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We used a delayed-estimation paradigm to characterize
the joint effects of set size (one, two, four, or six) and
delay duration (1, 2, 3, or 6 s) on visual working memory
for orientation. We conducted two experiments: one
with delay durations blocked, another with delay
durations interleaved. As dependent variables, we
examined four model-free metrics of dispersion as well
as precision estimates in four simple models. We tested
for effects of delay time using analyses of variance,
linear regressions, and nested model comparisons. We
found significant effects of set size and delay duration on
both model-free and model-based measures of
dispersion. However, the effect of delay duration was
much weaker than that of set size, dependent on the
analysis method, and apparent in only a minority of
subjects. The highest forgetting slope found in either
experiment at any set size was a modest 1.148/s. As
secondary results, we found a low rate of nontarget
reports, and significant estimation biases towards
oblique orientations (but no dependence of their
magnitude on either set size or delay duration). Relative
stability of working memory even at higher set sizes is
consistent with earlier results for motion direction and
spatial frequency. We compare with a recent study that
performed a very similar experiment.

Introduction

Visual working memory can maintain multiple items
for durations of up to tens of seconds. Not surprisingly,
two basic variables used to characterize working
memory performance are the number of items (set size)
and delay duration (a third basic variable would be the
complexity or number of features per item). As in
recent years, set size effects have received the most

scrutiny in experimental psychology (for reviews, see
Luck & Vogel, 2013; Ma, Husain, & Bays, 2014); the
study of delay duration effects has ended up being
somewhat overshadowed.

Perhaps the first researcher to vary delay duration in a
controlled experiment was Friedrich Hegelmaier (1833–
1906), when he was a medical student in Tübingen
(Laming & Laming, 1992). His work was published in
German in 1852 and republished in English in Laming
and Laming (1992). Hegelmaier measured visual work-
ing memory for the length of a line segment using a
sameness judgment task, and found that his accuracy
dropped only modestly, from 80% to 73%, when he
increased delay duration from 3 to 60 s. More recent
studies have predominantly used two-alternative forced-
choice delayed-discrimination tasks. Using delay dura-
tions between 1 and 30 s, no effect of delay duration on
discrimination threshold was found for spatial frequency
(Greenlee, Rischewski, Mergner, & Seeger, 1993; Mag-
nussen, Greenlee, Asplund, & Dyrnes, 1990, 1991;
Magnussen, Greenlee, & Thomas, 1996; Magnussen,
Idas, & Holst-Myhre, 1998; Regan, 1985), speed
(Greenlee, Lang, Mergner, & Seeger, 1995; Magnussen
& Greenlee, 1992), motion direction (Blake, Cepeda, &
Hiris, 1997), and motion coherence (Blake et al., 1997).
Discrimination thresholds for contrast, however, seem
to approximately double as delay duration increases
from 1 to 10 s (Greenlee, Magnussen, & Thomas, 1991;
Harvey, 1986; Lee & Harris, 1996; Magnussen et al.,
1996). Working memory for orientation (Magnussen et
al., 1998; Magnussen, Landro, & Johnsen, 1985; Vogels
& Orban, 1986) and vernier offset (Fahle & Harris,
1992) show modest rates of decay—for example, from
77% to 71% correct when going from 1- to 10-s delay
(Magnussen et al., 1998). Another paradigm that has
been used to measure delay duration effects is delayed
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estimation, in which the subject matches a probe
stimulus to a memorized stimulus along a continuum in
the feature of interest. Blake et al. (1997) used this
paradigm for motion direction to replicate their results
from the two-alternative forced-choice task. Consis-
tently, Zokaei, Gorgoraptis, Bahrami, Bays, and Husain
(2011) in a sequential presentation, found a significant
effect of sequence length but not of serial position on the
precision of encoding as estimated from a model. Two
studies employing delayed estimation for color found
mild declines of performance between 1 and 26 s at a set
size of one (Nilsson & Nelson, 1981) and between 4 and
10 s at a set size of three (Zhang & Luck, 2009).

Despite extensive bodies of literature on set size and
delay duration effects, their intersection is sparsely
populated. Blake et al. (1997) used their delayed-
estimation task not only to probe the memory of a
single-motion direction, but also the memory of one of
N simultaneously or sequentially presented motion
directions, with set size N being 3, 5, 7, or 9 (Blake et
al., 1997). They found a significant effect of set size on
average error, but no significant effect of delay
duration (0, 10, or 30 s) and no significant interaction.
In a two-item spatial-frequency delayed-discrimination
task, Magnussen and Greenlee (1999) similarly found a
strong effect of set size (one or two) and no effect of
delay duration (1, 3, or 10 s).

The present article uses delayed estimation to
investigate the joint effects of set size and delay
duration on visual working memory for orientation.
Since the exact shape of the error distribution in
delayed estimation has in recent years become a topic
of interest (Fougnie, Suchow, & Alvarez, 2012; Ma et
al., 2014; van den Berg, Shin, Chou, George, & Ma,
2012; Zhang & Luck, 2008), we characterize the error
distribution using a variety of metrics besides average
error. In addition, we examine estimation biases
(Pratte, Park, Rademaker, & Tong, 2016; Van Bergen,
Ma, Pratte, & Jehee, 2015) and nontarget reports
(Bays, Catalao, & Husain, 2009; van den Berg, Awh, &
Ma, 2014; Zokaei et al., 2011).

The joint variation of set size and delay duration
could shed light on neural mechanisms of visual
working memory. A recent biophysical computational
model in which working memories are represented by
patterns of persistent activity (so-called ‘‘bump attrac-
tors’’) that fade and merge, predicts that the effect of
delay duration interacts with set size: Delay duration
would affect performance at intermediate (three or
four), but not at small or large set sizes (Z. Wei, Wang,
& Wang, 2012). Thus, it is possible that earlier studies
did not find significant effects of delay duration on
orientation memory performance because they only
used a set size of one. In Wei et al.’s model, the merging
of multiple patterns of activity arises largely because
the patterns are jointly maintained in a one-dimen-

sional population, in which neurons only have feature
selectivity; metaphorically speaking, the bumps have
‘‘too little space to avoid each other.’’ By contrast, if
visual working memories were to a large extent
maintained in visual sensory areas (Harrison & Tong,
2009; Pasternak & Greenlee, 2005; Sneve, Alns,
Endestad, Greenlee, & Magnussen, 2012), spatial
dimensions would be available in addition to the
feature dimension. Then, one might predict largely
independent maintenance and no interaction between
the effects of delay duration and set size.

