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INTRODUCTION
The goal of evidence-based medicine is to move away from practices
based on theory and replace them with practices based on robust scientif-
ic evidence. Unfortunately, many clinicians performing and interpreting
pulmonary function tests dogmatically adhere to ideas based on theory
despite evidence to the contrary. This paper will highlight examples of
myths dressed up as science in the realm of pulmonary function testing.
The goal of this paper is not just to inform but to also stimulate healthy
debate and introspection about what we believe to be true and how these
beliefs impact our practice and patient care.

MYTHS IN PULMONARY FUNCTION TESTING
Caffeine should be withheld prior to pulmonary function testing
As a member of the methylxanthine family, caffeine has been thought to
possess bronchodilator properties. Because of this, the 1999 American
Thoracic Society (ATS) guideline for methacholine and exercise testing
recommended that caffeine-containing products be withheld on the
day of testing [1]. While the 2005 ATS/European Respiratory Society
guidelines for pulmonary function testing do not prohibit caffeine prior
to testing [2], many laboratories continue to prohibit caffeine use prior to
testing. It has been my experience that many patients are unhappy that
they must withhold their morning coffee or tea prior to testing. Yurach
et al [3] assessed the effect of caffeinated coffee on patients undergoing
spirometry, methacholine challenge, and exhaled nitric oxide testing.
The investigators found that a 16-ounce cup of coffee (~330 mg caffeine)
had no effect on FEV1, methacholine responsiveness, or mean exhaled
nitric oxide (Table 1). Precluding patients from ingesting usual amounts
of caffeine prior to pulmonary function testing is unwarranted.

Patients are usually the cause of poor quality data
Numerous studies have documented a high prevalence of poor-quality
spirometry testing in both the pulmonary function laboratory and office
settings [4, 5]. This has occurred at a time when spirometer accuracy and
reliability appears to be much better than in the past [6]. It is therefore
not surprising that most technologists can be expected to blame poor
patient effort and cooperation for poor test quality [7]. However, the

literature clearly indicates that most patients, even children [8] and the
elderly [9], are capable of producing high-quality pulmonary function
data. The key to higher quality pulmonary function data is technologist
performance monitoring and feedback [7]. In the Lung Health Study,
Enright et al [10] documented a reduction in spirometry test quality
after initial technologist training, which improved with retraining, but
could only be sustained with a program of on-going technologist perfor-
mance monitoring. Borg et al [4] evaluated the effect of technologist
monitoring and feedback in two clinical pulmonary function laboratories.
Prior to the intervention, lab #1 and lab #2 had poor test acceptability
and reproducibility rates, 61% and 59%, respectively. Lab #1 implemen-
ted a technologist performance monitoring and feedback program and
lab #2 did not. In response to the intervention, lab #1’s test quality rates
rose to 92% while the quality of lab #2 remained poor at 65% (Figure 1).
The unfortunate truth is that it is the technologist, and not the patient,
who is usually the cause of poor quality testing. Pulmonary function lab-
oratories should include technologist training and performance monitor-
ing in their quality assurance programs.

Only high-quality spirometry tests are meaningful
As stated above, high-quality test results should be the goal of every pul-
monary function laboratory. However, there are always going to be some
patients, albeit a minority, that will not be able to produce high-quality
spirometry. When spirometry quality is not perfect, many technologists
reject sub-optimal tests to avoid reporting spurious data. While the
practice of discarding less-than-perfect spirometry data is well inten-
tioned, it may frequently discard clinically useful data. Using an A-B-C-
D-F scoring strategy, Hankinson et al [11] found that only quality scores
of D or F affected test interpretation. While we must always strive for
maximum quality, technologists and physicians should exercise caution
when discarding data.

Technologists must scream at patients to obtain quality spirometry
results
A typical lesson in spirometry testing includes stressing the importance
of using a loud voice, to the point of yelling or screaming test instruc-
tions, to obtain maximum effort and quality data. This practice has
no basis in science and in most situations is completely unnecessary. Yell-
ing or screaming spirometry instructions can be frightening to children,
annoying to teens, and less audible to those with hearing deficits. Dem-
onstrating the maneuver to the patient prior to testing and using sugges-
tive body language during testing is more effective than yelling
or screaming instructions at the patient. Studies should be conducted
to investigate the best way to communicate pulmonary function test
instructions to patients.

