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THE BIGGER PICTURE As machine learning models become more complex, requirements for large anno-
tated datasets grow. Annotating data for machine learning applications is especially challenging in the
biomedical domain as it requires domain expertise of highly trained specialists to perform the annotations.
Several strategies to either increase efficiency of label utilization or improve the annotation process have
been proposed by the machine learning community. In this review we explore these strategies, including
semi-supervised learning, active learning, data augmentation, transfer learning, self-supervision, weak-su-
pervision, and zero- or few-shot learning. We show successful examples of research that has applied these
strategies to multi-modal biomedical data. We conclude that raising awareness of these strategies in the
biomedical community may contribute to further adoption of machine learning techniques in this
research field.
SUMMARY

Recent advances in biomedical machine learning demonstrate great potential for data-driven techniques in
health care and biomedical research. However, this potential has thus far been hampered by both the scarcity
of annotated data in the biomedical domain and the diversity of the domain’s subfields. While unsupervised
learning is capable of finding unknown patterns in the data by design, supervised learning requires human
annotation to achieve the desired performance through training. With the latter performing vastly better
than the former, the need for annotated datasets is high, but they are costly and laborious to obtain. This re-
view explores a family of approaches existing between the supervised and the unsupervised problem setting.
The goal of these algorithms is to make more efficient use of the available labeled data. The advantages and
limitations of each approach are addressed and perspectives are provided.
INTRODUCTION

Learning a task is easier when you have examples. In the absence

of examples, humans can leverage other strategies to learn new

material, such as generalization based on examples from similar

tasks or trial and error. Most of these strategies aim to make effi-

cient use of the available examples, if there are any. Such strate-

giesworkbestwhen thedata (or examples) come froma represen-

tative and unbiased sampling of the underlying data landscape.

In life sciences and health care, finding labeled data that sam-

ple the whole distribution is a major challenge. For example, in

microscopy, data scarcity, cross-equipment compatibility, reso-

lution limitations, and image quality are challenges in building

consensus-labeled datasets.1,2 Another example is related to
This is an open access article under the CC BY-N
the drug discovery domain; protein-compound interaction data-

sets are limited to highly studied proteins or compounds leading

to an oversampling of privileged protein-compound pairs.3 In

health care, access to patient data and finding consensus-

labeled electronic health records (EHR) remain a huge chal-

lenge.4,5 Furthermore, the population is often not sampled with

a fair or representative distribution, leading to bias in the avail-

able datasets.6,7 Another area of focus in life sciences and health

care is finding information in scientific publications,8 where

labeled data are long-tailed due to the flexible queries and differ-

ences in research topic popularity. Accelerated by COVID-19

research,9 the field is experiencing a huge increase in the num-

ber of publications, making information retrieval a major bottle-

neck in keeping up with literature.10
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A B Figure 1. A schematic depiction of
supervised and unsupervised machine
learning approaches
(A) An example of a supervised approach. Here,
data points (circles) in 31 and 32 dimensions are
labeled in magenta and green categories, allowing
the model (dashed line) to be fitted.
(B) An example of an unsupervised approach. Here
an algorithm attempts to detect patterns (clusters;
dashed line) in unlabeled data (light blue circles).
For simplicity of graphical illustration, all the data
points are depicted in a 2D space of 31 and 32.
However, similar concepts apply to n-dimensional
space. Dashed line represents an abstraction for a
model or a decision boundary.
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The lack of labeled data is a critical challenge that must be

overcome to train supervised learning models in the biomedical

field. Some solutions to deal with this problem have been re-

viewed in biomedical imaging11 and clinical text data analysis.12

In this paper, we summarize several machine learning strategies

that can be used with no or limited labeled data, with a special

focus on life sciences and health-care-related domains. These

strategies are blurring the boundary between supervised and un-

supervised learning.

Machine learning (ML) approaches are traditionally separated

into supervised and unsupervised paradigms.13 Additionally,

many researchers single out reinforcement learning as a third

paradigm, which is not discussed in this review. In the super-

vised paradigm, the machine learning algorithm learns how to

perform a task from data manually annotated by a person. It is

worthmentioning that for the sake of this reviewwe define super-

vision as manual, although such definition is strict. This is aimed

to concretely define assisted approaches to labeling in the

respective sections below. In contrast, the unsupervised para-

digm aims to identify the patterns within the data algorithmically,

i.e., without human help (Figure 1). Supervised learning

delivers more desirable results for automation, aiming to mimic

human behavior, but it falls short in scalability, due to the

laborious and often expensive process of data annotation.14,15

Unsupervised learning can also be used to automate some tasks

(e.g., anomaly detection), but it usually performs much more

poorly than supervised learning because it is not guided by

manually annotated data. Unsupervised learning is therefore

more suited to data exploration tasks such as clustering and

association mining.