Experiment 1 presented here was part of the PhD
thesis of author H.S. in April 2015. During the review
process of the present article, we became aware of a
recent article that also studies the temporal decay of
visual short-term memory for orientation at multiple
set sizes (Pertzov, Manohar, & Husain, 2017). This
convergence offers an excellent opportunity for com-
parison. We comment on the similarities and differ-
ences with Pertzov et al. in the Results and Discussion
sections. Experiment 2 was done in response to a
reviewer concern.

Methods

Subjects

All subjects gave informed consent. Treatment of
subjects was in accordance with the Declaration of
Helsinki.

Experiment 1

Five subjects participated (including one author).
The data were collected at the authors’ previous
institution, Baylor College of Medicine, and the study
was approved by the Institutional Review Board of
Baylor College of Medicine. Subjects were compensat-
ed $50 for their participation.

Experiment 2

Six subjects participated (all naive; two male, four
female). The data were collected at New York
University, and the study was approved by the
Institutional Review Board of New York University.
Subjects were compensated $55 for their participation.

Apparatus and stimuli

Experiment 1

All stimuli were displayed on a 19-in. Dell LCD
monitor (1280 3 1024 pixels) at a viewing distance of
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approximately 60 cm; in calculations of degrees of
visual angle (dva), we assume a viewing distance of
exactly 60 cm. The stimuli were presented on a midlevel
gray background (128 on an 8-bit grayscale) with a
luminance of approximately 25 cd/m2.

Each stimulus was a Gabor pattern with a Gaussian
envelope of standard deviation 0.2 dva and a cosine
modulation with a spatial frequency of 2.86 cycles/dva,
a phase of 0, and a peak luminance of approximately
110 cd/m2. We did not gamma-correct the monitor but
because the only variable of interest was orientation,
we do not believe this mattered.

A memory array consisted of one, two, four, or six
Gabor stimuli with orientations independently drawn
from a uniform distribution. The center of each Gabor
was located at one of six fixed positions on an
imaginary circle around fixation of radius 5 dva. These
positions were spaced at 608 angular intervals (within
the screen, not dva), starting from the position to the
right of fixation. When set size was one, two, or four, a
contiguous subset of positions was used.

Experiment 2

Identical to Experiment 1 except for the following.
All stimuli were displayed on a 24-in. ViewSonic LED
monitor (384032160 pixels) at a viewing distance of 61
cm (controlled using a headrest). The stimuli were
presented on a midlevel gray background (128 on an 8-
bit grayscale) with a luminance of 57.9 cd/m2. The
Gabor stimuli had a Gaussian envelope of standard
deviation 0.25 dva, a cosine modulation with a spatial
frequency of 2.28 cycles/dva, and a peak luminance of
approximately 240 cd/m2. The imaginary circle had a
radius of 6.27 dva.

Trial procedure

We used a delayed-estimation task (Blake et al.,
1997; Nilsson & Nelson, 1981; Wilken & Ma, 2004).
The trial sequence consisted of the presentation of a
fixation cross (1 s), the memory array (0.1 s), a delay
period during which only the fixation cross was visible
(1, 2, 3, or 6 s), and a response screen (presented until
response). Subjects were instructed to fixate on the
fixation cross. The response screen initially consisted of
an empty circle at one of the locations where a stimulus
had been present in the memory array. When the
subject moved the mouse, a probe Gabor appeared
inside the circle; it had the same properties as the
stimuli in the memory array except for orientation.
When the subject moved the mouse horizontally, the
probe changed orientation. The task was to adjust the
probe to match the orientation of the remembered
stimulus at the corresponding location. The probe

could take 320 possible values—equally spaced across
orientation space, with a step size of 1.128. Its initial
orientation was drawn randomly from these possible
values.

Experimental procedure

Experiment 1

The experiment consisted of four sessions, with each
session consisting of eight blocks, and each block
consisting of 60 trials. On each trial, set size was
pseudorandomly chosen from its four possible values.
Delay duration was held constant within a block. The
four delay durations were each used once in the first
four blocks, and then again each once in the last four
blocks, both in pseudorandom order. Thus, each
subject completed 834360¼1,920 trials in total, with
120 trials at each combination of delay duration and set
size. At the start of the first session, right after the
instructions were given, the subject completed 16
representative practice trials; these were not used in the
analysis.

Experiment 2

Identical to Experiment 1 except for the following.
On each trial, delay duration was pseudorandomly
chosen from its four possible values. Subjects com-
pleted four instead of eight blocks per session, for a
total of 4 3 4 3 60 ¼ 960 trials, with on average of 60
trials at each combination of delay duration and set
size.

Circular statistics

To quantify the effects of set size and delay duration
on the error distribution, we consider four measures of
dispersion: mean absolute error, circular standard
deviation, interquartile range, and circular variance.
Interquartile range is the difference between the 75th
and the 25th percentiles of the sorted errors. To
compute circular standard deviation and circular
variance, we first multiplied all errors by 2, so that they
took values between –1808 and 1808 (which is the
standard for calculations of circular statistics). We then
regarded each error as a point on a unit circle and
calculated the mean resultant length R of the unit
vectors corresponding to all errors. Circular standard
deviation is then 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logR
p

(Mardia & Jupp, 1999),
where we introduced the factor 1

2 to map back to the
true orientation space. Circular variance is 1 – R, which
is between 0 and 1.

We also consider other circular statistics: circular
mean, circular skewness, and circular kurtosis. Denot-
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ing errors rescaled to [–p, p] by �i, where i is the trial
index, the circular mean �� is the angle of the resultant
vector (Mardia & Jupp, 1999). For circular skewness
and circular kurtosis, we use the simple definitions by
Pewsey (2004), namely skewness ¼ 1

n

Pn
i¼1 sin 2ð�i � ��Þ,

and kurtosis ¼ 1
n

Pn
i¼1 cos 2ð�i � ��Þ, where n is the

number of trials.

Experiment 1: Results

Model-free: Population

We measured subjects’ ability to estimate orienta-
tions stored in visual working memory as a function of
both set size (one, two, four, or six) and delay
duration (1, 2, 3, or 6 s). The error of an estimate on a
given trial is the circular distance between the estimate

and the true orientation; it takes values between –908
and 908. For visualization (but not for any statistical
analysis), we binned errors in nine equal bins. The
binned error distributions across conditions are shown
in Figure 1. Visually, it appears that the error
distribution is strongly affected by set size but only
weakly by delay duration. The effect of set size has
been widely reported (e.g., van den Berg et al., 2012;
Wilken & Ma, 2004) and we will not emphasize it in
this article.

