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Abstract: Heme oxygenase-1 (HO-1, encoded by HMOX1) is a cytoprotective enzyme degrading
heme into CO, Fe2+, and biliverdin. HO-1 was demonstrated to affect cardiac differentiation of murine
pluripotent stem cells (PSCs), regulate the metabolism of murine adult cardiomyocytes, and influence
regeneration of infarcted myocardium in mice. However, the enzyme’s effect on human cardiogenesis
and human cardiomyocytes’ electromechanical properties has not been described so far. Thus, this
study aimed to investigate the role of HO-1 in the differentiation of human induced pluripotent
stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs). hiPSCs were generated from
human fibroblasts and peripheral blood mononuclear cells using Sendai vectors and subjected to
CRISPR/Cas9-mediated HMOX1 knock-out. After confirming lack of HO-1 expression on the protein
level, isogenic control and HO-1-deficient hiPSCs were differentiated into hiPSC-CMs. No differences
in differentiation efficiency and hiPSC-CMs metabolism were observed in both cell types. The global
transcriptomic analysis revealed, on the other hand, alterations in electrophysiological pathways in
hiPSC-CMs devoid of HO-1, which also demonstrated increased size. Functional consequences in
changes in expression of ion channels genes were then confirmed by patch-clamp analysis. To the best
of our knowledge, this is the first report demonstrating the link between HO-1 and electrophysiology
in human cardiomyocytes.

Keywords: hiPSC-CMs; HO-1; CRISPR/Cas9; electrophysiology; hypertrophy; IGF2

1. Introduction

The leading cause of death in developed countries, despite significant advances in
pharmacotherapy and cardiac surgery, are cardiovascular diseases, including ischemic
heart diseases (IHD) [1]. Myocardial infarction (MI) leads to ischemia and hypoxia of
the heart muscle, resulting in loss of up to one billion cardiomyocytes (approximately
25% of all cardiomyocytes found in the left ventricle) [2]. Due to the adult human heart’s
negligible regenerative capabilities, a scar is formed in place of lost cardiomyocytes. A
non-contractile collagen tissue further weakens electromechanical properties of a damaged
hearts, which may lead to arrhythmias, severe failure, and eventually, death [3]. Despite
significant advances in cardiology, organ transplantation is the only solution for many
patients with chronic heart failure. However, the possibility of transplantations is limited
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by an insufficient number of donors. A promising alternative to heart transplantations may
be a rapidly growing field of personalized and regenerative medicine.

Human induced pluripotent stem cells (hiPSCs) can be generated from easily ac-
cessible somatic cells, such as fibroblasts, peripheral blood mononuclear cells, or even
urine-derived epithelial cells from a particular patient [4–6]. hiPSCs can be then differenti-
ated into virtually all somatic lineages found in the adult organism, including cardiomy-
ocytes (hiPSC-CMs) [7,8], thus giving invaluable opportunity for investigation of their
regenerative potential for the human heart. However, further studies are needed to better
understand hiPSCs cardiac differentiation, particularly considering the immature state of
hiPSC-CMs [9]. Despite not fully understood biology, hiPSC-CMs are already widely used
in academia and industry for drug screening, where they are successfully replacing murine
and other animal models [10].

One of the enzymes crucial for cardiac development is heme oxygenase-1 (HO-1;
encoded by HMOX1). HO-1 is a cytoprotective enzyme degrading heme into carbon
monoxide (CO), ferrous ions (Fe2+), and biliverdin. Products of enzymatic activity of
HO-1 have a plethora of biological effects such as modulating angiogenesis, inflammation
and differentiation of stem cells [11–13]. Piantadosi et al. [14] have proven HO-1 to be
crucial for mitochondrial biogenesis in murine cardiomyocytes, which might be of great
importance considering the metabolic immaturity of iPSC-CMs. Our recent studies have
also proven the HO-1 importance in the murine cardiomyocytes’ biology [15,16]. We
showed that HO-1-lacking murine iPSC formed significantly less beating clusters during
spontaneous in vitro differentiation via embryoid bodies, indicating an essential role of
HO-1 in cardiomyogenesis [15]. Additionally, previously we have shown adverse late left
ventricle remodelling in HO-1-deficient mice upon induction of MI [16].

Here we aim to validate our and other’s studies regarding HO-1 in murine cardiomy-
ocyte biology in the human model of the hiPSC-derived cardiomyocytes.

2. Materials and Methods
2.1. Differentiation of hiPSCs into Cardiomyocytes

Verified HPSI1013i-kuxp_1 hiPSC (named hiPSC.2) has been purchased from The
Human Induced Pluripotent Stem Cells Initiative’s collection (www.hipsci.org, accessed
on 9 January 2017). hiPSC.1 was reprogrammed from commercially available BJ fibrob-
lasts (ATCC, CRL-2522), and hiPSC.3 were reprogrammed from PBMCs isolated from a
healthy donor (approval of the Institutional Review Board and Bioethical Committee and
with informed consent, in accordance with the Declaration of Helsinki—nr. of approval
122.6120.303.2016). Both hiPSC.1 and hiPSC.3 were reprogrammed using non-integrating
Sendai vectors (Cytotune-iPS 2.0 Sendai Reprogramming kit, cat. #A16517; ThermoFisher
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The character-
istics of all donors and list of the experiments they were used for are provided in Table 1.
The pluripotency of used hiPSC lines was confirmed as described by us previously before
using the cells in further experiments [15,17]. Shortly, obtained hiPSCs were stained for
pluripotency markers: NANOG, OCT-3/4, SSEA-4, TRA-1-60, and TRA-1-81. Then hiP-
SCs were spontaneously differentiated via embryoid bodies (EBs) in the Essential 6 (E6)
medium (ThermoFisher Scientific). After 2 weeks, cells were stained for markers of all
three germ layers: mesoderm (Vimentin and α-smooth muscle actin (α-SMA)); endoderm
(GATA4 and alpha-fetoprotein (AFP)); and ectoderm (neurofilament heavy chain (NFH)).

