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spectroscopy
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ABSTRACT Peking duck is the most representative of
the meat-type duck breed, and it is also one of the most
popular meats in Asia. Few studies were reported on the
fast assessment of duck meat quality. This study aimed
to develop a fast measuring of duck fat content by using
the near-infrared spectroscopy (NIRS) method. We
measured 273 duck breast muscle intramuscle fat
(IMF) content and spectra. Partial least-squares regres-
sion (PLSR) was used to model the fat content

prediction by using the spectra in the wavelengths
between 950 and 1650 nm. The best predictive abilities
were obtained after the first derivative pretreatment,
with coefficient of calibration (R?¢c) of 0.92, with coeffi-
cient of prediction (R?p) of 0.90, ratio performance to
deviation (RPD) of 2.72, and ratio of error range
(RER) of 15.45, for samples of 30 g duck. Results dem-
onstrated that the near-infrared spectroscopy is a useful
tool for fat content assessment of Peking duck meat.
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INTRODUCTION

Poultry meat is considered to be an important compo-
nent in healthy diets and has reached high levels of con-
sumption worldwide (Alexandrakis et al., 2012). Among
the poultry meat market, duck meat is the second largest
consumed meat, especially in Asia. Peking duck is the
most representative of the meat-type duck breed. With
the development of society, the demand and requirements
for meat quality assessment and control of poultry con-
tinue to increase. The fat content is an important factor
affecting the quality of meat, which is closely related to fla-
vor, tenderness, moisture content of meat (Liet al., 2016).
Fast meat quality assessment is critical to commercial pro-
duction and breeding program (Huang et al., 2016, 2017).

Traditional analytical methods are often destructive and
require complex sample preparation procedures. Therefore,
traditional analytical methods are not suitable for the fast-
growing rapid industrial meat sector. Recently, new techni-
ques for rapid, reliable, and reagent-free meat quality
assessment have been well applied in production. Near-
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infrared spectrometers have become a useful tool for pro-
viding information on the physical and chemical properties
of complex organic matrices. The application of NIRS
analysis for monitoring, quality control, and analytical pur-
poses is increasing in agricultural industries and food
(Alexandrakis et al., 2012; Barbin et al., 2015). NIRS can
provide an objective, rapid, repeatable, nondestructive and
accurate method for evaluating meat to predict the chemi-
cal composition and qualitative attributes in meat and
meat products (Grau et al, 2011; Jia et al, 2017;
Jiang et al., 2018). NIRS has been applied in the predic-
tion and evaluation of pork, beef, and chicken meat qual-
ity, and the prediction accuracy can match the
requirements in the field (Wu et al., 2014; Khulal et al.,
2016; Qiao et al., 2017a,b; Wu et al., 2017). However,
few studies were performed on the fast assessment of duck
meat quality. At the same time, large-scale spectrometers
are generally, and portable spectrometers are less used
(Perez et al., 2018). In general, duck meat has the higher
fat content compared with chicken (https://fdcnal.usda.
gov/). We didn’t find PSE, DF, and wooden muscle meat
in ducks. So, the intramuscle fat (IMF) is one of the
major issues in ducks. The amount of input meat for pre-
dicting IMF is lacking of investigation in practice.

This study aimed to identify the critical wavelengths
linked to IMF content in ducks, evaluate the effect of
the different total amount of measuring samples, and
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then build the prediction model to evaluate the IMF
content in duck meat.

MATERIALS AND METHODS
Ducks and Phenotypes

The Peking ducks used in the experiment were provided
by the Beijing Golden Star Duck Breeding Center. Proc-
essing methods were the same as our previous study
(Deng et al., 2019). The left breast muscle was stored at
4°C which used to measure IMF and NIRS. The IMF con-
tent and near-infrared spectroscopy data were measured in
time. In total, 273 duck breast samples were used in this
study. The fascia was removed from the muscle. Then, the
muscle was minced using a kitchen chopper for 20 s.

