Wilson and Bingham, 2008; Snapp-Childs
et al., 2011).

Materials
All sessions were performed on a “Windows PC with a 24” Dell
monitor located approximately 70 cm from the participants. The
computer presented a display of two white dots (∼15 mm),
separated vertically (∼35 mm), that moved horizontally across
a black background (screen refresh rate 60 Hz, resolution
1,920 × 1,080). The motion of both dots was centred at the
screen centre with an amplitude of 300 pixels (∼115 mm).
All displays were presented, controlled and recorded by a
custom MATLAB toolbox written by ADW incorporating the
Pyschtoolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007;
http://psychtoolbox.org). Matlab 2014b was used to record and
analyse the data.

For Action sessions, participants used two USB Logitech
Extreme 3D Pro joysticks. The central spring and the rubber
guard were removed to disable force feedback (see Figure 1).
The vertical position of both dots on the screen was fixed,
but the horizontal position of both dots were controlled by
the horizontal position of the joysticks, with the left and
right joystick corresponding to the top and bottom dots,
respectively. The mapping of the joysticks to screen amplitude
is set so that required amplitude on the screen does not
entail hitting the limits of the joystick range of movement.
This forces participants to actively control the joysticks as
much as possible, rather than to simply slam into the joystick
endpoint to stop.

For Judgement sessions, the participant responded to displays
using a USB keyboard. Responding with the “A” and “L” keys for
the first and second choice, respectively.

Procedure
Participants performed between nine and thirteen separate
sessions on separate days (see Table 1). The exact number of
sessions performed by each individual participant was dependent
on when various criterion were met during training (see section
“Criteria”). During the Baseline assessment session, participants
performed three different tasks (two Action, one Judgement) in
the order described (approximately 45 min to complete). In the
Post-Training and Retention assessment sessions, participants
repeated the procedure from Baseline with one additional
perturbation Judgement session described below (approximately
60 min to complete). Participants completed the Baseline,
Training and Post-training sessions within a 3 week time frame,
and completed the Retention session 14–24 days after the Post-
Training session. Each Training session took approximately
20 min to complete.

Action Task (Assessment Sessions)
All participants were shown an 8 s, 1 Hz demonstration of the
first target relative phase (0◦) and performed one 20 s practice
trial of producing that relative phase at 1 Hz with the joysticks.
Participants then performed one block of four 20 s trials in which
they controlled the horizontal motion of both dots. The top dot
was controlled by the left hand, the bottom dot by the right
hand. Participants were instructed to move the joysticks in a
smooth, side-to-side, movement to produce the target-phase at
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FIGURE 1 | Experimental setup : Action sessions. Participants use both joysticks to control the horizontal movements of the dots on the computer display. The
visual display on the computer screen (A) corresponds with the position of the joysticks (A). The figure shows an example of moving at 60◦. This is achieved by
moving linearly from A to D and repeating. During the training sessions, moving at 60◦ ± some error triggers the hot-cold signal in which the white dots turn green
(grey in figure; see Coordination Feedback).

1 Hz. This block structure was then repeated for 180◦ and 60◦
relative phase, in that order.

These data were used to ensure that none of the participants
were already able to perform 60◦ at a level equivalent to 0◦ and
180◦ and could take part in the study (see section “Criteria”).

TABLE 1 | Experimental design.

Baseline
1 session

5× 20 s trials each of bimanual 0◦, 180◦, assigned phase (60◦)
Criterion for participation: 60◦ < 0◦ and 180◦; assigned phase
(60◦) < 0.50
5× 20 s trials each of bimanual 30◦, 90◦, 120◦, 150◦

2AFC judgement task (assigned phase, 60◦)

Training 30× 20 s trials bimanual 60◦ w/feedback ± 30◦

30× 20 s trials bimanual 60◦ w/feedback ± 25◦

6–10 sessions 30× 20 s trials bimanual 60◦ w/feedback ± 20◦

30× 20 s trials bimanual 60◦ w/feedback ± 15◦

30× 20 s trials bimanual 60◦ w/feedback ± 10◦

30× 20 s trials bimanual 60◦ w/feedback ± 10◦

Post training 5× 20 s trials each of bimanual 0◦, 180◦, assigned phase (60◦)
5× 20 s trials each of bimanual 30◦, 90◦, 120◦, 150◦