The scarcity of annotated data hinders the use of supervised

learning in many practical use cases. This is especially pro-

nounced for the application of higher expressive capacity

models used in representation learning and deep learning (DL).

Such models are much more data-hungry (often by a factor of

a 100) compared with feature-generation-based ML.16–18 This

means that even more annotated examples are required to learn

relevant representations from the data than in traditional ML.

In this paper, we review some techniques that have been pro-

posed by theML community to address the annotated data scar-

city problem. First, we discuss the value each data point brings

to the resulting model. Next, we discuss Semi-supervised

Learning and Active Learning, which fall between the supervised

and the unsupervised paradigms by leveraging both labeled

and unlabeled data. Data Augmentation and Self-supervised

Learning generate reliable annotated data in an automatic
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fashion that can later be used by classical supervised learning

models. Transfer Learning and Zero/One/Few-Shot Learning

techniques are able to leverage models pre-trained for a similar

context (Table 1). Finally, Weakly Supervised Learning tech-

niques learn predictive models from inexpensive weak labels

that may be wrong. Table 2 summarizes the references to

biomedical applications for each technique and Table 3 depicts

which approaches are relevant according to the amount of

labeled and unlabeled data available.
DATA VALUE

ML model performance often improves as more data are

collected.70 Increasing the size of the dataset serves two pur-

poses simultaneously. First, it provides more information about

the problem, making the solution likely to be more general.

Second, it improves the performance of complex models.

Increasing the dataset size often means an increase in the num-

ber of unannotated data points.15 However, in a supervised

learning setting, simply collecting observations is often insuffi-

cient. To be used as the training data for supervised learning,

these observations must often be manually annotated. For

instance, ImageNet,14 an image dataset of around 1.3 million in-

dividual images, required manually annotating each of these im-

ages to belong to one or more of 1,000 classes in a routine and

laborious process.71

However, not every data point is created equal. Some data

points may be more useful to obtain a representative dataset.

For example, for classification problems in cases when labeled

data is scarce, it is preferable to have data points closer to the

decision boundary (Figure 2). Several strategies for data point

valuation have thus far been proposed, ranging from linear clas-

sification to decision trees and game theory (Shapley values).72

Purposeful data collection may be achieved only when the goal

is clearly defined. Cost-effective ways are therefore designed

to weight the data points differently during training by the effec-

tive number (expected volume) of samples73 or by focusing on

hard examples.74

In recent years, a number of approaches to improve efficiency

of labeled data utilization have gained traction.17,75,76 Overall,

these approaches attempt to improve the efficiency of labeled

data utilization by high expressive capacity models. Such

models often count millions of trainable parameters and hence

require very large labeled datasets to avoid overfitting. Ap-

proaches tackling this are therefore indispensable for fields



Table 1. Examples of zero-shot learning by formatting text data

to fit models

Task Input Output Reference

Multi-class

classification

X Y

Question

answering

X. Is this

about Y ?

Yes/No Sun et al.19

Natural

language

inference

X. This is

about Y.

Entailment/

Contradiction

Yin et al.20

Cloze X. This is

about _.

Choose

from Y

Schick and

Sch€utze,21

Tam et al.22
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where labeled data is scarce. In this review, themost popular ex-

amples are discussed.
SEMI-SUPERVISED LEARNING

Semi-supervised learning is halfway between supervised and

unsupervised learning.77 It trains predictive models from both

labeled and unlabeled data (Figure 3A) in order to obtain better

models than if they were trained with plain supervised learning

on only the labeled data available.

There is an important prerequisite to obtain better models than

supervised learning: the distribution of examples, which unla-

beled data will help elucidate, must be relevant for the prediction

problem at hand. If this condition is notmet, using unlabeled data

can degrade the prediction accuracy by misguiding the infer-

ence. In practice, semi-supervised learning strategies rely on as-

sumptions about the data.

For instance, the generative semi-supervised method that

consists in applying the expectation maximization (EM) algo-

rithm on both labeled and unlabeled data78 relies on the cluster

assumption (if points are in the same cluster, they are likely to

be of the same class). Another example is transductive support

vector machine (SVM),79 which implements the low-density sep-

aration assumption (the decision boundary should lie in a low-

density region): it maximizes the margin for both labeled and

unlabeled data. The reader may refer to Chapelle et al.77,80 for

more details about semi-supervised learning assumptions and

strategies.

Semi-supervised learning will be most useful whenever there

is far more unlabeled data than labeled. This is likely to occur if

obtaining data points is cheap, but obtaining the labels costs a

lot of time, effort, or money. For instance, semi-supervised

learning is particularly suited to the classification of protein

sequences.28 Protein sequences are nowadays acquired at in-

dustrial speed, but determining the functions of a single protein

may require years of scientific work.
ACTIVE LEARNING

Active learning81 is an iterative human-in-the-loop process that

starts by identifying the unlabeled data points that are consid-

ered as the most useful for training a predictive model. At each

iteration, unlabeled data points are queried by the active learning
strategy and annotated by human experts, and the model is up-

datedwith the newly annotated data points (Figure 3B). Similar to

semi-supervised learning, active learning aims to efficiently

leverage unlabeled data during the learning process for perfor-

mance promotion, while reducing the human expert workload.