Near-Infrared Spectra

Spectral scanning of duck meat was performed using a
Micro NIR Pro spectrometer (VIAVI Solutions Inc.,
Scottsdale, AZ). Before the measurement, the instrument
was preheated firstly, and the test temperature was set to
51 £ 1°C. The wavelength range was set to range from
900 to 1,700 nm at 6-nm intervals. We use the 99% dif-
fuse reflectance standard included with the MicroNIR to
collect the 100% background measurement and collect
the 0% dark measurement with the lamps on and
warmed up. The 100% background measurement and the
0% dark measurement are reset every 1 h. The prepared
duck breast muscle samples were taken in a sample cup
by taking 5 g and 30 g of meat emulsion, respectively.
The sample cup was a cylinder with an external diameter
of 5.1 cm and a height of 8 cm. A heavy stainless stop-
per was placed on each sample. It was spun in two circles
so that the sample became a uniform tablet under the
action of the gravity and rotation of the stopper. Each
sample was repeatedly scanned 3 times, and each sample
was rotated 3 times. The average spectrum was used as
an effective spectrum for each sample.

IMF Determination

According to previous methods, the fat content was mea-
sured (Zerehdaran et al., 2004; Ding et al., 2020). The
steps for determining the fat content of duck breast are:

(1) Take the sample from 0.95 to 1.1 g of the minced
duck breast muscle into a filter bag and weight the
fresh sample m (not including the filter bag).

(2) Dry the fresh sample at 105°C for 3 h to constant
weight, and weigh the dry sample weight m1 (not
including the filter bag).

(3) The dried sample was placed in a fat extracting
apparatus and determined by the Soxhlet extraction
method, extracted with anhydrous ether for 3 h, and
the other was recovered for 30 min.

(4) After the extraction, the filter bag was taken out,
and dried in an oven at 105°C for 2 h to constant

weight, and the final weight m2 (not including the
filter bag) was weighed.

Fat content = (m2—m1l)/m x 100%.

All steps described for spectral analysis were carried
out in multivariate analysis software (Unscrambler ver-
sion 10.4, CAMO, Trondheim, Norway).

Spectral Data Preprocessing and Modeling

Spectral data preprocessing and partial least-squares
regression (PLSR) method was performed by using
Unscrambler X software (v10.4). In NIRS measure-
ments, sample physical characteristics and inconsis-
tency in instrument response may be responsible for
perturbations in spectra (shifts, slope changes, base-
line, etc.) (Windham et al., 2003; Huang et al., 2017).
Scattering effects can be attenuated by some mathe-
matical treatments, such as derivation, standard nor-
mal variate (SNV), and multiplicative scatter
correction (MSC), as the wavelength dependency of
light scatter is different from that of chemically-based
light absorption (Balage et al., 2015; Yang et al.,
2018). There is still no standard procedure to decide
which spectral preprocessing method to apply. Usually,
the only approach is trial and error. So, we explored
multiple pretreatment methods to deal with spectral
data. The spectral preprocessing methods used in this
study were listed as follows:

S-G5: 5-point Savitzky-Golay Smoothing; S-GT7:
7-point Savitzky-Golay Smoothing; S-G9: 9-point
Savitzky-Golay Smoothing; 1D1: 1-point first deriva-
tive; 1D3: 3-point first derivative; 2D3: 3-point second
derivative; SNV: Standard Normal Variate; DT:
detrending; MSC: Multiplicative Scatter Correction;
SNV-1D1: Standard Normal Variate and 1-point first
derivative; SNV-2D3: Standard Normal Variate and
3-point second derivative; S-G5-1D1: 5-point Savitzky-
Golay Smoothing and 1-point first derivative.

The functionality of the preprocessing technique was
compared by the prediction ability of the regression
model relating IMF content of Peking duck to the pre-
processing spectra. The best model was selected based
on the highest R (multiple correlation coefficient in cali-
bration) and the lowest RMSE of calibration and cross-
validation (RMSEC and RMSEP, respectively).