1 session 2AFC judgement task (assigned phase, 60◦)
2AFC judgement task (Perturb Position)

Retention
1 session

5× 20 s trials each of bimanual 0◦, 180◦, 60◦

5× 20 s trials each of bimanual 30◦, 90◦, 120◦, 150◦

2AFC judgement task (assigned phase, 60◦)
2AFC judgement task (Perturb Position)

All participants worked through these tasks in the order noted. The feedback
bandwidth (e.g., ±30◦) indicates over what range from the target-phase the colour
feedback is triggered. This is faded over time to drive learning (Wilson et al.,
2010a,b). See Criteria regarding the performance-based progression employed.

After this, participants performed a second set of coordinated
rhythmic movements to measure baseline performance at 30◦,
90◦, 120◦, and 150◦, using the same structure as above.

Judgement Task
Following the action tasks, participants performed a series
of two-alternative forced choice (2AFC) judgements for 60◦.
2AFC is a standardised psychophysical measure for determining
perceptual thresholds (see Wilson and Bingham, 2008; Wilson
et al., 2010a; Snapp-Childs et al., 2015 for applications to
coordination perception).

Each trial started with a 4 s demonstration trial of 60◦,
followed by the presentation of a pair of successive displays. Both
displays contained two dots moving harmonically on the screen
at some mean relative phase, for 4 s at 1 Hz. The dots were centred
on the screen, with an amplitude of 300 pixels (∼11.5 cm). Of
each pair, one showed two dots moving at 60◦, and the other was
different from 60◦; the order was randomly selected on each trial.
The task for the participants is to choose which one of the displays
shows 60◦ (pressing “A” for the first and “L” for the second, with
no speed requirement).

How different the two displays were was determined using two
independent but interleaved transformed 1-up/2-down staircase
procedures. One staircase controlled the different displays less
than 60◦, one for those greater than 60◦. Both used a step size
“up” of 10◦ and a stop rule of 8 reversals. Step size “down” was
fixed to 54.88% of the step size “up” according to Table 5.1 of
Kingdom and Prins (2009); here 5.48◦. The initial difference for
each staircase was set to 30◦ and trials only stepped down until
the first reversal (first error), after which the staircase procedure

Frontiers in Human Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 718829

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-718829 September 7, 2021 Time: 11:4 # 6

Leach et al. Ecological Task Dynamics of Learning and Transfer

was applied. Participants are given knowledge of results (KR)
after each trial (“Correct!” or “Incorrect!”). This procedure is
essentially identical to that used in Snapp-Childs et al. (2015) with
the addition of the KR.

In the Post Training and Retention sessions, participants
repeated the 2AFC task and then completed an additional 2AFC
task in which a position perturbation is applied to the display
(Wilson and Bingham, 2008). In these displays, the amplitude
of the top dot is changed at random on every half cycle, with
the constraint that the dot must cross the midline of the screen
and cannot exit the screen. The amplitude of the bottom dot is
then set to half the top dot’s amplitude, so that it varies randomly
but in a way that is coupled to the other dot – this preserves
the relative phase. Where and when peak amplitude and peak
velocity occur therefore change on every half cycle. This preserves
mean relative phase (and relative direction information about
that relative phase) while making it impossible to use relative
position information to perceive relative phase, because there
is no stable information about where the dots are within their
cycles. This perturbation tests the hypothesis that learning to
improve at 60◦ entails switching to using relative position.

Action Task (Training)
Following Baseline assessment, participants were trained to
bimanually produce 60◦. The number of training sessions
completed by each participant depended on their performance
(see section “Criteria”). The number of training sessions across
participants varied between 6 and 10.

During each training session, participants performed thirty
20 s trials where their goal was to produce 60◦. Participants
received coordination feedback for all trials except for every
fifth trial (Wilson et al., 2010b). This feedback changed the
colour of the dots from white to green when performance
was within the given error bandwidth of the target relative
phase. In the first training session the error bandwidth
is set at ±30◦ and was reduced by ±5◦ across sessions
when the Criterion for Progression was met (to ±25◦,
±20◦, ±15◦, and ±10◦). This colour feedback was not
present in the Assessment Action tasks; or that reason,
coordination feedback is removed every fifth trial to help prevent
dependence on it (Kovacs et al., 2009; Snapp-Childs et al.,
2015).