Table 1. Characteristics of the human induced pluripotent stem cell (hiPSC) donors.

hiPSC Sex Tissue Type Age (Years) Metabolism RNA-seq Patch-Clamp

hiPSC.1 male fibroblasts newborn x
hiPSC.2 male fibroblasts 25–29 x x
hiPSC.3 male PBMC 55 x x

www.hipsci.org
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Verified hiPSCs were cultured as described previously [18]. hiPSCs were differenti-
ated to cardiomyocytes utilising the GiWi protocol, described by Lian et al. [8]. Shortly,
CHIR99021 and IWR-1 (both Sigma-Aldrich, Saint Louis, MO, USA) were used as small
molecules regulating the WNT pathway. Cells were subjected to metabolic selection from
day 10 until day 16 [19], with an additional reseeding step on day 13.

Differentiated hiPSC-CMs were phenotyped as described previously [20]. Shortly,
on day 20–24 of differentiation, cardiomyocytes were harvested, fixed, and stained for
TNNT2 (Cardiac Troponin T Monoclonal Antibody, 1:1000, clone 13–11; ThermoFisher
Scientific). The percentage of TNNT2+ cells was determined using LSRFortessa flow
cytometry analyzer (BD Biosciences, Franklin Lakes, NJ, USA) and BD Software.

2.2. Karyotyping

Karyotype analysis was performed by Kariogen laboratory (Krakow, Poland) (G-
banding method).

2.3. Generation of HO-1 KO hiPSCs

HO-1 knock-out (HO-1 KO) hiPSCs were generated using the CRISPR/Cas9 gene-
editing method. Method and sgRNAs were described elsewhere [21] (oligonucleotides
used for cloning of HMOX1-targeting portion of sgRNA into plasmid are listed in the Sup-
plementary Table S1). To minimize the possible off-target effect on the experiments, three
different sgRNAs were tested: sgRNA1, sgRNA2, and sgRNA3. Due to the lack of cleavage
of DNA in sgRNA3, only the first two were used for further experiments. After nucleofec-
tion with either empty Cas9 plasmid (control) or specific sgRNAs (sgRNA1 and sgRNA2)
targeting HMOX1 using Human stem cell nucleofector kit 1 (Lonza, Basel, Switzerland),
hiPSCs were subjected to antibiotic selection with puromycin (0.5–0.7 µg/mL) for 24 h. Af-
ter 3–4 days, DNA was isolated from the cells using Genomic Mini kit (A&A Biotechnology,
Gdynia, Poland) according to the manufacturer’s protocol and Surveyor assay (home-
made at the Department of Cellular Biochemistry, Faculty of Biochemistry, Biophysics
and Biotechnology, Jagiellonian University, Krakow, Poland) was performed, to confirm
the activity of Cas9 and sgRNAs. hiPSCs were then reseeded in low density to obtain
single-cell derived clones. Single-cell derived clones were subjected to the HO-1 level
evaluation using the Western blot technique.

2.4. Western Blot

Protein was isolated and Western blot was performed as described previously [15].
Membranes were blotted for HO-1 (#ADI-SPA-894-F, 1:200, Enzo Life Sciences, Farming-
dale, NY, USA) and α-tubulin as a reference (#T5168, 1:1000, Sigma-Aldrich, Saint Louis,
MO, USA).

2.5. Immunofluorescence Analysis

hiPSCs or hiPSC-CMs were reseeded 3 days before staining (except spontaneous dif-
ferentiation via EBs). The staining procedure was performed, as described previously [22].
Antibodies are listed in Table 2.
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Table 2. List of antibodies.

Antibody Dilution Vendor (cat. nr.)

Pluripotency markers

Oct-3/4 1:200 Santa Cruz (sc8628)
NANOG 1:100 Santa Cruz (sc33759)

SSEA4 1:100 Millipore (90231)
TRA 1-61 1:100 Millipore (90232)
TRA 1-81 1:100 Millipore (90233)

Markers of three germ layers

Vimentin 1:250 Abcam (ab92547)
α-SMA 1:200 Abcam (ab5694)
GATA4 1:200 Santa Cruz (sc25310)

AFP 1:200 Santa Cruz (sc-8108)
NFH 1:200 Abcam (ab8135)

Cardiac specific marker

TNNT2 1:200 ThermoFisher Scientific
(MA5-12960)

2.6. RNA Isolation and qRT-PCR

RNA isolation, reverse transcription, and qRT-PCR were conducted as described
previously [15]. Specific primers for each gene are listed in Table 3.

Table 3. List of specific primers used for qRT-PCR.

Gene Primer 1 Primer 2

CACNA1c CAGAGGCTACGATTTGAGGA GCTTCACAAAGAGGTCGTGT
DNMT3B GGAGAAAGCTAGGGTGCGAG AATTCCCTACTGCCTGCAGGA

DPPA2 CCGTCCCCGCAATCTCCTTCCATC ATGATGCCAACATGGCTCCCGGTG
EEF2 TCAGCACACTGGATAGAGG GACATCACCAAGGGTGTGCA

GATA6 TCCCCCACAACACAACCTAC TGTAGAGCCCATCTTGACCC
ISL1 TGATGAAGCAACTCCAGCAG GGACTGGCTACCATGCTGTT

KCNH2 AATCGCCTTCTACCGGAAAG CACCATGTCCTTCTCCATCAC
KCNQ1 TCTGTCTTTGCCATCTCCTTC CCTCCATGCGGTCTGAATG
MIXL1 GGTACCCCGACATCCACTT GAGACTTGGCACGCCTGT

NANOG GAAGACAAGGTCCCGGTCAA ACCATTGCTATTCTTCGGCCA
SALL4 TGTGGCGGAGAGGGCAAATA GTGGCTTCATCCTCACTCGC
SCN5A GAGCTCTGTCACGATTTGAGG GAAGATGAGGCAGACGAGGA
TNNT2 ATCCAGAACGCCCAGACAGA GCTGCTTGAACTTCTCCTGC