FEF25–75% aids in test interpretation
The forced expiratory flow over the middle half of the vital capacity
(FEF25–75%) is believed by many to be representative of small airways
function. A common interpretation of a “low FEF25–75%” is that the
test results are “compatible with small airways disease.” The problem
with this interpretation is that FEF25–75% has a very wide normal range
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TABLE 1

The effect of caffeinated coffee on pulmonary function

Parameter Pre-coffee Post-coffee*

FEV1 (L) 3.31 (0.75) 3.36 (.74)*
PC20 (mg/mL) 1.36† 1.35*
FENO (ppb) 31.2 (19.6) 31.5 (20.4)

Note: Data are expressed as mean with standard deviation. FEV1,= forced
expiratory volume in the first second; PC20, provocative concentration of
methacholine causing a 20% decline in FEV1;FENO = fraction of expired nitric
oxide; ppb, parts per billion. Table produced with data from Yurach et al [3].

*p > 0.05.
†Measured after decaffeinated coffee.
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[12]. Indeed, after age 70 years, one can have an FEF25–75% less than 50%
of predicted and still be above the 5th percentile [13]. Quanjer et al [13]
examined the impact of FEF25–75% on test interpretation, they found the
incidence of FEF25–75% falling below the lower limit of normal as an iso-
lated finding (i.e., normal FVC, FEV1, and FEV1/FVC) was only 2.75%.
FEF25–75% adds virtually nothing to the information provided by FVC,
FEV1, and FEV1/FVC.

DLCO/VA can normalize an abnormal DLCO
For many clinicians, the interpretation of diffusing capacity (DLCO)
is based on both DLCO and the DLCO to alveolar volume ratio
(DLCO/VA). While it is undeniable that DLCO and lung volume are
directly related, this relationship is both complicated and difficult to pre-
dict [14, 15]. A common mistake is to declare an abnormal DLCO nor-
mal if the DLCO/VA is within the normal range. This implies that the
DLCO is low due exclusively to a lack of lung volume, not alveolar–
capillary pathology. A recently published study by Pastre et al [16] shows
that DLCO/VA can often be within the normal range even in patients
with significant parenchymal lung disease. Therefore, DLCO/VA is
not a reliable parameter for inverse modeling (i.e., predicting structure
from function) [17].

80% of predicted is a reliable lower limit of normal
The interpretation of pulmonary function data requires knowledge of
expected values in subjects without respiratory disease. To this end, refer-
ence or “predicted” equations are generated. The mean or median value
for a pulmonary function value is referred to as the “predicted value.” If
the measured value is identical to the predicted value, the measured value
is declared “100% of predicted.” If the data are normally distributed, the
predicted value will be found at the center of a symmetrical bell curve.
In other words, there are an equal number of normal values above and
below the predicted value. A long-standing and fundamentally flawed
technique to define the lower limit of normal (LLN) of pulmonary func-
tion values is to multiply the predicted value by 0.80. The so-called “80%
of predicted” rule declares any value below 80% as abnormal and vice
versa. In 1979, Sobol and Sobol [18] commented that “nowhere else in
medicine is such a naïve view taken of the limit of normal.” The “80%
rule” is statistically invalid for a number of reasons. Firstly, the normal
ranges for different pulmonary function values are not identical. In addi-
tion, the normal variance around any value is affected by age, race, and
gender [19]. As previously mentioned, after age 70 years, an FEF25–75%
value less than 50% of predicted can still be normal [13]. Quanjer et al
[20] found that using the “80% of predicted” rule and 0.70 as the LLN

for FEV1/FVC misclassified >20% of patients. Wesolowski et al [21]
documented that 14% of surgical lung cancer patients had pulmonary
function values which were both <80% of predicted and above the
LLN. This difference proved to be clinically important because having
lung function below the LLN was a better predictor for perioperative
complications than lung function <80% predicted but also ≥ LLN. Pul-
monary function data should not be interpreted using 80% of predicted
as the LLN (Figure 2, [22]).