After every trial with feedback participants also received KR
feedback based on their performance, in which the participant
is given a performance percentage (their PTT20 score as a
percentage) and a comment (see Table 2). Finally, participants
received additional KR at the end of each training session in
the form of a level-progression statement. This simply stated

TABLE 2 | Knowledge of results (performance generated score).

Performance Comment

<25% =This is still a little low – keep trying!

25–50% =Definitely improving – keep it up!

50–75% =Doing great – keep it up!

>75% =This is really great – great job!

whether or not the participant would stay at the current level
or progress to the next level. We found that this helped
participants stay on task and remain motivated through the
extensive training.

Criteria
Prior to training, all participants’ 60◦ production was
substantially worse than 0◦ and 180◦ (Mean PTT20: 0.22;
0.77; 0.81, respectively). Participants were then trained in
accordance with several pre-defined criteria (see preregistration).
In each training session, when PTT20 was greater than 0.5
in at least 20/30 trials, the participant progressed to the next
training stage. This was used to confirm that the participant was
ready for progression and to avoid occasional poor performance
trials from halting progression. Meeting this criterion resulted
in the feedback bandwidth of the next training session to be
reduced by ±5◦; otherwise the feedback was kept the same.
Training was stopped if PTT20 was greater than 0.6 in at least
20 trials for the last two training sessions (feedback bandwidth
at ±10◦), or when participants completed 10 training sessions.
Participants completed between 6 and 10 training sessions. All
participants progressed to and completed at least one session
with the feedback bandwidth set to±10◦.

Data Analysis
Judgements
For the judgement tasks, the computer recorded the responses
(“correct” or “incorrect”) in relation to the relative phase of the
“different” displays that were shown. We separately averaged
the difference from 60◦ of relative phases at which reversals in
the staircase procedure occurred for the “different” phases that
were greater than 60◦ and those less than 60◦, excluding the first
reversal, for each participant. We then averaged those thresholds
for each participant.

Movement
The raw movement data is a 60 Hz time series of the position
of the joysticks over time. Each time series was centred on
0, filtered with a low-pass Butterworth filter (cut-off frequency
10 Hz), and differentiated to compute the velocity time series. The
continuous phase time-series of each joystick was computed as
the arctan(V/X) for each data point and the difference between
these time series was the relative phase time series. We then
computed the proportion of this time series that fell within 20◦
of the target relative phase (PTT20).

Contrast Analyses
To analyse transfer of learning we used Dependent Measures
Contrast Analyses (Rosenthal et al., 2000). This analysis allows
us to test for a specific hypothesised pattern of differences
across multiple means with a single test (rather than the less
powerful and less targeted method of an ANOVA followed by
pairwise comparisons). In this experiment, we applied a contrast
analysis to performance in the three Assessment sessions at
each untrained relative phase in which we tested for the specific
pattern of change observed at the trained relative phase of 60◦.
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The test statistic, t, is computed as

tcontrast =
L√
σ̂2

L
n

with Li =

k∑
j

(xij · λj) (1)

where x is the data and λ are weights. The λ weights are the way
of quantifying the hypothesised pattern, here set by Assessment
session performance at 60◦ (see below). If the data do not differ in
the specific way implemented by the Lambda weights (λ), then Li
is near to zero (i.e., H0 is Lj = 0). In terms of transfer, a statistically
significant Li score for data at a particular untrained relative
phase indicates that the specific pattern of improvement observed
at 60◦ is also occurring at that particular untrained phase; the
learning has transferred.

RESULTS

Performance was examined across Assessment sessions at 60◦ to
identify whether and how participants had improved with the
training. The identified pattern of learning was used to set the
λ weights for the contrast analyses. These analyses provide the
tools to investigate whether the observed pattern of learning at
60◦ had transferred to any of the other untrained relative phases
(0◦, 30◦, 90◦, 120◦, 150◦, and 180◦). This basic analysis plan was
then repeated with the Judgement data.