2.7. Oxygen Consumption Rate (OCR)—Seahorse Assay

Oxygen consumption rate (OCR) was measured using Seahorse Bioscience XFe96 An-
alyzer (Agilent Technologies, Santa Clara, CA, USA). Then, 10,000 hiPSC-CMs were seeded
into Seahorse XFe96-well plates. After 3 days, hiPSC-CMs were stimulated with 10 µM CoP-
PIX for 48 and 72 h. On the day of the experiment, a medium was switched to a low-buffered
assay medium (8.3 g/L DMEM, 2 mM L-Glutamine, and 0.5% phenol red; pH 7.4—all
from Sigma-Aldrich, Saint Louis, MO, USA) and incubated at 37 ◦C, 20% O2, without CO2
for 1 h. OCR was assessed after sequential injections of oligomycin (1.5 µg/mL), FCCP
(0.8 µM), and Rotenon+Antymycin A (both 1 µM (all from Sigma-Aldrich, Saint Louis, MO,
USA)) were performed. Based on OCR, the following parameters were calculated: basal
respiration, ATP production, maximal respiration, non-mitochondrial respiration, spare
respiratory capacity, and proton leak.
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2.8. Mitochondrial Membrane Activity—TMRM Assay

The activity of mitochondrial membranes was measured using the TMRM compound
(ThermoFisher Scientific), which binds to active mitochondrial membranes. On day 20–24
of differentiation, 50,000 hiPSC-CMs were seeded on 24 well plates. After 3 days, hiPSC-
CMs were treated with 10 µM CoPP or SnPP for 24, 48 and 72 h. Next, cells were harvested
using TrypLE (ThermoFisher Scientific). 50,000 hiPSC-CMs were resuspended in 500 µL
of RPMI + B27 + TMRM (20 nM), and incubated at 37 ◦C for 30 min. Then, cells were
centrifuged at 200× g for 5 min and resuspended in RPMI+B27 w/o TMRM. Median TMRM
fluorescence was measured using LSRFortessa flow cytometry analyzer (BD Biosciences,
Franklin Lakes, NJ, USA) and BD Software (gating strategy is presented in Supplementary
Figure S1).

2.9. Transcriptome Analysis

RNA from hiPSCs and hiPSC-CMs (2 × 106 cells per sample) was isolated using
mirVana™ miRNA Isolation Kit (ThermoFisher Scientific), according to vendors’ protocol.
Targeted, whole transcriptome profiling was performed using next-generation sequencing
and a highly multiplexed amplification method provided by Ion AmpliSeqTM technology
and Ion ProtonTM machine (ThermoFisher Scientific). Libraries for eight undifferentiated
hiPSC and eight differentiated hiPSC-CM samples were prepared using Ion AmpliSeq™
Transcriptome Human Gene Expression Panel, which precisely defines the expression of
over 20,000 human RefSeq genes in a single assay. Before library preparation, RNA samples
were evaluated for their integrity, and their concentrations were measured using Agilent
2100 Bioanalyzer with RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). Subsequently,
two pools of libraries for eight undifferentiated hiPSC and eight differentiated hiPSC-CM
samples were prepared according to the manufacturer’s protocol. Then, libraries were
sequenced on Ion Proton Sequencer with Ion PI Hi-Q Sequencing 200 Kit and two Ion PI
Chips v3. The primary bioinformatic analyses were carried out on Torrent Suite Server
v5.12.1. Reads were aligned to the hg19 AmpliSeq Transcriptome ERCC v1 reference and
counted with Torrent Coverage Analysis Plugin. Gene expression data were normalized,
and differential gene expression analysis was carried out using the DESeq2 package (with
default parameters) implemented in R version 3.3.3 software [23]. p-values for differentially
expressed genes were corrected for multiple comparisons using the Benjamini-Hochberg
approach. Data were deposited in the BioProject database (ID 687272).

2.10. Patch-Clamp Analysis

For the patch-clamp analysis hiPSC-CMs were seeded at low density (10,000 cells
per 10 mm glass coverslip). Then, 3 days after seeding, hiPSC-CMs were measured
(Figure 7) or treated with 10 µM CoPP for 72 h and then measured (Figures 8 and 9). hiPSC-
CMs electrical activity was measured using a whole-cell current clamp with borosilicate
electrodes (7–9 MΩ) containing 125 mM K-gluconate, 20 mM KCl, 5 mM NaCl, and 10 mM
HEPES. Cells were continuously superfused with extracellular solution containing: 140 mM
NaCl, 5.4 mM KCl, 1.8 mM CaCl2 × 2H2O, 1 mM MgCl2 × 6H2O, 5.5 mM glucose, and
5 mM HEPES (pH = 7.4), at a temp. of 37 ◦C. Signal was amplified using SC 05LC amplifier
(NPI). Data were low pass filtered at 2 kHz and digitized at 20 kHz. Data was acquired
using Signal software (Cambridge Electronic Design Inc., Cambridge, UK).

All experiments were conducted in current-clamp mode. For action potential (AP)
measurements, membrane potential was manually adjusted to −60 mV with the negative
current injection and held steady throughout the experiment (one exception was made
for experiments shown in Figure 7, where the membrane potential was kept on the native
value). To evoke single AP, short (2 ms), rectangular positive current injections (from
150 pA to 210 pA) were applied every 1 s, to ensure the pacing of 1 Hz. Ten consecutive
APs were averaged, and the shape of the waveform was analyzed in Signal software (CED).
The AP kinetics were characterized by measuring (1) upstroke velocity and (2) time from
the AP peak to three discrete values of 20, 50, and 90% repolarization; termed as action
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potential duration (APD) 20, 50, and 90. Additionally, the maximal depolarization was
calculated as ‘action potential peak’ while the through hyperpolarization following the
spike as an ‘after hyperpolarization’ value (AHP).

2.11. Cell Size Measurement

To measure the cell size, hiPSC-CMs were reseeded at low density (10,000 cells per
cm2). Then, 3 days after reseeding, cells were fixed and stained for TNNT2 (as described
elsewhere [22]), to distinguish cardiomyocytes from non-cardiomyocytes. Immunofluores-
cence pictures were taken, and cell size was measured using ImageJ software.