The measures of error dispersion are shown in
Figure 2. We calculated all measures for each subject,
then took means and standard errors across subjects.
Visually, these plots confirm the impression from the
histograms: Each measure shows a strong effect of set
size and a much weaker effect of delay duration.
Repeated-measures analyses of variance (ANOVAs;
Table 1) show effects of set size with p values lower
than 10�8, effects of delay duration with p values of

Figure 1. Experiment 1: Binned error histograms grouped by delay duration (A) and set size (B), averaged over subjects. Each bin was

208 wide, and we plot the histogram value in the center of the bin. Here and elsewhere, error bars represent 1 SEM across subjects.

Figure 2. Experiment 1: Measures of error dispersion as a function of delay duration and set size. (A) Mean absolute error. (B) Circular

standard deviation. (C) Interquartile range. (D) Circular variance.
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0.017 and lower; the significance of the interaction
depends on the measure. Averaged across trials, delay
duration, and set sizes, absolute error was 19.38 6 1.08

(mean 6 standard error of the mean across subjects).
Next, we performed a linear regression of mean

absolute error against delay duration, separately at
each set size, and following Pertzov et al. (2017), we
call the slope of this regression line the ‘‘forgetting
slope.’’ This slope ranges from 0.42 6 0.16 at a set size
of one to 1.14 6 0.49 at a set size of six (Figure 3,
blue). None of these were significantly different from 0
after a t test with Bonferroni-Holm correction (p
values ¼ 0.062, 0.13, 0.024, and 0.082). Repeated-
measures ANOVAs did not reveal a significant effect
of set size on forgetting slope, F(3, 12) ¼ 3.39, p ¼
0.054.

For completeness, we also examined the effect of
delay duration and set size on other moments of the
error distribution (Figure 4). As expected, the circular
mean and circular skewness are close to zero, and all p
values in a repeated-measures ANOVA are greater
than 0.08. For circular kurtosis, we find a significant
effect of set size, F(3, 12) ¼ 73.5, p , 10�7, but no
significant effect of delay duration, F(3, 12)¼ 2.42, p¼
0.12, and no significant interaction, F(9, 36)¼2.08, p¼
0.058.

Model-free: Individual subjects

We next examined individual subjects. Visually, the
histograms (Figure 5) suggest individual differences:
Effects of delay duration seem to be absent in subjects
S1 and S3, minimal in S5, and modest in S2 and S4; it
should also be kept in mind that S2 was an author. To
quantify individual-subject effects, we performed a
linear regression of circular standard deviation against
set size, delay duration, and their product (to model a
potential interaction), for each subject individually
(Table 2). Besides providing within-subjects confi-
dence intervals (CIs), regression has the advantage
over ANOVA of taking into account the ordinal
nature of both set size and delay duration, albeit in a
specific way (here linear). The 95% CI for the
coefficient of set size contained 0 for no subject,
indicating a linear effect of set size on circular
standard deviation. The 95% CI for the coefficient of
delay duration contained 0 for 1 subject, indicating a
linear effect of delay duration on circular standard
deviation for most subjects.

Model-based: Estimates of (mean) precision

So far, we have used descriptive statistics to quantify
dispersion. An alternative approach is to fit a model to
the error distribution and estimate the model’s preci-
sion parameter as a function of set size and delay
duration. Different models have been proposed to
describe the error distribution. Typically, these models
have theoretical roots. In one category of models, the
central concept is that of variability in encoding
precision, giving rise to ‘‘variable-precision models’’
(Fougnie et al., 2012; Keshvari, Van den Berg, & Ma,
2013; Ma et al., 2014; van den Berg et al., 2012). In a
competing tradition, the central concept is that only a
subset of items are encoded (so-called ‘‘high-threshold’’
or ‘‘item-limit’’ models; Luck & Vogel, 2013; Pashler,
1988; Zhang & Luck, 2008), giving rise to a ‘‘slots-plus-
resources’’ or a ‘‘slots-plus-averaging’’ model in the
context of delayed estimation (Zhang & Luck, 2008).
Although the slots-plus-resources and slots-plus-aver-
aging models as originally presented have been refuted
(Keshvari et al., 2013; van den Berg et al., 2012), the
item-limit concept is potentially salvageable by com-
bining it with the notion of variable precision (van den

Measure of dispersion Effect of set size Effect of delay duration Interaction

Mean absolute error F(3, 12) ¼ 209 p , 10�9 F(3, 12) ¼ 6.11 p ¼ 0.0092 F(9, 36) ¼ 2.43 p ¼ 0.028

Circular standard deviation F(3, 12) ¼ 185 p , 10�9 F(3, 12) ¼ 5.78 p ¼ 0.011 F(9, 36) ¼ 2.00 p ¼ 0.068

Interquartile range F(3, 12) ¼ 121 p , 10�8 F(3, 12) ¼ 5.05 p ¼ 0.017 F(9, 36) ¼ 1.59 p ¼ 0.16

Circular variance F(3, 12) ¼ 205 p , 10�9 F(3, 12) ¼ 6.22 p ¼ 0.0086 F(9, 36) ¼ 2.35 p ¼ 0.034

Table 1. Repeated-measures analysis of variance on dispersion measures in Experiment 1.

Figure 3. Forgetting slopes in Experiments 1 and 2, and

comparison with Pertzov et al.(2017). Working memory (WM)

conditions: The delay duration of 0.1 s was left out.
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Berg et al., 2014). Since this debate is not the focus of
the present article, we have chosen to take a
theoretically neutral approach by borrowing from each
theoretical tradition only the parametric form of the
error distribution. Thus, we treat each model as
descriptive, moving only slightly beyond the model-free
statistics reported above.

In a descriptive model, it is important to avoid
overfitting, as that would reduce the reliability of
parameter estimates. In the present experiment, the

main focus is on the dependence of precision on set size
and delay duration. This inevitably introduces 16
parameters, one for each condition. Besides these 16
parameters, we choose to minimize the number of
additional parameters to avoid overfitting. The models
below have 0 or 1 additional parameters.

� Pure von Mises model: The error follows a von
Mises distribution: pð�Þ ¼ 1

2pIoðjÞ e
j cos �. Here, j is

called the concentration parameter, and I0 is the

Figure 4. Experiment 1: Other moments of the error distribution as a function of delay duration and set size. (A) Circular mean. (B)

Circular skewness. (C) Circular kurtosis.