PLSR method was used to model Y by means of X.
The values of the IMF content of Peking duck were
stored in matrix Y. Matrix X collected spectral data of
the Peking duck Samples. In total, 275 samples were
randomly selected as a calibration set and a prediction
set in a 3:1 ratio. Mean center data, cross-validation,
and kernel PLS algorithm was chosen.

RESULTS AND DISCUSSION
IMF Content of Peking Duck Breasts

The basic summary statistics are shown in Table 1.
The changes in IMF content in the 5 g and 30 g breast
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Table 1. Experimental results for IMF content of Peking duck
samples.

Group Weight (g) Number Min Max Mean SD CV%
Calibration 5 205 0.62 2.20 1.09 0.26 24.24
30 200 0.63 2.31 1.08 0.26 24.14
Prediction 5 68 0.64 1.85 1.06 0.24 23.02
30 65 0.67 2.20 1.08 0.30 27.77

There are almost no differences between the calibration and prediction
group for IMF content.

muscle, respectively. The results suggested the presence
of a wide range of variation in Peking duck IMF content,
with a large CV%. IMF did not show any significant dif-
ferences between 2 randomly divided groups. The pre-
diction results of the model are affected by the range of
the IMF content in the sample. The more full the range,
the more accurate the result. The breast IMF content of
Peking duck is roughly between 0.62 and 2.31%, which
covers the distribution range of the existing Peking duck
breast fat content. At the same time, the average IMF
content of the calibration set and the prediction set are
close to 1; the standard deviation is about 0.3 (Table 1).
The data distribution is following a normal distribution
with a considerable variation range, indicating that the
sample selected in this experiment has strong represen-
tativeness. The calibration set range covers the range of
prediction-set, which can improve the reliability of the
established model and increase the applicability of the
model in the field.

Near-Infrared Average Spectrum

The spectral range between 950 and 1650 nm was
selected for processing, and the original average spec-
trum of the 5 g and 30 g group of duck breast samples
is shown in Figure 1. Although the extracted spectral
information has a similar spectral pattern, it shows dif-
ferent absorbance values for each sample. Therefore, the
relationship between the near-infrared spectral informa-
tion difference and the IMF content could be used to
establish a model to predict the IMF content of the duck
breast.
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Figure 2. Average spectrum of all samples of duck breast samples
5 gand 30 g.

The difference in absorbance among samples could be
ascribed as sample composition in the NIR electromag-
netic range (Dixit et al., 2017). A few broad local
absorption maxima are noticeable around 980, 1,190
and 1,450 nm (Berzaghi et al., 2005; Huang et al.,
2015). The characteristic bands of 980 nm and 1,450
nm are related to second and first overtone O-H stretch-
ing of water (Xiong et al., 2015; Perez et al., 2018) and
1,190 nm is related to the second overtone of CHjz
stretching (Nolasco-Perez et al., 2019) while the combi-
nation bands could be attributed to water absorption
and fat structure changes. In-depth scrutiny of absor-
bance related to each chemical vibration bond could also
help in a better understanding of how each quality
parameter affects spectral fingerprints of duck samples.

Figure 2 shows the average spectrum of all samples of
5 g and 30 g groups. The trend of the two spectral
curves is the same. However, the absorbance of the 30 g
group is stronger than 5 g group and has different perfor-
mance in different wavelength ranges. In the range of 950
to 1,400 nm, the absorbance of the 30 g group is signifi-
cantly improved compared to the 5 g group. The major
reason is that the 30 g sample is larger in mass and
higher in thickness, allowing the sample to absorb more
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Figure 1. Raw average spectra of 5 g (left) group and 30 g (right) group duck samples.
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light. The curves of the two groups are almost similar in
the range of 1,400 to 1,650 nm, indicating the thickness
and mass of the sample have little effect on the spectral
absorption of the duck breast samples.