A positive methacholine challenge confirms asthma
Methacholine challenge tests (MCT) are performed to test for the pres-
ence or absence of airway hyper-responsiveness (AHR) [23]. AHR is clear-
ly a feature of asthma; however, AHR is not exclusive to asthma. For
example, Leone et al [24] found that 46% of patients with non-allergic
rhinitis with eosinophilia syndrome and no respiratory symptoms dem-
onstrated AHR to methacholine. AHR is also a feature of COPD [25],
sarcoidosis [26], and allergic rhinitis [27]. In addition, some subjects
with no signs or symptoms of asthma demonstrate AHR to methacholine
(asymptomatic AHR) [28, 29]. In patients with an intermediate pre-test
probability of asthma, AHR in response to MCT may significantly
increase the post-test probability of asthma. When the post-test probabili-
ty of asthma is higher than the pre-test probability of asthma, a working
diagnosis can be made. However, it is prudent to document an improve-
ment in symptoms and lung function in response to therapy before mak-
ing a working diagnosis of asthma official.

A negative methacholine challenge excludes asthma
As mentioned above, MCTs are performed to test for the presence or
absence of AHR [23]. A lack of demonstrable AHR in response to
MCT may significantly decrease the post-test probability of asthma; how-
ever, the sensitivity of MCT is not 100%. Indeed, Anderson et al [30]
found that 45% of children with a positive exercise challenge had a neg-
ative methacholine challenge. In a study of elite athletes, the sensitivity of
MCT to identify a positive response to eucapnic voluntary hyperventila-
tion was only 36% [31]. The failure of MCT to identify asthma with

FIGURE 1

The percentage of quality spirometry tests from two
clinical laboratories. Baseline data from 2004 is compared
to 2008 after lab #1 instituted an on-going technologist
performance monitoring and feedback program. Figure
produced with data from Borg et al [4].

FIGURE 2

The percent of predicted lower limit of normal as a
function of age in males and females. The red horizontal
dashed line represents 80% of predicted. LLN, lower limit
of normal; FEV1, forced expiratory volume in 1 second;
FVC, forced vital capacity. From Quanjer et al [22] (open
access material under CC-BY-NC license).
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perfect sensitivity is multi-factorial including both physiologic and
technological considerations.

From a physiologic standpoint, phenotypic differences among asth-
matics may affect the response to MCT [32]. In addition, the response
to methacholine may be affected by seasonal variations in AHR. For
example, Sposato et al [33] found a greater prevalence of AHR to metha-
choline in the spring and fall than during the summer months. Fruchter
and Yigla [34] also found a higher incidence of AHR to methacholine in
winter and spring when compared to summer. It is probably not uncom-
mon for a patient to experience respiratory symptoms during the height
of spring pollen season but not have their MCT scheduled until months
later, after their allergen exposure has waned.

There are also technologic and methodological factors that can affect
the results of a MCT. Methacholine dose, nebulizer type, inhalation
method (e.g., dosimeter versus tidal breathing), and the threshold for a
“positive test” can all affect MCT interpretation [1].

The impact of the bronchodilatory and bronchoprotective effect of
deep inhalation on MCT has received a lot of attention. Cockcroft and

Davis [35] have shown that using the full inhalation dosimeter method
can significantly reduce the response to MCT and may result in false neg-
ative tests in patients with mild AHR.

In addition, relying solely on FEV1 as a MCT outcome measure may
reduce MCT sensitivity for AHR. An example of a patient with respirato-
ry symptoms, markedly reduced specific conductance (sGaw), yet little to
no change in FEV1 during MCT is shown in Figure 3 [36]. Khalid et al
[37] evaluated sGaw and FEV1 in 138 patients undergoing a MCT. The
researchers found that a 51–52% reduction in sGaw was a more appro-
priate cut-off point for a positive MCT than the 45% reduction recom-
mended by the ATS [1]. A remarkable finding was that 32 patients
with an FEV1 decline <20% had a reduction in sGaw >50% (Figure 4).
In a similar study, Parker and McCool [38] measured FEV1 and sGaw fol-
lowing MCT in 248 consecutive patients with asthma-like symptoms.
Forty patients showed a response to methacholine as assessed by sGaw
(≥ 40% reduction) without a significant decline in FEV1 (<20%). A neg-
ative MCT reduces the post-test probability of asthma; however, clini-
cians should be mindful that a negative MCT cannot rule out asthma
with 100% certainty.