Figure 5. Experiment 1: Error distributions for individual subjects by delay duration and set size. Plotting conventions are as in Figure

1. Subject S2 was author H.S.
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modified Bessel function of the first kind of order
0. We define precision J as the Fisher information,

which amounts to J ¼ j I1ðjÞ
I0ðjÞ (van den Berg et al.,

2012), where I1 is the modified Bessel function of
the first kind of order 1. The pure von Mises model
is generally not considered a good description of
the error distribution (van den Berg et al., 2014;
Zhang & Luck, 2008).
� Mixture model: Zhang and Luck (2008) proposed
that the error distribution is a mixture of a conMises
distribution and a uniform distribution (correspond-
ing to guesses): pð�Þ ¼ k

2pþ 1�k
2pI0ðjÞ e

j cos �, where k 2 ½0
; 1� is theweight given to the uniform component.We
again define precision as Fisher information. To
constrain the fits of the model, we assume that k is
shared across all set sizes and all delay durations.
� Variable-precision model with shared scale pa-
rameter: It has been proposed that precision J itself
varies across trials (and items; Fougnie et al., 2012;
van den Berg et al., 2012). Such variation could be
caused by a variety of factors, including stimulus
differences (Bae, Olkkonen, Allred, Wilson, &
Flombaum, 2008; Pratte et al., 2016), variability in
decay (Fougnie et al., 2012), Poisson fluctuations
in spike count (Bays, 2014), and fluctuations in
attention (Cohen & Maunsell, 2010; Goris, Si-
moncelli, & Movshon, 2014). We have previously
parametrized the variable-precision model by
assuming that precision J follows a gamma
distribution with mean �J and scale parameter

s : pð�Þ ¼
R ‘

0
1

2pI0ðjÞe
j cos �GammaðJ;

�J
s ; sÞdJ, where

Gamma(J; k, s) is the gamma distribution with
shape parameter k and scale parameter s (the mean
of the gamma distribution is ks). The parameter of
interest is mean precision �J as a function of set size
and delay duration. To constrain the fits of the
model, we assume that s is shared across all set
sizes and all delay durations.
� Variable-precision model with shared shape param-
eter: We previously also considered an alternative
parametrization of the variable-precision model, in

which the shape parameter k rather than the scale
parameter s is shared across conditions (van den
Berg et al., 2014). Thus, we use Gamma ðJ; k;

�J
kÞ

instead of GammaðJ;
�J
s ; sÞ. In a single condition, the

two versions of the variable-precision model are
equivalent; however, the different constraints across
conditions make the two versions different.

Thepure vonMisesmodel has 16parameters, one for each
combinationofset sizeanddelayduration.Theother three
modelshaveoneparametermore,whichissharedacrossall
conditions. Our primary goal here is not to compare
betweenthesemodels,but toexaminewhetherconclusions
abouttheeffectofdelaydurationaresharedacrossmodels.

We fitted all models using maximum-likelihood
estimation. Our algorithm used a combination of
Bayesian optimization (Brochu, Cora, & De Freitas,
2010) and pattern search (Audet & Dennis, 2006), as
implemented by Luigi Acerbi. For parameters with a
range (0, ‘), we fitted the logarithm of the parameter
for better optimization performance. For each (log)
parameter, we set a lower and upper bound. To
minimize the risk of getting stuck in local maxima, we
ran each optimization 10 times, with different initial-
izations, then picked the best. Each initialization was
generated by independently drawing the value of each
parameter from a uniform distribution over its range.
As it turned out, the algorithm almost always
converged on the same maximum across runs, making
it likely that local maxima were not a problem.

We find that all four models provide good fits to the
data (Figures 16 through 19). The estimates of the
logarithm of precision (in the pure von Mises and
mixture models) and the logarithm of mean precision
(in the variable-precision models) again seem to show a
strong effect of set size and a weaker effect of delay
duration (Figure 6). In each model, a repeated-
measures ANOVA shows significant effects of both set
size and delay duration on the estimated log (mean)
precision, and no significant interaction (Table 3).

Model-based: Individual subjects

Using nested model comparison, we can perform an
individual-subject analog of ANOVA on (mean)
precision. An ANOVA is meant to determine whether
the variation in a quantity across conditions is greater
than expected by chance. At the individual-subject
level, we can compare a model in which the quantity is
free to vary across conditions to one in which the
quantity is constrained to be equal across conditions.
(A fully Bayesian treatment would also marginalize
over parameters [Rouder, Morey, Speckman, & Prov-
ince, 2012]; we do not do that here.)

Since we are most interested in the effect of delay
duration, we compare the models above against their

Subject Constant Set size

Delay

duration Interaction

1 [23.7, 26.0] [2.91, 4.14] [0.02, 1.28] [�0.09, 0.57]
2 [20.8, 22.6] [3.59, 4.55] [0.92, 1.90] [�0.03, 0.49]
3 [25.4, 27.9] [4.34, 5.66] [�0.70, 0.65] [�0.58, 0.13]
4 [21.2, 24.1] [3.88, 5.40] [1.51, 3.06] [�0.11, 0.70]
5 [26.9, 28.4] [4.03, 4.81] [0.57, 1.38] [0.14, 0.56]

Table 2. Ninety-five percent confidence intervals of the
coefficients in a linear regression of circular standard deviation
against set size (mean-centered), delay duration (mean-
centered), and their product (interaction) in Experiment 1.
Notes: Bold ¼ confidence interval that does not contain 0.
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counterparts in which precision or mean precision
depends only on set size, but not on delay duration; the
models are otherwise the same. Such a ‘‘null’’ variant of
the pure von Mises model has four parameters (one
precision parameter for each set size), and the null
variants of the other three models each have five
parameters. Thus, the null variants have 12 parameters
fewer than the full models. We compare models using the
Akaike Information Criterion (AIC; Akaike, 1974) and
Bayesian Information Criterion (BIC; Schwarz, 1978).
Both metrics penalize a model for having more free
parameters, but the BIC penalty is steeper. Table 4 shows
that the model comparison results are consistent across
models, but inconsistent across subjects and metrics.
Overall, on an individual-subject basis, the evidence that
delay duration affects (mean) precision is mixed. This is
to some extent consistent with visual inspection of the
individual-subject data (Figure 5): There is no discernible
effect of delay duration for subjects S1 and S3.

One concern might be that we assumed that in the
three models that had an extra, nonprecision param-
eter, this parameter was shared across all conditions.
However, we verified in a separate analysis that the
conclusions did not change if we allowed that
parameter to vary across set size.

Estimation biases

In perception (Andrews, 1965; Girshick, Landy, &
Simoncelli, 2011; X.-X. Wei & Stocker, 2015) and in
visual working memory (Pratte et al., 2016; Van Bergen

et al., 2015), orientation biases both towards and away
from the cardinal orientations have been reported. In
our previous analyses of dispersion, any orientation-
dependent biases would merely contribute to the
dispersion. To find any potential biases, we first plot
reported orientation against target orientation across
all subjects, set sizes, and delay durations (Figure 7A).
The data seem to deviate systematically from the
diagonal, indicating biases. Indeed, we find biases away
from the cardinal directions (horizontal and vertical;
Figure 7B), consistent with Pratte et al. (2016), Van
Bergen et al. (2015), and X.-X. Wei and Stocker (2015).
Using 208 bins, a repeated-measures ANOVA reveals a
significant effect of target orientation, F(8, 32)¼ 8.52, p
, 10�5; using 108 bins like Pratte et al. (2016), the
corresponding result is F(17, 68)¼ 8.26 with p , 10�10.
In Figure 7B, we show bias for 108 bins.