PLSR Model

The effects of different preprocessing methods on
the PLSR model of 5 g and 30 g groups were pre-
sented (Tables 2 and 3). According to previous
research (Nolasco-Perez et al., 2019), R? between
0.66 with 0.81 would make the general quantitative
prediction, while R? from 0.82 to 0.90 would allow a
better prediction and R? over 0.91 would provide a
superior model. Furthermore, duo to verify the capac-
ity and ability the models were evaluated based on
RPD and RER. RPD from 1.8 to 2.0 indicated that
the model was good; from 2.0 to 2.5 indicated that
the model was better, and higher than 2.5 indicated

that the model was excellent (Kamruzzaman et al.,
2016). RER less than 3 indicated that practical util-
ity was little, from 3 to 10 indicated that the model
was good practical utility, and RER more than 10
indicated excellent accuracy (Jia et al., 2017).

Using the raw spectral data to establish the PLSR
model directly, the calibration set model in the 5 g
group (R*c = 0.90, RMSEC = 0.081, R*%» = 0.87,
RMSEC = 0.090, Table 2) is very similar to the 30 g
group (R?¢ = 0.90, RMSEC = 0.082, R* = 0.89,
RMSEC = 0.100, Table 3). The second derivative,
SNV, detrending correction (DT), and MSC pretreat-
ment methods were used to reduce the principal compo-
nents and improve accuracy of the model (Qiao et al.,
2017a). However, the correlation coefficients of these
models are also reduced, which did not improve the pre-
diction accuracy. Among 12 different correction meth-
ods, the coefficients range from 0.78 (DT) to 0.93 (1D1)
in the correction set for 5g group, while the coefficients
range from 0.70 (2D3) to 0.87 (SGY9) in the prediction

Table 2. Effect of different preprocessing methods on PLSR model of 5 g Peking duck samples.

Calibration Prediction
Pretreatment method Factors R’ RMSEC R% RMSEP RPD RER
None 11 0.90 0.081 0.87 0.090 2.69 13.44
S-G5 10 0.89 0.086 0.86 0.090 2.67 13.44
S-G7 10 0.89 0.087 0.86 0.090 2.66 13.44
S-G9 11 0.90 0.085 0.87 0.089 2.71 13.60
1D1 11 0.93 0.069 0.81 0.110 2.32 11.00
1D3 11 0.92 0.072 0.84 0.100 2.52 12.10
2D3 9 0.87 0.095 0.70 0.144 1.83 8.40
SNV 9 0.90 0.084 0.85 0.096 2.52 12.60
DT 8 0.78 0.123 0.74 0.127 1.95 9.53
MSC 9 0.90 0.084 0.86 0.093 2.61 13.01
S-G5-1D1 9 0.90 0.083 0.86 0.093 2.61 13.01
SNV-1D1 10 0.92 0.072 0.82 0.108 2.36 11.20
SNV-2D3 8 0.84 0.104 0.69 0.144 1.74 8.40

Factors: The optimal number of factors used in the PLSR model; S-G5: 5-point Savitzky-Golay Smoothing; S-G7: 7-point Savitzky-Golay Smoothing;
S-G9: 9-point Savitzky-Golay Smoothing; 1D1: 1-point first derivative; 1D3: 3-point first derivative; 2D3: 3-point second derivative; SNV: Standard Nor-
mal Variate; DT: detrending; MSC: Multiplicative Scatter Correction; SNV-1D1: Standard Normal Variate and 1-point first derivative; SNV-2D3: Stan-
dard Normal Variate and 3-point second derivative; S-G5-1D1: 5-point Savitzky-Golay Smoothing and 1-point first derivative.

Bold letters mean the highest value in the same row.

Table 3. Effect of different preprocessing methods on PLSR model of 30 g Peking duck samples.

Calibration Prediction
Pretreatment method Factors R%. RMSEC R% RMSEP RPD RER
None 12 0.90 0.082 0.89 0.100 2.70 15.30
S-G5 12 0.88 0.089 0.88 0.105 2.62 14.57
S-G7 11 0.87 0.095 0.86 0.114 2.34 13.42
S-G9 11 0.87 0.095 0.86 0.113 2.38 13.54
1D1 12 0.92 0.075 0.90 0.099 2.72 15.45
1D3 10 0.89 0.087 0.88 0.103 2.63 14.85
2D3 8 0.82 0.111 0.79 0.141 1.84 10.85
SNV 9 0.84 0.106 0.82 0.132 1.84 11.59
DT 12 0.86 0.096 0.84 0.119 2.25 12.86
MSC 9 0.84 0.106 0.83 0.129 1.86 11.86
S-G5-1D1 11 0.88 0.090 0.89 0.100 2.64 15.30
SNV-1D1 11 0.90 0.084 0.86 0.115 2.24 13.30
SNV-2D3 7 0.82 0.109 0.76 0.148 1.72 10.34