A negative exercise challenge test excludes exercise-induced
bronchospasm
Exercise challenge tests are commonly performed to identify or exclude
exercise-induced bronchospasm as the source of exercise limitation and
symptomatology [1, 39]. An obvious limitation of exercise challenge tests
is that they are not performed under the same circumstances as those
from where the patient’s symptoms originate. This is perhaps no more
true than patients involved in cold-weather athletics. Rundell et al [40]
performed field exercise challenge testing in elite cold-weather athletes;
78% of athletes with a positive field exercise challenge test had a negative
exercise challenge test in a clinical laboratory. Differences between field
and laboratory testing may be due to differences in exercise pattern and
intensity as well as environmental factors such as ambient humidity and
air quality. Anderson et al [41] performed two exercise challenge tests
within four days in 373 subjects with asthma-like symptoms associated with
exercise. While most subjects had either two positive or two negative tests,
23.9% of subjects had conflicting results (i.e., one positive, one negative).
Exercise intensity could not explain the differences in test outcome. For
these reasons, a single negative exercise challenge test cannot by itself
exclude the possibility of exercise-induced bronchoconstriction.

Normal spirometry excludes emphysema
An irreversible obstructive spirometry test in a patient with COPD risk fac-
tors defines the disease [42]. However, over the past several years it has
become known that COPD has many phenotypes [43]. Some of
these phenotypes refute the paradigm that normal spirometry precludes

FIGURE 3

sGaw and FEV1 in a symptomatic patient during a MCT. (A) Baseline testing before methcholine challenge test (MCT).
(B) Post MCT. (C) Post BD administration. sGaw, specific airway conductance; FEV1. forced expiratory volume in 1 second;
MCT, methacholine challenge test; BD, bronchodilator). From Haynes [35] with permission.

FIGURE 4

Change in sGaw versus FEV1 in patients undergoing
MCT. The red square includes subjects with a >50%
reduction in sGaw with a <20% reduction in FEV1. The
black line is the linear regression line. sGaw, specific
airway conductance; FEV1, forced expiratory volume in 1
second; MCT, methacholine challenge test. From Khalid
et al [36] with permission.
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COPD pathology. For example, the COPDGene investigators found that
24% of current or former smokers with normal spirometry and a GOLD
0 classification had computed tomography evidence of emphysema [43].
Another poorly appreciated syndrome associated with cigarette smoking is
combined pulmonary fibrosis emphysema (CPFE). Patients with CPFE
have radiologic evidence of upper lobe emphysema and lower lobe fibrosis
[44]. Patients with CPFE typically have a low diffusing capacity, elevated alve-
olar–arterial oxygen gradient, but normal spirometry and lung volumes [45].
Relying solely on spirometry to diagnose or exclude disease in symptomatic
smokers can be expected to misdiagnose many patients with emphysema
and CPFE.

Delta FEV1 effectively assesses bronchodilator response in COPD
As mentioned above, spirometric indices such as FEV1 are widely
relied upon to make a diagnosis of COPD. As a consequence, many
clinicians use ΔFEV1 to assess bronchodilator response/benefit in
COPD patients. While patients with COPD can demonstrate significant
increases in FEV1 after bronchodilator, many do not. A not so uncommon
yet mistaken conclusion is that an insignificant ΔFEV1 indicates a lack of
therapeutic efficacy. However, it is important to keep in mind that
COPD patients seek medical care for dyspnea, not a recalcitrant FEV1.
Bronchodilators reduce dyspnea on exertion by reducing the rate of
dynamic hyperinflation [46], which may not be accompanied by an arbi-
trarily agreed upon “significant” ΔFEV1. O’Donnell et al [47] studied
acute bronchodilator response in COPD patients who did not
show improvement in FEV1. These patients showed significant reduction
in hyperinflation (i.e., increased inspiratory capacity, reduced residual
volume) despite no change in FEV1. Similar findings were recently
shown by McCartney et al [48]. In their study, many COPD patients
showed marked reduction in residual volume after bronchodilator
despite little change in FEV1. Judging bronchodilator response in
COPD patients solely on ΔFEV1 may lead to an under-appreciation of
clinically important improvements in lung function, exercise capacity,
and quality-of-life.

SUMMARY
Evidence-based medicine has revolutionized both diagnostics and thera-
peutics. However, the age of evidence-based medicine has not made pul-
monary function laboratories immune from policies, procedures, and
mistaken beliefs borne of myth and unproven theory. Indeed, pulmonary
function guidelines contain recommendations based on both scientific
data and unproven expert opinions. Pulmonary function technologists
should be on the forefront of incorporating evidence-based practices in
pulmonary function laboratories.
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