2.12. Statistical Analysis

Data are presented as mean ± SD of 3 independent experiments (differentiation
batches) unless stated otherwise. To analyze statistical significance, t-test for two groups
comparisons or one-way ANOVA followed by Dunnett’s test for multiple comparisons were
used. Statistical analyses were performed using GraphPad Prism software. p < 0.05 was
considered as statistically significant. DEseq2 package was used for the bioinformatical
analysis of RNA-seq results [23].

3. Results
3.1. Generation of HO-1 KO hiPSCs Lines

To verify the role of HO-1 in the process of hiPSCs cardiac differentiation, we have
used three hiPSC lines, originating from different donors. Firstly, the pluripotency of
all hiPSCs lines employed in this study was checked. hiPSC.1 expressed pluripotency
markers: NANOG, OCT4, SSEA4, TRA-1-60, TRA-1-81 (Supplementary Figure S2A), and
spontaneously differentiated in vitro via EBs into cells originating from three germ layers
(mesoderm, endoderm, and ectoderm—Supplementary Figure S2B). Karyotype of all
hiPSCs was examined (Supplementary Figure S3) Pluripotent properties of hiPSC.2 and
hiPSC.3 were characterized in our previous studies [17,18] (respectively).

HO-1 KO hiPSC clones were generated from the characterized lines through the
nucleofection with a plasmid encoding Cas9 and designed sgRNAs targeting HMOX1 exon
2, described elsewhere [21], schematically illustrated in Figure 1A. After nucleofection with
sgRNAs (and empty Cas9 plasmid without sgRNA sequences as control) and selection
with puromycin (0.5–0.7 µg/mL, 24 h), surveyor assay was performed to confirm the
presence of mutations in HMOX1 exon 2 in all hiPSC lines (Figure 1B,C,F,I). Then, single-
cell derived clones were stimulated with hemin, a known potent activator of HMOX1
transcription and subjected to protein isolation and Western blot assay to functionally
confirm lack of HO-1 expression (Figure 1D,E,G,H,J). Selected clones were expanded and
used in further experiments.
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Figure 1. Generation of HO-1 KO hiPSC lines. (A) Schematic representation of HMOX1 mRNA and sgRNAs-targeted sites
with a representative sequencing result of HO-1 KO line. Adapted from ncbi.nlm.nih.gov. Surveyor assay of hiPSCs after
nucleofection with specific sgRNAs: (B,C) hiPSC.1, (F) hiPSC.2 and (I) hiPSC.3. Asterisks indicate products of cleavage of
heteroduplexes. Functional confirmation of HO-1 knockdown on protein level after hemin stimulation in (D,E) hiPSC.1,
(G,H) hiPSC.2, and (J) hiPSC.3. WT—isogenic control hiPSCs.

3.2. Verifying Level of GATA6 and Pluripotency of HO-1 KO hiPSC Clones

HO-1 KO hiPSC.3 clones, originating from sgRNA1 (C1 clones) and sgRNA2 (C2 clones)
were harvested 2 days after passaging for RNA isolation. qRT-PCR analysis of pluripotency
markers: NANOG, TERT, DPPA2, SALL4, and DNMT3B (Figure 2A,E, respectively) did not
reveal any changes in tested genes in comparison to the control counterpart (nucleofected
with empty Cas9 plasmid), demonstrating that lack of HO-1 does not affect hiPSCs function.
The level of GATA6, a predictor of hiPSC cardiomyocyte differentiation capability [24], was
also not changed (Figure 2F).
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Figure 2. Lack of HO-1 does not influence the level of GATA6 and pluripotency markers. qRT-PCR analysis of (A–E)
pluripotency markers and (F) GATA6 in WT and HO-1 KO hiPSC.3. Expression was normalized to EEF-2 levels. Bars
represent mean ± SD of N = 3 experiments. Dots, squares and triangles represent each replicate for corresponding groups,
one-way ANOVA test.

3.3. HO-1 Does Not Influence Cardiomyocyte Differentiation Efficiency

To assess whether HO-1 might affect the efficiency of hiPSCs cardiac differentiation,
we have performed direct differentiation of control (WT) and HO-1 KO hiPSC.1 clones
into cardiomyocytes, without the step of metabolic selection. In the first experiment, two
HO-1 KO clones had slightly higher efficiency measured as the percentage of cardiac
troponin T (TNNT2)-positive cell. In contrast, other HO-1 KO clones had lower efficiency
than WT cells (Supplementary Figure S4A). However, the percentage of TNNT2-positive
cells in the second experiment was much lower in both WT and HO-1 KO hiPSC clones
(Supplementary Figure S4B). These observations indicated high variances in directed
differentiation efficiency between experiments. Thus, it was not possible to assess the role
of HO-1 in the development of human cardiomyocytes using this method.

Therefore, in the next step, we have employed the technique of spontaneous in vitro
differentiation of WT and HO-1 KO hiPSC clones via embryoid bodies. Of note, EBs were
spontaneously differentiated in DMEM medium supplemented with 20% FBS, instead of
standard E6 medium, which contains insulin, reported to inhibit cardiac differentiation
and favor neuronal development [25]. Both WT, HO-1 KO C1.1 (Figure 3A), and HO-
1 KO C1.2, C2.1, and C2.2 (data not shown) differentiated into cells originating from
all three germ layers. Interestingly, one of the mesoderm markers—vimentin—was not
detectable in all HO-1 KO clones. qRT-PCR analysis of cardiac mesoderm markers in
spontaneously differentiated cells, on the other hand, revealed no differences in ISL1,
GATA6, and TNNT2(Figure 3B–D, respectively) expression in HO-1 KO EBs compared to
WT control. The level of another cardiac mesoderm—MIXL1 was significantly upregulated
in only one out of four tested HO-1 KO clones (Figure 3E). However, the analysis of the
other clones makes the interaction of HO-1 and MIXL1 questionable.
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Figure 3. HO-1 does not influence the efficiency of hiPSCs.2 differentiation to cardiomyocytes. (A)
Immunofluorescence analysis of markers of three germ-layers (Vimentin, α-SMA, GATA4, AFP, and
NFH) in spontaneously differentiated WT (upper panel) and HO-1 KO (bottom panel) hiPSC.3 via
embryoid bodies. Bar indicates 100 µm. qRT-PCR analysis of expression of cardiac mesoderm
markers: (B) ISL1, (C) GATA6, (D) TNNT2 and (E) MIXL1. Expression was normalized to EEF-2
levels. (F) Flow cytometric analysis of direct cardiomyocyte differentiation efficiency (based on
TNNT2 expression) of WT hiPSC.2 treated with tin protoporphyrin IX (SnPP), cobalt protoporphyrin
IX (CoPP) and hemin. Ctr1-DMSO control for SnPP and CoPP, ctr2-2 µM NaOH control for hemin.
Bars represent mean ± SD of N = 3 experiments. Dots, squares and triangles represent each replicate
for corresponding groups. * p < 0.05, one-way ANOVA test.