Learning
Refer to Figure 2. To examine whether and how training at 60◦
changed performance at 60◦, average PTT20 was analysed using a
one-way repeated measures ANOVA with Session (Baseline, Post
Training, and Retention) as a within-subject factor.

Participants significantly improved their coordination stability
from Baseline to Post Training and that learning was Retained.
There was a main effect of Session, F(2, 18) = 149.95, p < 0.001.
Bonferroni-adjusted post-hoc analyses revealed a significant
difference between Baseline and Post Training, t(9) = 15.78,
p < 0.001, MD = 0.475, Baseline and Retention, t(9) = 14.068,
p < 0.001, MD = 0.424 but not between Post and Retention
t(9) = 1.712, p > 0.05, and MD = 0.052.

The observed learning pattern mirrored what happened in
Leach et al. (2021). Production of 60◦ was poor at Baseline,
it improved significantly with training and this improvement
remained stable after the retention period. Using the learning
pattern identified at 60◦, the λ weights for the Action data were
set at -2 for Baseline, 1 for Post Training and 1 for Retention. This
was done in accordance with the guidelines set by Rosenthal et al.
(2000).

Transfer
Based on the results of Leach et al. (2021), we made explicit
predictions regarding where transfer was likely to take place.
Learning 90◦ entails a switch from relative direction to relative
position. A consequence of this switch was improvement at 60◦
and 120◦. If relative position affords stability at 60◦, 90◦, and
120◦ then learning to produce any of these three relative phases

should induce transfer to the other two. Thus, the prediction is
that learning 60◦ will transfer to 90◦ and 120◦. There is no reason
that transfer will occur at 0◦ or 180◦, so these phases were not
tested. Using the λ weights assigned from the learning data of
60◦ (-2, 1, and 1), Dependent Measures Contrast Analyses were
completed across Assessment sessions for the four criterion tasks
(30◦, 90◦, 120◦, and 150◦). Any significant results would indicate
significant transfer, showing that the same pattern of learning at
60◦ was present in the criterion task. Any transfer was expected
to be very large in effect (Hedges g > 1.5).

Refer to Figure 3. Contrary to our predictions, Dependent
Measures Contrast Analyses with Holm-Bonferroni corrections
revealed significant transfer to 90◦ t(9) = 4.476, p < 0.001,
g = 1.415 and 30◦ t(9) = 4.402, p < 0.001, g = 1.39 but nowhere
else (p > 0.05).

Proportion of transfer was calculated across all conditions
by taking the difference between Post Training and Baseline
performance for the criterion task and dividing that by the
difference between the Post Training and Baseline performance
for each of the transfer tasks. Performance at 150◦ (-3%) and 180◦
(-3%) was negligibly worse as a function of practice at 60◦. All
other phases increased in performance as a function of practice at
60◦. There was some increase of performance at 120◦ (11%) and
0◦ (8%), but the only substantial increase was at 90◦ (45%) and
30◦ (43%). There was no structural change in the proportional
transfer at retention, other than an increase in the transfer to 90◦
(58%) where all other phases stayed reasonably stable.

Judgement Thresholds
Refer to Figure 4. Prior to training, thresholds for identifying
which display showed 60◦ were high (M = 19.32◦, SD = 6.53◦).
After training, this threshold improved (M = 14.58◦, SD = 4.92◦)
and remained low after the Retention period (M = 14.89◦,
SD = 5.77◦).

Contrast Analyses
To test the prediction that the Judgement data mirrors the
learning data in the Action task (60◦) the λ weights identified in
the learning pattern of 60◦ were used to predict the same pattern
in the Judgement data. The lower the threshold, the greater the
ability to discriminate between the target relative phase (60◦) and
other relative phases. Thus, the sign of the λ weights are reversed
to comply with the nature of the measure (2 for Baseline, -1
for Post Training, and -1 for Retention). A Dependent Measures
Contrast Analysis with the within subjects factor of Session (3
levels; Baseline, Post-Training, and Retention) and the dependent
variable of unperturbed judgement thresholds of 60◦, revealed a
significant effect with a large effect size. Replicating experiment 1,
this demonstrates that the Action-driven λ weights are a good fit
for the Judgement data, t(9) = 4.152, p < 0.001, and g = 1.31.