Next, we break the estimation biases down by
condition. Figure 7C shows an example of the raw data:
error as a function of target orientation S1 for delay 1 s
and a set size of one. One way to summarize these data is
as the absolute circular error averaged across target
orientations. The disadvantage of that metric, however,
is that it is positive even if there is no true effect.
Therefore, we instead define the net oblique bias as the
circular mean of the weighted errors, where the weight is
1 if the target orientation is counterclockwise from the
closest oblique orientation (6458), and�1 if the target
orientation is clockwise from the closest oblique
orientation (Figure 7D). Note that the calculation of this
metric does not involve binning. We show net oblique
bias as a function of delay duration and set size in Figure

Figure 6. Experiment 1: Estimates of (mean) precision as a function of delay duration and set size in four models. (A) Pure von Mises

model. (B) Mixture model. (C) Variable-precision model with shared scale parameter. (D) Variable-precision model with shared shape

parameter.

Model Effect of set size Effect of delay duration Interaction

Pure von Mises F(3, 12) ¼ 140 p , 10�8 F(3, 12) ¼ 5.41 p ¼ 0.014 F(9, 36) ¼ 1.75 p ¼ 0.11

Mixture F(3, 12) ¼ 124 p , 10�8 F(3, 12) ¼ 6.29 p ¼ 0.0082 F(9, 36) ¼ 2.99 p ¼ 0.092

Variable precision with shared scale F(3, 12) ¼ 173 p , 10�9 F(3, 12) ¼ 6.53 p ¼ 0.0072 F(9, 36) ¼ 1.96 p ¼ 0.075

Variable precision with shared shape F(3, 12) ¼ 150 p , 10�9 F(3, 12) ¼ 5.92 p ¼ 0.010 F(9, 36) ¼ 2.03 p ¼ 0.065

Table 3. Repeated-measures analyses of variance on the estimates of log (mean) precision in different models for Experiment 1.
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7E. A two-way repeated-measures ANOVA shows no
effect of delay duration, F(3, 12)¼ 0.21, p¼ 0.89, or set
size, F(3, 12)¼ 1.54, p¼ 0.25, but a significant
interaction, F(9, 36)¼ 2.90, p¼ 0.011; indeed, a bit of a
cross-over effect is visible. Bias as a function of target
orientation is shown separately for each delay duration
and set size in Figure 20.

Nontarget reports

It has previously been reported that in delayed
estimation, subjects sometimes report the feature

value of a stimulus other than the target (Bays et
al., 2009; van den Berg et al., 2014; Zokaei et al.,
2011), potentially due to a loss of binding between
feature and location (Ma et al., 2014). To look for
such reports, we calculated on each trial the circular
distances between the subject’s response and each of
the N – 1 distractor orientations on that trial. The
histograms of these distances look nearly flat at all
set sizes and all delay durations (Figure 8). To
quantify this, we followed Bays et al. (2009) and van
den Berg et al. (2014) and fitted separately for each
subject, delay duration, and set size, a mixture
model consisting of a von Mises distribution

Figure 7. Experiment 1: Estimation biases. Target orientation is defined as clockwise with respect to vertical. We binned target

orientation into 108 bins. (A) Scatter plot of reported versus target orientation. Data were collapsed across set sizes and delay

durations. Diagonal in dashed red. (B) Bias (circular mean of error distribution) as a function of target orientation (black line with

error bars). Data were collapsed across set sizes and delay durations. Individual subjects in gray. (C) Scatterplot of error against target

orientation for subject S1 at delay 1 s and a set size of one. (D) Weight assigned to target orientation in the calculation of net oblique

bias. (E) Net oblique bias as a function of delay duration and set size.

Subject

Pure von Mises Mixture model Variable precision, shared scale par. Variable precision, shared shape par.

DAIC DBIC DAIC DBIC DAIC DBIC DAIC DBIC

S1 14.4 81.1 14.4 81.1 14.4 81.1 14.4 81.1

S2 �50.5 16.2 �8.2 58.5 �32.6 34.2 �36.4 30.3

S3 11.1 77.9 15.5 82.3 12.7 79.4 12.5 79.2

S4 �109.6 �42.9 �52.5 14.3 �77.5 �10.8 �89.1 �22.3
S5 6.2 72.9 6.9 73.6 6.2 72.9 6.4 73.1

Table 4. Comparison of each model against a corresponding null model in which (mean) precision only depends on set size, but not on
delay duration, for Experiment 1. Notes: Comparisons are performed using Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Negative values (bold) means that the null model is worse, suggesting an effect of delay duration.
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centered at the target orientation, a von Mises
distribution at each of the distractor orientations
(with equal weights), and a guessing rate (weight to
a uniform component); all von Miseses had the
same concentration parameter. Of interest is the
total weight to the von Mises distributions corre-

sponding to the distractors. Averaged across set
sizes (excluding N ¼ 1) and delay durations, we find
this weight to be 0.0284 6 0.0060. Thus, the role of
nontarget reports was small in this experiment. The
fitted parameters of this mixture model are shown
by condition in Figure 21.

Figure 8. Experiment 1: Histograms of the nontarget error for individual subjects by delay duration and set size.

Figure 9. Experiment 2: Binned error histograms grouped by delay duration (A) and set size (B), averaged over subjects.
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Experiment 2: Results

In Experiment 1, delay duration was blocked. As a
result, the average interstimulus interval depended on
delay duration. If proactive interference (e.g., Makov-
ski & Jiang, 2008) were to play a role in this
experiment, it would then be stronger at shorter delay
durations. Therefore, we conducted a control experi-
ment in which delay durations were interleaved. We ran
six subjects for 960 trials each (half the number of trials
of Experiment 1).

Model-free: Population

Overall mean absolute error was 19.18 6 1.48,
consistent with Experiment 1 (t test, p ¼ 0.9). As in
Experiment 1, the error distribution is strongly affected
by set size but only weakly by delay duration (Figure
9). The measures of error dispersion confirm a strong
effect of set size and a much weaker effect of delay
duration (Figure 10). Repeated-measures ANOVAs
(Table 5) show effects of set size with p values lower
than 10�8 and effects of delay duration with p values of
0.025 and lower, except for interquartile range. No
interaction were significant.