In the last approach to verify the role of HO-1 in cardiomyocyte development, we
applied pharmacological modulators of HO-1 activity: inhibitor—tin protoporphyrin IX
(SnPP), and activators—cobalt protoporphyrin IX (CoPP) and hemin [26]. WT hiPSC.2 were
directly differentiated into cardiomyocytes in the presence of 0.5; 1, and 5 µM SnPP,
CoPP, and hemin (10 µM concentration of all tested compounds was toxic to the cells in
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the long term—data not shown). Flow cytometric analysis of the TNNT2-positive cells
revealed that pharmacological modulation of HO-1 activity in WT hiPSCs did not influence
cardiomyocyte differentiation efficiency (Figure 3F). Representative flow cytometry images
are shown in Supplementary Figure S5.

3.4. HO-1 Induction by CoPP Stimulation Does Not Influence the Metabolism of hiPSC-CMs

Suliman et al. [27] have previously demonstrated that the HO-1/CO system enhances
mitochondria’s maturation in cardiomyocytes derived from murine embryonic stem cells.
Therefore, in the next step, we aimed to verify these results in the human model.

Analysis of the oxygen consumption rate (OCR) of hiPSC.3-CMs treated with CoPP
did not reveal any changes in the metabolism (Figure 4A). 48 and 72 h treatment with
10 µM CoPP did not influence the level of any assessed parameters: basal respiration,
maximal respiration, ATP production, non-mitochondrial respiration, spare respiratory
capacity, and proton leak (Figure 4B–G, respectively).

Figure 4. Stimulation of HO-1 expression by cobalt protoporphyrin IX (CoPP) does not influence the
metabolic activity of hiPSC-CMs. Seahorse analysis of hiPSC.3-CMs treated with CoPP (A–D). (A)
Graphical illustration of Seahorse results. (B) Basal respiration, (C) maximal respiration and (D) ATP
production. Tetramethylrhodamine (TMRM) assay of (E) hiPSC.2-CMs and (F) hiPSC.3-CMs treated
with CoPP. Bars represent median ± SD of N = 2 experiments. Dots, squares and triangles represent
each replicate for corresponding groups, one-way ANOVA test.
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In the complementary assay, the activity of mitochondrial membranes was measured
using tetramethylrhodamine (TMRM), a fluorescent dye sequestering in active mitochon-
dria membranes. hiPSC.2 and hiPSC.3-CMs were treated with 10 µM CoPP for 24, 48,
and 72 h or SnPP for 48 and 72 h. Further, flow cytometric analysis did not reveal any
fluorescence intensity changes, suggesting that activation of HO-1 by CoPP (or inhibition
by SnPP—Supplementary Figure S6) did not increase mitochondrial activity (Figure 4H,I).
Representative flow cytometry images are shown in Supplementary Figure S7.

3.5. Transcriptome Analysis of WT and HO-1 KO hiPSCs and hiPSC-CMs

As the knockdown of HO-1 did not influence the pluripotency of hiPSCs, differentia-
tion efficiency, nor mitochondrial activity, we decided to gain more in-depth insight into
the potential role of HO-1 on hiPSCs and hiPSC-CMs biology. Accordingly, we performed
RNA-seq analysis of undifferentiated and differentiated WT and HO-1 KO hiPSC clones.

Comparison of undifferentiated WT and HO-1 KO hiPSCs revealed no differences
in gene expression profile between both genotypes (Supplementary Figure S8) whereas
cardiac differentiation, as expected, imposed substantial transcriptomic changes in the
analyzed cells (hiPSCs vs hiPSC-CMs, Supplementary Figure S8). Notably, more than
1000 differentially expressed genes (DEG) distinguished the WT and HO-1 KO hiPSC-CMs,
among which 449 genes were upregulated, and 577 were downregulated (Figure 5A). In
parallel, hierarchical clustering and principal component analysis (PCA) clearly separated
WT, and HO-1-deficient hiPSC-CMs (Figure 5B,C). Gene ontology analysis of DEG revealed
that five out of the top 15 altered biological processes were related to cardiomyocytes’
electrophysiology (marked in red).

Figure 5. Cont.
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Figure 5. Transcriptomic analysis of hiPSC.3-CMs WT and HO-1 KO. (A) Plot with differentially expressed genes. 449 were
upregulated and 577 downregulated. (B) Hierarchical clustering of differentially expressed genes. (C) Principal component
analysis. (D) Analysis of gene ontology (GO) terms.

3.6. Altered Ion Channel Expression in HO-1 KO hiPSC-CMs

Transcriptomic analysis of WT and HO-1 KO hiPSC-CMs revealed changes vastly
in processes related to electrophysiological properties (Figure 5D). A closer insight into
GO term ‘cardiac muscle cell potential involved in contraction’ indicated for increased
expression of potassium channel KCNQ1 and lower level of other potassium channels:
KCNE2, KCNE3, KCNA5, compared to WT counterparts. The level of calcium channels
transcripts was increased (CACNA1d and CACNA2d) (Figure 6A). However, among up-
regulated calcium channels not assigned to the GO term mentioned above, was CACNA1c
(Figure 6B). The qRT-PCR analysis confirmed upregulation of the KCNQ1 gene in HO-1 KO
hiPSC-CMs (Figure 6C), however only in case of one out of two tested HO-1 KO clones.
Based on qRT-PCR, we did not observe the changed expression of other genes encoding ion
channels crucial for hiPSC-CMs biology: potassium KCNH2, sodium SCN5a, and calcium
CACNA1c.