Factors: The optimal number of factors used in the PLSR model; S-G5: 5-point Savitzky-Golay Smoothing; S-G7: 7-point Savitzky-Golay Smoothing;
S-G9: 9-point Savitzky-Golay Smoothing; 1D1: 1-point first derivative; 1D3: 3-point first derivative; 2D3: 3-point second derivative; SNV: Standard Nor-
mal Variate; DT: detrending; MSC: Multiplicative Scatter Correction; SNV-1D1: Standard Normal Variate and 1-point first derivative; SNV-2D3: Stan-
dard Normal Variate and 3-point second derivative; S-G5-1D1: 5-point Savitzky-Golay Smoothing and 1-point first derivative.

Bold letters mean the highest value in the same row.
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Figure 3. Distribution of actual and predicted values of IMF. (A) 5 g Peking duck S-G5 pretreatment PLSR model; (B) 30 g Peking duck 1D1

pretreatment PLSR model.

set for 5 g group. The coefficients range from 0.82 (2D3)
to 0.91 (1D1) in the correction set for 30 g group, while
the coefficients range from 0.76 (SNV-2D3) to 0.90
(1D1) group in the prediction set for 30 g group. On the
basis of RPD and RER, most of the models were higher
than 2 and 10, respectively, thus being reliable and high
accuracy.

In general, the best model is the SG9 for 5 g group
and 1D1 for 30 g group (Tables 2 and 3). Figure 3
shows the distribution of the real and predicted values of
the 5 g group (Figure 3A), 30 g group (Figure 3B) of
the PLSR model correction set and validation set. There-
fore, the best PLSR model was obtained with the first

derivative pretreatment, with R%* of 0.92, R*% of 0.90,
RMSEC of 0.075, RMSEP of 0.099, with RPD of 2.72,
RER of 15.45, for samples of 30 g duck (Table 4). It
can be concluded that most of the samples were near the
predicted line and were close to the predicted line so that
the model can predict the fat content of Peking duck.

It was interesting to know that the accuracy of the
best prediction model for both 5 g and 30 g group is
almost the same as using the raw spectral data (Table
4). For example, the coefficients of the raw spectral
group are 0.87, 0.89 for 5 g group and 30 g group,
respectively. It was the same as the best prediction
model in the two groups. In further, we also noticed that

Table 4. Comparison of the best PLSR model of Peking duck samples.

Calibration Prediction
Group Pretreatment method Factors R’ RMSEC R% RMSEP RPD RER
5¢g None 11 0.90 0.081 0.87 0.090 2.69 13.44
S-G9 11 0.90 0.085 0.87 0.089 2.71 13.60
30g None 12 0.90 0.082 0.89 0.100 2.70 15.30
1D1 12 0.92 0.075 0.90 0.099 2.72 15.45
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the prediction accuracy was also the same in the predic-
tion set for both 5 g and 30 g group. It would be impor-
tant in the application. Some commercial instruments
need very high input meat samples when using NIRS
to predict fat content (Alexandrakis et al., 2012;
Yang et al., 2018). The results showed that the 5 g
group could achieve the same prediction performance as
the 30 g group.

CONCLUSIONS

This research compared the quantitative prediction of
the IMF of Peking ducks under different quality samples
and different processing methods by near-infrared spec-
troscopy. The results showed that the 5 g group and the
30 g group can obtain almost the same prediction
results. The raw spectral data can obtain the highly sim-
ilar accuracy as the best correction method. The NIRS
can predict IMF in ducks relatively accurate and can
match the fast measurement requirement in the field.
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