Unperturbed and Perturbed Judgement
Threshold Comparison
Refer to Figure 5. Thresholds for identifying 90◦ were lower
than Baseline in the unperturbed condition in both Post Training
(M = 14.58◦, SD = 4.92◦) and Retention (M = 14.89◦, SD = 5.77◦)
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FIGURE 2 | Young adults trained at 60◦ : Average action data. Average performance data (Proportion of Time on Target ± 20◦) with standard error bars for all
phases in the three assessment sessions (Baseline, Post Training, and Retention). Significance levels are indicated on the figure (∗∗p < 0.01). There was a significant
main effect of Session for the trained phase of 60◦ (solid line). This learning transferred to 30◦ and 90◦ (dotted lines, see Transfer section for further detail).

but were extremely high and variable in the perturbed condition
for both Post Training (M = 67.12◦, SD = 24.63◦) and Retention
(M = 56.97, SD = 23.12). Participants improved perceiving and
moving at 60◦ by switching to using relative position, and when
this was no longer informative about relative phase, they could no
longer perform the judgement task.

To compare the Unperturbed judgement thresholds at Post
Training and Retention with the Perturbed judgement thresholds
we performed an ANOVA on average judgement thresholds
with Condition (Unperturbed and Perturbed) and Session (Post
Training and Retention) as factors. There was a significant main
effect of Condition, F(1, 18) = 49.71, p < 0.001, with no other
significant main or interaction effects. The perturbation resulted
in a substantially larger perceptual threshold at Post Training
and Retention in comparison to the unperturbed condition (see
Figure 5). The lower the threshold the better the performance.

Bias Analysis
The dependent variable PTT20 (proportion of time on target
within a tolerance range of 20◦) is an established measure of
assessing performance of the task over time (see Wilson et al.,
2010a,b for initial use, and Snapp-Childs et al., 2015, for a detailed
comparison with other measures). The standardised bandwidth
of±20◦ has repeatedly captured changes in performance over the
course of learning, so it is reasonable that this experiment uses
this bandwidth (for previous studies closely aligned to this one
that also use this bandwidth, see Snapp-Childs et al., 2015; Leach
et al., 2021).

As per Leach et al. (2021), during the early phases of training,
the feedback was triggered over a wide range (±30) and this was

then reduced according to performance. In addition, the ±20◦
bins for each neighbouring relative phase overlap. One potential
issue is that what we have reported as transfer (say to 30◦ ± 20◦)
could simply be a bias toward one instance of the feedback or
time spent moving within the 60◦ ± 20◦ bin. For example, when
presented with the task of moving at 60◦ an individual might
spend time moving at 45◦, which is within our PTT20 threshold
for “on target” for both 60◦ and 30◦.

We repeated the transfer analysis with a reduced bandwidth
of ±10◦3. If bias toward a particular instance of the feedback
is what is driving the transfer effect, then the results should be
characteristically different. That is, the performance landscape
should look different. However, if PTT20 is successfully capturing
transfer, the results will replicate (likely with a reduced effect, as
performing within±10◦ requires a higher degree of accuracy).

As per Leach et al. (2021), the learning pattern found with a
reduced bandwidth of PTT10 at 90◦ was identical to the PTT20
result. Participants improved their coordination stability from
Baseline to Post Training and that learning was retained. An
ANOVA confirmed this with a main effect of Session [F (2,
18) = 117.65, p < 0.001]. The difference between Baseline and the
other Assessment sessions was driving this effect (both p < 0.001),
and there was no significant difference between Post Training and
Retention (p > 0.05).