3.7. Shortened Action Potential Duration in HO-1 KO hiPSC-CMs

Analysis of RNA-seq results suggested changes in electrophysiological properties
(Figure 5D). However, more in-depth insight into one of the GO terms (cardiac muscle
cell potential involved in contraction) revealed an inconsistent direction in the changes.
The qRT-PCRs analysis did not clarify these observations. Therefore, we performed a
functional measurement of electrophysiological properties of HO-1 KO hiPSC-CMs. The
whole-cell patch-clamp analysis shown reduced APD manifested as faster repolarization
in both HO-1 KO hiPSC-CMs clones. (Figure 7A–D). The upstroke velocity, AP peak, and
AHP parameters remained unchanged (Figure 7E–G).
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Figure 6. Expression of ion channels in WT and HO-1 KO hiPSC.3-CMs. (A) RNA-seq-GO term: cardiac muscle cell
potential involved in contraction. (B) RNA-seq: normalized counts for CACNA1c gene. qRT-PCR analysis of (C) KCNQ1,
(D) KCNH2, (E) SCN5a, and (F) CACNA1c. Expression was normalized to TNNT2 levels. Bars represent mean ± SD of
N = 3 experiments. Dots, squares and triangles represent each replicate for corresponding groups. * p < 0.05, one-way
ANOVA test.
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Figure 7. Electrophysiological properties of WT and HO-1 KO hiPSC.1-CMs. (A) Representative AP waveforms for
WT and HO-1 KO hiPSC.1-CMs. Action potential duration (APD) at (B) 20%, (C) 50%, and (D) 90% repolarization.
(E) Upstroke velocity. (F) AP peak, and (G) AHP. N = 32–38 cells. Dots, squares and triangles represent each measurement
for corresponding groups. * p < 0.05, ** p < 0.01, *** p < 0.005, one-way ANOVA test.

3.8. Effect of CoPP on Electrophysiological Properties of WT and HO-1 KO hiPSC-CMs

As we found a link between lack of HO-1 and upregulation of potassium channel
expression, KCNQ1, and what was subsequently reflected in the AP’s decreased duration,
we asked whether pharmacological stimulation of HO-1 with CoPP will also impact the
electrophysiological properties of hiPSC-CMs.

Indeed, WT hiPSC.2 CMs treated with 10 µM CoPP had increased APD50 (Figure 8B).
However, the difference in APD20 and APD90 did not reach the significance threshold
(Figure 8A,B). Interestingly, upstroke velocity was potently increased in hiPSC-CMs treated
with CoPP (Figure 8D). Values of AP peak and AHP remained unchanged (Figure 8E,F).
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Figure 8. Electrophysiological properties of WT hiPSC.2-CMs stimulated with CoPP. Action potential (AP) duration at
(A) 20%, (B) 50%, and (C) 90% repolarization. (D) Upstroke velocity, (E) AP peak, and (F) AHP. N = 27–34 cells. Each dot
and square represents one measurement for corresponding groups. * p < 0.05, ** p < 0.01, t-test.

Unexpectedly, HO-1 KO hiPSC-CMs treated with 10 µM CoPP were also characterized
by a similar increase in APD (Figure 9A–C) as WT hiPSC-CMs (Figure 8B). That indicates
that CoPP may act on potassium channels, but its mechanism is not dependent on HO-
1. However, the upstroke velocity, which depends on the activity of sodium channels,
remained unaffected. As we observed an increase of upstroke velocity in WT hiPSC-
CMs treated with CoPP (Figure 8D), but not in HO-1 KO hiPSC-CMs (Figure 9D), we
might conclude that this is an HO-1-dependent mechanism of CoPP action on sodium
conductance.

Figure 9. Electrophysiological properties of HO-1 KO hiPSC.2-CMs stimulated with CoPP. APD at (A) 20%, (B) 50%, and
(C) 90% repolarization. (D) Upstroke velocity, (E) AP peak, and (F) AHP. N = 27–34 measurements. Each dot and square
represents one measurement for corresponding groups. * p < 0.05, *** p < 0.001, t-test.

Western blot analysis confirmed at the protein level CoPP-mediated HO-1 upregula-
tion in WT hiPSC-CMs and lack of HO-1 upregulation in HO-1 KO hiPSC-CMs (Supple-
mentary Figure S9A,B, respectively).
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3.9. Regeneration Pathway and Cell Size of HO-1 KO hiPSC-CMs

Among over 1000 genes changed in HO-1 KO hiPSC-CMs, were those involved in
regeneration. The observed pattern suggests the decreased regenerative potential of HO-
1 KO hiPSC-CMs (Figure 10A). What is important is, expression of a critical factor involved
in the recovery of the infarcted heart-S100A4-was also remarkably lowered, based on
RNA-seq results (Figure 10B). Additionally, on average, hiPSC-CM lacking HO-1 were
13.4% (±4.8%) bigger than hiPSC-CM WT (Figure 10C); this observation is also supported
by increased expression of IGF2, a key factor involved in cardiac hypertrophy (Figure 10D).

Figure 10. Regeneration pathway and cell size of WT and HO-1 KO hiPSC.3-CMs. (A) RNA seq: GO term-Regeneration, (B)
RNA-seq: normalized counts for S100A4 gene. (C) The cell size of 133 WT and 184 HO-1 KO hiPSC-CM. Dots and squares
represent each measurement for corresponding groups. ** p < 0.01, t-test. (D) RNA-seq: normalized counts for IGF2 gene.
Representative picture of (E) WT, and (F) HO-1 KO hiPSC-CM. Bar indicates 5 µm.
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4. Discussion

We report that modulation of HO-1 does not affect pluripotency of human iPSCs.
Accordingly, in HO-1 KO hiPSCs clones level of pluripotency markers remained unchanged,
and they could spontaneously differentiate to cells originating from all three germ layers.
Neither genetically engineered knockdown of HO-1 nor pharmacological modulation of
HO-1 did not influence hiPSC differentiation efficiency to cardiomyocytes. However, one
of the mesoderm markers—vimentin, was undetectable in HO-1 KO embryoid bodies.
Of note, HO-1 was shown to regulate vimentin [28]. Furthermore, CoPP-mediated HO-
1 induction in hiPSC-CMs did not enhance their metabolism, based on two independent
experimental approaches. Next, based on transcriptome and qRT-PCR analyses of ion
channels expression, we have assessed the electrophysiological properties of WT and
HO-1 KO hiPSC-CMs. Of note, the importance of HO-1 in the electrophysiology of hiPSC-
CMs was confirmed using the patch-clamp method. However, more detailed studies of
this phenomenon were not possible due to the HO-1-independent action of CoPP on the
electrophysiology of CMs, which has not been reported so far.