Forgetting slopes ranged from 0.25 6 0.13 at a set
size of one to 0.88 6 0.48 at a set size of six (Figure 3,
orange). None of these were significantly different from
0 after a t test with Bonferroni-Holm correction (p
values ¼ 0.12, 0.043, 0.040, and 0.13). Repeated-

measures ANOVAs did not reveal a significant effect of
set size on forgetting slope, F(3, 15) ¼ 1.46, p ¼ 0.26.

Examining secondary metrics (Figure 11), we find
that the circular mean and circular skewness are close
to zero, and all p values in a repeated-measures
ANOVA are greater than 0.12. For circular kurtosis,
we find a significant effect of set size, F(3, 15)¼ 99.2, p
, 10�9; a significant effect of delay duration, F(3, 15)¼
8.03, p¼ 0.0020; and no significant interaction, F(9, 45)
¼ 0.708, p ¼ 0.70.

Model-free: Individual subjects

For individual subjects (Figure 12), effects of delay
duration seem to be modest in S3, minimal in S4, and
absent in all others. A linear regression of circular
standard deviation against set size, delay duration. and
their product for each subject (Table 6) shows that the
95% CI for the coefficient of set size contained 0 for no
subject, while the 95% CI for the coefficient of delay
duration contained 0 for 4 subjects. This indicates little
evidence for a linear effect of delay duration on circular
standard deviation.

Model-based: Estimates of (mean) precision

For Experiment 2, all models provide good fits to
the data (Figures 22 through 25). The estimates of
the logarithm of precision (in the pure von Mises and
mixture models) and the logarithm of mean precision

Figure 10. Experiment 2: Measures of error dispersion as a function of delay duration and set size. (A) Mean absolute error. (B)

Circular standard deviation. (C) Interquartile range. (D) Circular variance.

Measure of dispersion Effect of set size Effect of delay duration Interaction

Mean absolute error F(3, 15) ¼ 84.4 p , 10�8 F(3, 15) ¼ 4.99 p ¼ 0.013 F(9, 45) ¼ 0.531 p ¼ 0.84

Circular standard deviation F(3, 15) ¼ 85.6 p , 10�8 F(3, 15) ¼ 4.18 p ¼ 0.025 F(9, 45) ¼ 0.603 p ¼ 0.79

Interquartile range F(3, 15) ¼ 68.7 p , 10�8 F(3, 15) ¼ 2.78 p ¼ 0.077 F(9, 45) ¼ 1.37 p ¼ 0.23

Circular variance F(3, 15) ¼ 73.7 p , 10�8 F(3, 15) ¼ 4.35 p ¼ 0.022 F(9, 45) ¼ 0.651 p ¼ 0.75

Table 5. Repeated-measures analyses of variance on dispersion measures in Experiment 2.
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(in the variable-precision models) again seem to show
a strong effect of set size and a weak effect of delay
duration (Figure 13). In each model, a repeated-
measures ANOVA shows significant effects of both
set size and delay duration on the estimated log
(mean) precision, and no significant interaction
(Table 7).

Model-based: Individual subjects

We now compare a version of each model in which
(mean) precision depends on delay duration against a
null variant in which it does not. For no individual
subject do we find consistent evidence (between AIC
and BIC) that the null model is worse (Table 8). For S3,

Figure 12. Experiment 2: Error distributions for individual subjects by delay duration and set size.

Figure 11. Experiment 2: Other moments of the error distribution as a function of delay duration and set size. (A) Circular mean. (B)

Circular skewness. (C) Circular kurtosis.
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AIC differences are consistent among each other but
are contradicted by the BIC differences, making us
hesitant to draw a conclusion.

Estimation biases

As a function of target orientation, the data again
indicate biases away from the cardinal directions
(Figure 14). A repeated-measures ANOVA reveals a
significant effect of target orientation (208 bins: F[8, 40]
¼ 6.94, p , 10�5; 108 bins: F[17, 85]¼ 7.29, p , 10�9). A
two-way repeated-measures ANOVA shows no effect
on net oblique bias (Figure 14E) of delay duration, F(3,
15)¼ 2.05, p¼ 0.15; set size, F(3, 15)¼ 0.67, p¼ 0.58; or
interaction, F(9, 45)¼ 1.61, p¼ 0.14.

Nontarget reports

Again, the histograms of these distances look nearly
flat at all set sizes and all delay durations (Figure 15).
Averaged across set sizes (excluding N ¼ 1) and delay
durations, the weight to the nontargets was 0.053 6
0.013. The fitted parameters of this mixture model are
shown by condition in Figure 27.

Comparison of Experiments 1 and 2

We did not find any major differences between
Experiments 1 and 2: Both showed strong effects of set

size and relatively weak effects of delay duration
(Figures 1, 2, 9, and 10). Nontarget reports were
minimal in both experiments, and estimation biases were
very similar. However, the effect of delay duration on
circular kurtosis was significant in Experiment 2 but not
in Experiment 1. Overall, the similarities between
Experiments 1 and 2 suggest that interleaving or
blocking delay durations did not substantially impact
behavior. In both experiments, the statistical significance
of the effect of delay duration on performance depended
on the analysis method: For example, the effect was
significant in an ANOVA (Tables 1 and 5), but not
consistently so in a linear regression (Tables 5 and 7) or
in a formal model comparison (Tables 4 and 8).

Is forgetting faster when set size is higher? In
Experiment 1, the main ANOVA showed a significant
interaction between delay duration and set size for mean
absolute error and circular variance, but not for circular
standard deviation or interquartile range (Table 1);
moreover, the significant results would disappear when
correcting for multiple comparisons. In Experiment 2,
none of the interactions were significant (Table 5).
Forgetting slopes were very similar between Experiments
1 and 2 (Table 9; Figure 3), but in neither experiment did
set size have a significant effect on forgetting slope.
Moreover, in neither experiment and in no model did we
find a significant interaction between set size and delay
duration for the estimates of log (mean) precision
(Tables 3 and 7). At the individual-subject level, the
interaction between set size and delay duration in a
linear regression was significant for only three out of the
11 subjects in both experiments (Tables 2 and 6). Thus,
we did not find any clear evidence that forgetting is
faster at some set sizes than at others.

Comparison with Pertzov et al.