As the learning pattern was the same at PTT10, the weights
for the contrast analysis were set the same (-2, 1, and 1). The
pattern of transfer found with the reduced bandwidth mirrors
what was found at PTT20, with reduced effect sizes (yet still large

3We have kept this as an exploratory analysis because it was not included in our
preregistration (Leach et al., 2017).
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FIGURE 3 | Young adults trained at 60◦ : Judgement transfer. Average
unperturbed Perceptual Judgement Thresholds for 60◦ (lower) with standard
error bars at Baseline, Post Training, and Retention with corresponding
Lambda (λ) weights (upper). Average unperturbed thresholds reduced as a
function of training over time, indicating an improvement in performance. This
improvement remained after the retention period.

in magnitude). The learning at 60◦ transferred to 30◦ [t (9) = 4.67,
p < 0.001, and g = 1.48] and 90◦ [t (9) = 4.6, p < 0.001, g = 1.46],
and nowhere else (p > 0.05).

This analysis tells us two things. First, the pattern of transfer
we observed was not caused by any systematic bias in how
participants performed during training. Second, it confirms that
the 20◦ bandwidth for the PTT20 measure is appropriate; the
bandwidth doesn’t dictate the pattern of results (see also Wilson
et al., 2010a who checked bandwidths of 10◦, 15◦, and 30◦ and
found the same result).

DISCUSSION

This study aimed to further probe the transfer effects found in
Leach et al. (2021). There, learning to produce 90◦ transferred
to 60◦ and 120◦ and this transfer was supported by the switch
to using relative position to perceive relative phase. This study
trained participants to produce 60◦; we predicted improvement
would come with a switch to relative position and a consequent
transfer to 90◦ and 120◦.

As predicted, learning to produce 60◦ improved the visual
discrimination of 60◦, and this was caused by a switch to
relative position (demonstrated by the position perturbation
results). We again saw transfer of learning to two different

FIGURE 4 | Young adults trained at 60◦: Performance transfer. Average
performance data (Proportion of Time on Target ± 20◦, lower) with standard
error bars (lower) for the trained phase of 60◦ and transfer partners 30◦ and
90◦ in the three assessment sessions (Baseline, Post Training, and Retention)
with corresponding Lambda (λ) weights (upper).

relative phases. However, the location of the transfer went
against predictions. Transfer occurred at 30◦ and 90◦ and
there was no asymmetry; transfer occurred in a proportionally
symmetrical manner to both 30◦ (43%) and 90◦ (45%). The
proportion of transfer was also smaller than in Leach et al.
(2021).

We can rule out several possible explanations for the
contrasting results. Firstly, we can rule out the idea that
participants did not learn relative position at 60◦, but some other
information variable; the disruptive effect of the perturbation
procedure on trained performance is clear. In the position
perturbation, relative direction is unaffected and people using
it are also unaffected (Wilson and Bingham, 2008). Therefore,
participants are not using relative direction as information
for learning 60◦. Secondly, the smaller magnitude of transfer
was not caused by less learning, which was comparable across
90◦ (0.43 improvement) and 60◦ (0.48 improvement). Baseline
performance of 60◦ and 90◦ were also almost identical over
both experiments.

Does This Refute Ecological Task
Dynamics?
At first glance, these results seem to expose a weakness
in the ecological task dynamical approach. We made
a prediction, and the results do not accord with that
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FIGURE 5 | Young adults trained at 60◦: Average perceptual judgement thresholds. Average perceptual judgement thresholds for 60◦ with standard error bars at
Baseline, Post training and Retention. Significance levels are indicated on the figure (∗∗p < 0.01). There was a significant main effect of Condition, with the
perturbation reducing performance (solid line). The contrast analysis demonstrated that the learning data was a good fit for the unperturbed judgement data (dotted
line).

prediction. There is another, related literature on coordination
dynamics that might accommodate these results; specifically,
the dynamical systems account developed primarily by
Zanone and Kelso (1994, 1997) and embodied in various
versions of the Haken-Kelso-Bunz model (Haken et al.,
1985). This account and the ecological task dynamical
account are at odds with each other in various ways
(Golonka and Wilson, 2019) and perhaps our results
favour them over us.