Nevertheless, RNA-seq analysis demonstrated more than 1000 differentially expressed
genes between control and HO-1-deficient cardiomyocytes, belonging to many important
biological processes, particularly involved in the electrophysiological activity of the heart.

4.1. HO-1 Does Not Influence the Stemness of hiPSCs

Here, we reported a similar level of pluripotency markers in both WT and HO-1 KO
hiPSCs. These observations align with our and other studies regarding the HO-1 and
pluripotency in murine stem cells [15,29]. In both studies, lack of HO-1 in murine embry-
onic stem cells (ESCs) and murine iPSCs did not affect their stemness, as the pluripotency
markers were at the same level both in WT and HO-1 KO cells. Lin et al. [29], on the other
hand, linked genetic and pharmacological downregulation of cytoprotective HO-1 with a
more rapid decline in pluripotency markers (Oct4, SSEA-1, alkaline-phosphatase activity)
in stem cells subjected to spontaneous differentiation. Increased intracellular ROS, which
might be the effects of lack of HO-1 activity, has been linked with facilitated withdrawal
from quiescence and faster differentiation of pluripotent and multipotent stem cells [30,31].
Therefore, modulation of HO-1 at the early stages of in vitro differentiation of pluripotent
stem cells might be of great interest. However, it should be stressed that differentiation
from the stem cell to the end-stage somatic cells is a long process involving a plethora of
molecular pathways, differently regulated at various stages of differentiation. Therefore,
the incautious modulation of HO-1 in stem cells might have unexpected in vivo effects. As
shown by our team, the lack of HO-1 in the bone marrow niche led to the extensive exhaus-
tion of hematopoietic stem cells, most probably due to the aforementioned facilitation of
differentiation in HO-1 KO stem cells [32]. On the other hand, upregulation of HO-1 in
progenitor cells might have an even more deleterious effect in vivo. As also shown by our
team, overexpression of HO-1 in muscle progenitor cells led to their uncontrolled prolifer-
ation and formation of tumor-like structure in vivo [33], which might be of relevance for
rhabdomyosarcoma development [34].

4.2. HO-1 Does Not Influence the Differentiation Efficiency of hiPSCs into Cardiomyocytes

Basing on the described role of HO-1 in cardiac differentiation of mouse PSCs [15,27],
one could expect a clear pattern in the efficiency of cardiomyocyte differentiation from
hiPSCs with modulated HO-1 activity.

However, CRISPR/Cas9-mediated knockdown of HO-1 did not affect cardiac meso-
derm markers’ expression in spontaneously differentiated EBs. Similarly, pharmacological
stimulation or inhibition of HO-1 during direct hiPSCs differentiation into hiPSC-CMs
did not affect the efficiency of this process. These findings were additionally confirmed
by the lack of change in the GATA6 gene in HO-1 KO hiPSCs, which was shown to be the
predictor of PSC differentiation capability toward cardiomyocytes [24].
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Directed cardiomyocyte differentiation is a highly complex process, composed of se-
quential steps of mesoendoderm induction (by activation of the Wnt pathway), which then
goes through cardiac mesoderm (induced by subsequent inhibition of the Wnt pathway),
cardiac progenitors and finally give rise to spontaneously contracting cardiomyocytes [7].
As molecular pathways are oppositely regulated at different stages of this process, it may
suggest that HO-1 should be manipulated in a time-spatial manner. Indeed, a similar idea
has been reviewed by Wei and Cong [35], where authors, basing on numerous studies (and
sometimes seemingly contradictory) regarding ROS and cardiac differentiation, concluded
that at the early stage of differentiation, elevated ROS is required, but for proper further
cardiac differentiation drop in ROS is essential.

Therefore, in our study, we might conclude that lack of any effect of HO-1 modulation
on the efficiency of differentiation of hiPSCs into cardiomyocytes might be because of con-
stant either upregulation or downregulation of HO-1 throughout the whole differentiation
process. The initial positive effect of HO-1 modulation could be blurred due to too long
exposure to given stimuli.

4.3. HO-1 Does Not Influence the Metabolic Activity of hiPSC-CMs

Cardiomyocytes derived from hiPSCs are ready for measurement within approxi-
mately 20 days [7], whereas the human heart reaches maturity in the early twenties [36].
Such a short time of in vitro differentiation and lack of interaction with other cell types
found in the developing heart do not allow for the full maturation of hiPSC-CMs. Tran-
scriptomic analysis performed by others revealed that hiPSC-CMs resemble human fetal
cardiomyocytes in the first trimester of development [9]. Among many properties of
hiPSC-CMs, which are immature compared to adult cardiomyocytes, underdeveloped
mitochondria are one of the main hurdles in the maturation of hiPSC-CMs [37].

Suliman et al. [27] investigated the role of HO-1/CO system in the process of metabolic
maturation of energy-demanding cardiomyocytes derived from spontaneously differenti-
ated murine ESCs. The authors reported that the CO, a product of the enzymatic activity of
HO-1, increased mitochondrial biogenesis, and their structural network.

Our study aimed to confirm the role of HO-1 in the maturation of mitochondria
in cardiomyocytes in human cells. Nevertheless, hiPSC-CMs treated with CoPP, the
inductor of HO-1 activity, did not show any signs of mitochondrial maturation, as indirectly
measured by oxygen consumption rate (Seahorse analysis) and directly by assessing the
activity of mitochondrial membranes (TMRM analysis).