Experimental differences

Our experimental design closely resembles that of
Pertzov et al. (2017), but with some potentially
important differences. First, we used delays of 1, 2, 3,
and 6 s, whereas Pertzov et al. used delays of 0.1, 1, 2,
and 3 s. Second, we used a presentation time of 100
ms, whereas Pertzov et al. used 500 ms; the latter
allows for better encoding, but also for covert shifts of

Subject Constant Set size

Delay

duration Interaction

1 [25.1, 29.0] [5.11, 7.15] [�0.30, 1.80] [�0.67, 0.42]
2 [25.1, 29.1] [4.76, 6.88] [�0.92, 1.26] [�0.66, 0.48]
3 [24.5, 26.8] [4.31, 5.50] [1.65, 2.88] [0.39, 1.02]

4 [15.5, 17.5] [2.20, 3.23] [0.08, 1.14] [0.07, 0.63]

5 [20.1, 23.2] [4.80, 6.39] [�0.57, 1.06] [�0.46, 0.39]
6 [25.9, 28.7] [4.26, 5.68] [�0.11, 1.35] [�0.30, 0.46]

Table 6. Ninety-five percent confidence intervals of the
coefficients in a linear regression of circular standard deviation
against set size (mean-centered), delay duration (mean-
centered), and their product (interaction) in Experiment 2.
Notes: Bold ¼ confidence interval that does not contain 0.

Model Effect of set size Effect of delay duration Interaction

Pure von Mises F(3, 15) ¼ 95 p , 10�9 F(3, 15) ¼ 4.03 p ¼ 0.027 F(9, 45) ¼ 0.47 p ¼ 0.88

Mixture F(3, 15) ¼ 89 p , 10�9 F(3, 15) ¼ 4.07 p ¼ 0.027 F(9, 45) ¼ 0.50 p ¼ 0.86

Variable precision with shared scale F(3, 15) ¼ 91 p , 10�9 F(3, 15) ¼ 4.00 p ¼ 0.028 F(9, 45) ¼ 0.47 p ¼ 0.88

Variable precision with shared shape F(3, 15) ¼ 90 p , 10�9 F(3, 15) ¼ 3.74 p ¼ 0.035 F(9, 45) ¼ 0.62 p ¼ 0.77

Table 7. Repeated-measures analyses of variance on the estimates of log (mean) precision in different models for Experiment 2.
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attention among items in the display. Third, Pertzov et
al. interleaved durations, whereas we only did that in
Experiment 2. Fourth, we cued the target by location,
whereas Pertzov et al. cued by color (using eight easily
distinguishable colors). Fifth, the stimuli used by
Pertzov were substantially larger (bars of length 2 dva)
than ours (Gaussian standard deviation of 0.2 or 0.25
dva). Finally, we drew orientations independently
from a uniform distribution, whereas Pertzov et al.
imposed the constraint that orientations within the
same trial must differ by at least 108. We will comment
on the consequences of these differences in the
Discussion.

Comparison of results

We now compare the results of Pertzov et al. (2017)
to those of our Experiments 1 and 2, using their chosen
measure of dispersion, mean absolute error. The 0.1-s
delay used by Pertzov et al. is not usually regarded as a
working memory delay (Long, 1980; Phillips, 1974;
Sperling, 1960). Restricting ourselves to the working
memory delays of 1, 2, and 3 s that are common
between our experiments and Pertzov et al., we observe
that mean absolute error is very similar across all three

experiments, ranging from around 108 at a set size of
one to around 308 at a set size of six and a delay of 3 s.
At the common delay durations, errors were overall
slightly higher in our study (Experiment 1: 18.68 6 1.28;
Experiment 2: 18.68 6 1.48) than in Pertzov et al.
(about 15.18). Our results agree with Pertzov et al. in
the main effects and interaction in an ANOVA on
mean absolute error, and in the main effect of delay
duration on the precision parameter in a mixture
model.

Our results disagree from Pertzov et al.’s (2017) in
that we did not find significantly nonzero forgetting
slopes, an effect of delay time on forgetting slope, or
an interaction in the mixture model. Pertzov et al.’s
forgetting slopes were comparable to ours at a set size
of one, but higher at other set sizes (Table 9; Figure 3).
Pertzov et al. did not test other model-free measures of
dispersion (circular standard deviation, interquartile
range, or circular variance) or other models (pure Von
Mises or variable precision). They also did not
perform individual-subject regressions or model com-
parisons. In our hands, all those analyses made the
case for an effect of delay duration or an interaction
between delay duration and set size much more
tenuous.

Subject

Pure von Mises Mixture model Variable precision, shared scale par. Variable precision, shared shape par.

DAIC DBIC DAIC DBIC DAIC DBIC DAIC DBIC

S1 �2.4 56.1 7.5 65.9 4.5 62.9 4.3 62.7

S2 4.6 63.0 6.1 64.5 6.5 64.9 5.1 63.5

S3 �11.4 47.0 �9.1 49.3 �7.4 51.0 �9.6 48.8

S4 0.9 59.3 3.2 61.6 6.0 64.4 7.6 66.0

S5 16.9 75.3 11.9 70.3 17.1 75.5 17.1 75.5

S6 13.5 71.9 13.4 71.8 14.3 72.7 13.9 72.3

Table 8. Comparison of each model against a corresponding null model in which (mean) precision only depends on set size, but not on
delay duration, for Experiment 2. Notes: Negative values (bold) means that the null model is worse, suggesting an effect of delay
duration. AIC ¼ Akaike information criterion; BIC ¼ Bayesian information criterion.

Figure 13. Experiment 2: Estimates of (mean) precision as a function of delay duration and set size in four models. (A) Pure von Mises

model. (B) Mixture model. (C) Variable-precision model with shared scale parameter. (D) Variable-precision model with shared shape

parameter.
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Figure 15. Experiment 2: Histograms of the nontarget error for individual subjects by delay duration and set size.

Figure 14. Experiment 2: Estimation biases. Target orientations are binned into 108 bins. (A) Scatter plot of reported versus target

orientation. (B) Bias (circular mean of error distribution) as a function of target orientation (black line with error bars). (C) Net oblique

bias as a function of delay duration and set size.
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What could explain these substantial discrepancies
between our results and Pertzov et al.’s? First, some
of our nonsignificant results might have become
significant if we had run more subjects (Pertzov et al.
ran 10 subjects, we five and six per experiment,
respectively). However, the model-based results were
obtained for individual subjects. Moreover, the effect
size (as seen in the forgetting slopes) would still have
been much larger in Pertzov et al. Second, all of
Pertzov et al.’s analyses included a delay duration of
0.1 s. This is not considered a pure working memory
delay, as sensory and iconic memory can bolster the
quality of the internal representation (Long, 1980;
Phillips, 1974; Sperling, 1960). Therefore, it is
possible that Pertzov et al. overestimated the pure
working memory forgetting slope; however, forget-
ting slopes estimated from only the working memory
delays did not show a different pattern (Figure 3;
Table 9, column 3). Third, we ran a delay duration of
6 s in both experiments. It could be that forgetting
flattens off after 3 s. Our data indeed show a hint of
such flattening. Fourth, Pertzov et al. cued by color
rather than by location. It is possible that maintaining
color-orientation bindings requires more resources
than maintaining location-orientation bindings, in-
creasing the forgetting slope.