This theoretical framework describes coordination dynamics
in terms of attractor layouts, and models learning as a system
wide phase transition from a bi-stable (0◦, 180◦) to a tri-stable
arrangement of attractors (0◦, 180◦ plus the trained relative
phase). With regards to transfer, experiments tend to find that
learning transfers to the symmetry partner of the trained relative
phase (where the timing is the same but the lead-lag relations
between the limbs is reversed, e.g., 90◦ and 270◦). Less discussed
is the fact that experiments often also show improvements in
relative phases that neighbour the trained relative phase (e.g.,
see Figure 1a in Zanone and Kelso, 1997; Hurley and Lee,
2006, also saw transfer from 90◦ to 135◦ under one particular
feedback condition). This could, in theory, be accounted for by
the attractor formed by training being wider than the intrinsic
attractors at 0◦ and 180◦, meaning more neighbouring states
might be included in the trained attractor.

However, this account has serious issues. There is strong
evidence that the attractors are not real parts that are causing
behaviours. For example, Zanone and Kelso (1994) predicted

that attractor strength would affect learning rates, specifically
that learning something close to 0◦ (e.g., 30◦) would be harder
than learning something the same distance from 180◦ (e.g., 150◦)
because the stronger attractor at 0◦ would compete with the to-
be-learned pattern more fiercely. The opposite is actually true
(Fontaine et al., 1997; Wenderoth et al., 2002). Second, a wide
attractor is not an especially stable state, nor can it distinguish
between the states within it. Our results (especially the bias
analysis) show that people were actually moving at the transfer
relative phases, and doing so quite well. Finally, with regards to
applying these results to the current study, dynamical systems
theory experiments use different feedback methods (either visual
metronomes or Lissajous figures) and these displays alter the task
dynamic by altering the information supporting the coupling,
and this changes the overall behaviour of the system quite
drastically (e.g., Kovacs et al., 2009, 2011).

So, while attractor dynamics is one legitimate way to describe
the system dynamics, it is not an explanation of those system
dynamics – there is no mechanism at work in those models
(Golonka and Wilson, 2019). This account is effectively just
a data-fitting exercise, and it does not help us understand
our results. In order to try and develop an actual mechanistic
explanation of our results, we will therefore continue to apply
the ecological task dynamical approach and its real parts and
processes (specifically, information variables and limb dynamics).
This approach to defining a task is empirical, and the data are
telling us that we do not yet have the right dynamical description
of the two trained systems. We are missing a piece of the puzzle,
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and so while we do not yet know what that is, we can develop
some hypotheses based on the ecological analysis.

Expanding the Task Dynamical Analysis
Right now, the dynamical model of coordinated rhythmic
movement (Bingham, 2001, 2004a,b; Snapp-Childs et al., 2011)
is a model of the untrained system; the limb dynamics are
coupled via relative phase perceived using relative direction. Over
training, the limb dynamics remain the same; what changes
is the perceptual coupling. Training 90◦ and 60◦ both lead to
participants being sensitive to the position perturbation, but how
they are using that information produces different patterns of
transfer. The question is why.

The first option is that the position perturbation judgement
task is not as specific as it was designed to be, and participants
have in fact learned two different information variables that
just happen to both get hit by the position perturbation. This
is unlikely. The only other two candidates (relative speed and
relative frequency) are both affected by the position perturbation,
but Wilson and Bingham (2008) showed that perturbing these
individually only added noise to the judgements. In addition,
neither is robust information for relative phase.

One slightly more realistic concern is not with the position
perturbation method, but with the fact we only implemented it in
judgement tasks (Bingham and Pagano, 1998). Task dynamically,
the judgement task is modelled by integrating the coupling
term over a 2 s window, which is different from using the
coupling term to coordinate two limbs. Evidence does show
a close relationship between the judgement and production
tasks, however; learning to improve on the judgement task
transfers to the production task (Wilson et al., 2010a) and
vice versa (e.g., Snapp-Childs et al., 2015; Leach et al., 2021,
and the current experiment). The tasks overlap informationally,
and that remains the important overlap. That said, it will be
important to future work to informationally perturb the entire
performance dynamic.

We propose at this stage that in both experiments, participants
did learn to use relative position, and that the difference emerges
over the process of learning. Herth et al. (2021) present an
expanded version of the Bingham model that accounts for
learning 90◦ and system behaviour post-learning. They add the
option of a second coupling term (normed relative position)
and a mechanism for switching between the two couplings. This
mechanism simply entails using the most detectable variable,
and switching if that variable falls below the current perceptual
threshold for that variable.