The fact that findings regarding the murine heart’s metabolism are not reflected in
human cardiomyocytes is not surprising. Firstly, due to anatomical differences, murine
hearts are characterized by an almost ten times higher beating rate than humans [38].
Therefore it might be expected that murine cardiomyocytes, to meet their large energy
demand, will be characterized by differently regulated metabolism, compared to their
human counterparts, which are beating much slower.

4.4. HO-1 Alters Electrophysiological Properties of hiPSC-CMs

The hypothesis concerning the potential role of HO-1 in the electrophysiological
activity of hiPSC-CMs is based on the well-known effect of CO on the activity of ion
channels (reviewed in [39]).

The transcriptomic analysis of WT and HO-1 KO hiPSC-CMs demonstrated that five
out of the top 15 changed biological processes were related to cardiac conductivity. Detailed
analysis of the GO term ‘cardiac muscle cell potential involved in contraction’ suggested
increased expression of potassium channel KCNQ1. Increased influx of potassium ions
during AP results in faster repolarization, manifested by shortened AP (role of ion channels
in electrophysiology of hiPSC-CMs reviewed in: [40]). This finding was confirmed by patch-
clamp analysis, as shortened APD characterized the HO-1 KO hiPSC-CMs. Decreased
expression of other potassium channels (KCNE2, KCNE3, KCNA5), which activity also
leads to decreased APD, might be explained as a compensatory effect. Increased calcium
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channels expression also supports the hypothesis about the compensatory effect, as their
activity has the opposite, to potassium channels, effect on APD [40]. Altered activity of
discussed ion channels is characteristic for atrial fibrillation [40].

Further, detailed studies with CoPP, the inductor of HO-1 activity, failed to provide
clear answers, as CoPP exhibited HO-1-independent mechanism of action, which was
noticed in HO-1 KO hiPSC-CMs. Of note, HO-1-independent CoPP activity was already
reported in other studies; however, none of them was related to cardiomyocytes and
electrophysiology [41–44].

Despite the unexpected effect of CoPP, increased upstroke velocity after the CoPP
treatment of hiPSC-CMs WT seemed dependent on HO-1 upregulation. That could be
potentially of great interest, as increased upstroke velocity was reported in the case of
maturating hiPSC-CMs [45]. However, the other hallmark of maturation is the increased
expression of ion channels [46]. In the case of HO-1 KO hiPSC-CMs, we have observed
an inconsistent pattern of ion channels expression. Considering that potassium ions’
equilibrium is disrupted in the heart after MI [47], the disrupted potassium ion currents in
HO-1 KO hiPSC-CMs should be regarded as a pathological effect.

The hypothesis about pathologically altered electrophysiology of hiPSC-CMs lacking
HO-1 is supported by changes in genes involved in regeneration (RNA-seq results). Of
importance, expression of S100A4, a gene which was recently shown to be crucial for
heart regeneration after MI [48,49], was also downregulated in HO-1 KO hiPSC-CMs.
Of note, changes in genes involved in regeneration may reflect, reported by Tomczyk
et al., adverse late left ventricle remodelling in HO-1-deficient mice upon induction of
MI [16]. Pathological effect of HO-1-deficiency is additionally supported by, reported
here, increased expression of IGF2-a key regulator of cardiac hypertrophy [50], which was
followed by increased HO-1 KO hiPSC-CMs size. Cardiomyocyte hypertrophy was also
reported in HO-1-deficient hearts characterized by impaired regeneration [16].

5. Conclusions

In the present study, we show that the HO-1 does not impact the efficiency of hiPSCs
differentiation into cardiomyocytes, nor the mitochondrial activity of hiPSC-CMs. However,
the results indicate pathologically altered electrophysiology of HO-1 KO hiPSC-CMs. Our
data is potentially of great importance, due to the polymorphism of the HMOX1 promoter,
which results in variations of HO-1 level in the population and impacts susceptibility for
coronary artery disease [51]. Also, commonly used drugs were shown to modulate the
HO-1 [22,52], which in consequence may affect the electrophysiological activity of the
heart. However, to better understand this phenomenon, more detailed studies on male
and female hiPSC-CMs are needed as female hiPSC-CMs were recently shown to be more
prone to electrophysiological abnormalities [53].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/3/522/s1, Table S1. List of primers used for cloning of HMOX1-targeting portion of sgRNA into
plasmid, Figure S1. Gating strategy of hiPSC-CMs stained with TMRM, Figure S2. Characterization
of hiPSC.1. (A.) Immunofluorescence analysis of pluripotency markers (NANOG, OCT4, SSEA4,
TRA-1-61, and TRA-1-80). (B.) Immunofluorescence analysis of markers of three germ-layers of
spontaneously differentiated embryoid bodies (GATA4, Vimentin, α-smooth muscle actin, alpha-
fetoprotein, and neurofilament heavy chain. Bar indicates 100 µm, Figure S3. Karyotype analysis of
(A) hiPSC.1 and (B.) hiPSC.2. Arrows indicating t(6;15)(p21.2;q15) reciprocal translocation. Figure S4.
Flow cytometric analysis of cardiac differentiation efficiency of WT and HO-1 KO hiPSC.1, based
on TNNT2 expression. (A.) Frist differentiation, (B.) Second differentiation. Two replicates in each
differentiation. Figure S5. Differentiation efficiency. Representative flow cytometry images. Figure S6.
Tetramethylrhodamine (TMRM) assay of hiPSC-CMs treated with SnPP. Bars represent median ± SD
of N=1 experiment (2 replicates). Figure S7. TMRM assay of hiPSC.3-CMs. Representative flow
cytometry images. Figure S8. Transcriptomic analysis of undifferentiated WT and HO-1 KO hiPSCs
and hiPSC-CMs. Hierarchical clustering of differentially expressed genes in undifferentiated (left
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side) and differentiated cells (right side). Figure S9. Western blot: confirmation of HO-1 induction (or
lack of) by CoPP on the protein level in (A.) WT hiPSC.2-CMs and (B.) HO-1 KO hiPSC.2-CMs.
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