Finally, Pertzov et al. (2017) found substantially more
nontarget reports than we did. Multiple factors could
play a role: First, the distance-to-size ratio of our stimuli
was larger for our stimuli, thereby potentially reducing
nontarget responses (Bays, 2016). Second, the colors
used by Pertzov et al. to cue an item might have been less
distinguishable than the locations in our experiment.

Discussion

Using a variety of model-free and model-based
metrics, we characterized how well people recall

orientation from visual working memory as a function
of set size and delay duration. All metrics of dispersion
show a strong effect of set size, consistent with previous
work. Effects of delay duration are much weaker,
depend on the analysis method, and are found for only
a subset of subjects. Our results are consistent with a
reported lack of effect of delay duration on orientation
memory at a set size of one (Magnussen et al., 1998;
Magnussen et al., 1985; Vogels & Orban, 1986).
However, it should be kept in mind that our longest
delay was 6 s, shorter than in previous studies (10 or 30
s). It is possible that measures of error dispersion will
increase substantially beyond 6 s. We already discussed
the similarities and discrepancies with Pertzov et al.
(2017) above.

Our results do not provide strong support for Z. Wei
et al.’s (2012) ‘‘merging attractor’’ model, in which
unambiguous effects of delay duration are predicted.
To the extent that our results can speak to neural
underpinnings, they would suggest largely independent,
interference-free maintenance of orientation in working
memory, of the kind that would likely be provided by
topographic visual areas (Harrison & Tong, 2009;
Pasternak & Greenlee, 2005; Sneve et al., 2012).

Based on delayed estimation at a set size of three, it
has been claimed that items ‘‘die a sudden death’’ in
visual working memory for color (Zhang & Luck,
2009). We did not find any evidence for an analogous
claim for orientation. This might in part be due to
differences between color and orientation, and indeed,
a mild decay of working memory for color would be
consistent with earlier results (Nilsson & Nelson,
1981). In addition, there might be other relevant
differences in the experimental design; for example,
Zhang and Luck used a longest delay of 10 s, and
added an articulatory task during the delay period.
However, we do not believe that their empirical
findings warrant a strong qualitative conclusion of
‘‘sudden death.’’ They reached this conclusion by
fitting a mixture of a von Mises and a uniform
distribution independently at each delay duration, and
then performing an ANOVA on the estimates of the
weights of the uniform component. However, they did
not perform the more direct AIC or BIC comparison
against a null model in which the weight of the
uniform component is equal across delay durations.
Moreover, a reasonable fit of the mixture model does
not support the process claim that people truly guess
randomly; to make that claim, one would need to
show that the mixture model fits better than models
without truly random guessing, such as the variable-
precision model. Here, we did not attempt to
adjudicate between these models; instead, we tried to
show that our conclusions held across models.
However, Fougnie, Suchow, and Alvarez (2013) did
perform such a model comparison and found that

Set

size

Pertzov et al.

(all)

Pertzov et al.

(working memory

conditions)

Experiment

1

Experiment

2

1 0.34 6 0.17 0.21 0.42 6 0.16 0.25 6 0.13

2 0.88 6 0.12 1.25 0.59 6 0.31 0.47 6 0.17

4 2.04 6 0.27 1.89 1.00 6 0.28 0.79 6 0.29

6 4.30 6 0.43 3.84 1.14 6 0.49 0.88 6 0.48

Table 9. Comparison of forgetting slopes (based on mean
absolute errors, in 8/s) with those of Pertzov et al. (2017). Notes:
Delay duration was 0.1, 1, 2, or 3 s in Pertzov et al. Second
column: data extracted from their figure 4 using WebPlotDigi-
tizer (http://arohatgi.info/WebPlotDigitizer). Third column:
Mean slope estimated from a linear regression to the data in
their figure 1B, restricted to the working memory delays (i.e.,
leaving out 0.1 s).
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gradual decay provides a better description for color
working memory. Nevertheless, the fact that delay
duration seems to affect working memory for color
and contrast much more strongly than working
memory for spatial frequency, orientation, or motion
direction is puzzling and needs to be explained.

Keywords: visual working memory, orientation,
precision, maintenance
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Appendix A: Supplementary figures

Experiment 1

Figure 16. Experiment 1: Fit of the pure von Mises model. The model has one precision parameter per condition.
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Figure 18. Experiment 1: Fit of the variable-precision model with one precision parameter per condition and a scale parameter shared

across all conditions.

Figure 17. Experiment 1: Fit of the mixture model. The model has one precision parameter per condition and a lapse rate shared

across all conditions.
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Figure 19. Experiment 1: Fit of the variable-precision model with one precision parameter per condition and a shape parameter

shared across all conditions.

Figure 20. Experiment 1: Estimation bias as a function of target orientation (binned in 208 bins), delay duration, and set size.

Figure 21. Experiment 1: Parameters fitted per condition in a descriptive model that assumes that responses follow a mixture of a von

Mises distribution centered at the target orientation, a uniform distribution reflecting guesses, and von Mises distributions centered

at the distractor orientations. (A) Concentration parameter of the von Mises distribution. (B) Weight to the uniform distribution. (C)

Weight to nontarget responses. Note that this descriptive model has no fewer than 48 parameters (16 conditions, three parameters

per condition) and the parameter values are therefore less reliable than those of the more constrained mixture model used for Figure

5, Table 3, and Table 4; this is also reflected in the large error bars.
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Experiment 2

Figure 22. Experiment 2: Fit of the pure von Mises model. The model has one precision parameter per condition.

Figure 23. Experiment 2: Fit of the mixture model. The model has one precision parameter per condition and a lapse rate shared

across all conditions.
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Figure 24. Experiment 2: Fit of the variable-precision model with one precision parameter per condition and a scale parameter shared

across all conditions.

Figure 25. Experiment 2: Fit of the variable-precision model with one precision parameter per condition and a shape parameter

shared across all conditions.

Figure 26. Experiment 2: Estimation bias as a function of target orientation (binned in 208 bins), delay duration, and set size.
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Figure 27. Experiment 2: Parameters fitted per condition in a descriptive model that assumes that responses follow a mixture of a von

Mises distribution centered at the target orientation, a uniform distribution reflecting guesses, and von Mises distributions centered

at the distractor orientations. (A) Concentration parameter of the von Mises distribution. (B) Weight to the uniform distribution. (C)

Weight to nontarget responses. The same caveat as in Figure 21C applies.
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