The critical part for us is how they account for the process of
learning. At the beginning, participants only have one coupling
option; relative direction. They try to use this coupling to produce
90◦ (or 60◦) but only succeed to a certain extent. In the absence
of feedback, participants cannot use relative direction to produce
sufficiently stable examples of 90◦ (or 60◦) and so relative position
is never available to be learned. With coordination feedback,
they are supported as they try to produce 90◦ (or 60◦) via
relative direction, relative position becomes available, and is
learned because it helps (the need for this feedback support was
confirmed by Wilson et al., 2010b).

In ecological task dynamic terms, training does not change
limb dynamics, and learning both 60◦ and 90◦ entails using
relative direction and the feedback to bootstrap their way into
moving so that relative position is sufficiently invariant to be
learned (c.f., Gibson and Gibson, 1955). So both of these trained
systems have access to the same resources. By Herth et al’s
analysis, the only remaining dynamical component that might
be different between the two systems is the threshold-based
mechanism for switching which variable is currently being used.

That mechanism plays out in the correction of errors.
If someone is trying to perform 90◦ using relative position
but accidentally slips into doing 0◦ or 180◦ using relative
direction, the required correction back to 90◦ entails switching
information variables immediately; the threshold for detecting
relative direction at 90◦ is too high, and relative position is
the only detectable option. If, however, someone is trying to
perform 60◦ using relative position but accidentally slips into
doing 0◦ using relative direction, the required correction may
not mandate an information switch, at least not immediately.
The threshold for detecting relative direction at 60◦ is high but
not catastrophically so, and it may take longer before relative
position is a clear winner in the competition embodied in the
switching mechanism.

If this is the case, then what is being learning is not just a new
information coupling, but a way to shift between couplings, and
the way that mechanism plays out at 60◦ suits 30◦ and 90◦ but
not 120◦, while the way that mechanism plays out at 90◦ suits
60◦ and 120◦ but not 30◦. The data and simulations from Herth
et al. (2021) support this overall analysis, but there is not yet
any specific test of this hypothesis and so it remains completely
provisional at this time.

Summary
The current experiment followed on from Leach et al. (2021)’s
investigation into learning and transfer of learning. How this
works hinges on what constitutes a task; this experiment takes
an ecological task dynamical approach to this question in
which tasks are defined at the organism-environment scale, with
organism and environmental dynamics coupled via perceptual
information. While we did not find all of our predicted results,
the pattern of data across the two experiments has provided
us with a great deal of information about what learning does
to the task dynamics of coordinated rhythmic movement. This
work continues to be inform and be informed by the mechanistic
modelling work by Bingham and colleagues (Bingham, 2001,
2004a,b; Snapp-Childs et al., 2011, 2015; Herth et al., 2021;
see Golonka and Wilson, 2012, 2019 for more about the
mechanistic aspect) which in turn is informed by and informing
the development of the ecological task dynamical approach to
perception and action.
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APPENDIX 1 – POWER ANALYSIS

Two power analyses were performed using G∗Power using the results of Leach et al. (2021) as input.

Detecting Very Large Transfer (Input From 60◦)
The following is a power analysis performed on the performance data for detecting transfer from 90◦ to 60◦. The analysis is in the
form of a one-sided t-test, as is the generation of the t-value from the contrast analysis.

Input: Tail(s) = One
Effect size d = 2.322
α err prob = 0.05
Total sample size = 10
Output: Noncentrality parameter δ = 7.3428087
Critical t = 1.8331129
Df = 9
Power (1-β err prob) = 0.9999998
Power to observe very large effects of transfer (d = 2.322) with N = 10 is 1-β of >0.99. This level of power is achieved at N > = 6.

Detecting Large Transfer (Input From 120◦)
The following is a power analysis performed on the performance data for detecting transfer from 90◦ to 120◦.

Input: Tail(s) = One
Effect size d = 1.705
α err prob = 0.05
Total sample size = 10
Output: Noncentrality parameter δ = 5.3916834
Critical t = 1.8331129
Df = 9
Power (1-β err prob) = 0.9995092
Power to observe an effect size of d = 1.705 with the above input is 1-β > 0.99. This level of power is achieved at N > = 8.
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