Both techniques can be combined to get the best out of the

unlabeled data.82

The traditional active learning strategy, uncertainty sam-

pling,83 selects the data points closest to the decision boundary

for annotation. The theory is that themodel is uncertain about the

prediction of these data points, so annotating them will signifi-

cantly increase the accuracy. Other active learning strategies

aremore explorative and exploit the structure in data to annotate

points from all of the data space.84 Active learning strategies

must find the right trade-off between exploitation and explora-

tion, i.e., selecting data points both from sampled and un-

sampled areas of the data space.

Selecting the right query strategy and model for a given data-

set is a real challenge. Indeed, active learning strategies perform

differently on different datasets and there is no guarantee that

they will outperform random sampling.35,85 Meta-learning is

investigated to address this issue:35,86 it leverages reinforcement

learning to learn the best active learning strategy.

Active learning is a human-in-the-loop process where the

user experience should not be overlooked.87,88 Taking humans

into account and ensuring a good user experience is as impor-

tant as choosing an optimal query strategy to effectively train a

performant predictive model with reduced human workload.

However, most studies do not evaluate their query strategy in

a real-world setting: they leverage oracles that answer the

queries automatically from fully annotated datasets and they

leave the user experiments for future work. They assess the hu-

man workload with the number of manual annotations, but the

time spent in the overall annotation process is a much more

realistic metric. Indeed, data points do not all have the same

cost to be annotated. For instance, the data points queried

by uncertainty sampling, close to the decision boundary, are

often tricky cases that are more costly to annotate.89 In a

real-world setting, even domain experts may not be able to

annotate ambiguous data points. Moreover, studies often as-

sume that a single data point is queried and annotated at

each active learning iteration, to always select the optimal

query. This optimal setting is, however, not workable in real-

world annotation systems,90 as the annotators would spend

more time waiting for annotation queries (while the predictive

model is updated and the next annotation query is computed)

than actually annotating data. Finally, most biomedical annota-

tion tasks require specific domain knowledge, and crowdsourc-

ing cannot be leveraged to annotate data at low cost. As

annotating data is a cumbersome task, it is critical to show

the biomedical experts that their annotations improve the accu-

racy of the predictive model, so that they continue anno-

tating.18,87 It is, however, not straightforward to provide such

feedback:91 most studies leverage a fully annotated validation

dataset to assess the performance of the predictive model

across iterations, but such a dataset is usually not available

when deploying an annotation system.

There is currently little research that focuses on user experi-

ence in active learning processes,18,87,92,93 and very few studies
Patterns 2, December 10, 2021 3



Table 2. References to biomedical applications

Approach Biomedical applications

Supervised d Protein-compound affinity pre-

diction23

d Omics24,25

d Biomedical imaging1,2,26,27

d EHR4,5

Semi-supervised d Omics28,29

Active learning d Drug discovery30,31

d Omics32,33

d Biomedical imaging11,34

d Clinical text data35

Data augmentation d Omics36,37

d Biomedical imaging38,39,40,41,42

d Clinical text data43

Transfer learning d Omics44,45

d Biomedical imaging46–49,26,50

d Biomedical text data51–54,55

Self-supervised d Omics37,56

d Biomedical imaging57,42

Few/one/zero-shot

and few-shot learning

d Omics and Affinity prediction58

d Drug discovery59

d Literature indexing60

d Biomedical imaging61,62

d Patient clustering63

Weakly supervised d Drug discovery64

d Computer-aided diagnosis65

d Biomedical imaging66,67,68

d EHR69
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assess their method with user experiments.94 Such research

would significantly foster the use of this technique in real-world

annotation systems.

Active learning strategies are particularly useful to annotate

datasets for unbalanced prediction problems where random

sampling is not effective. For example, it has beenwidely applied

to automate drug discovery,30,31 where the active learning strat-

egy identifies which experiments to perform next. Active learning

is also relevant when crowdsourcing cannot be leveraged

because expert knowledge is required to annotate11,35,34 or the

data are too sensitive to be shared.
DATA AUGMENTATION

An early attempt to address the mismatch on availability and

requirement of labeled data in DL was data augmentation95

(Figure 3C). Traditional techniques apply label-preserving trans-

formations to the already-annotated data points to increase the

amount of training data. For instance, image data can simply be

flipped or rotated,17,38 and text data can be slightly modified

through deletion of random words and synonym substi-

tution.43,96,97

Generative adversarial networks (GANs)98 can be used to

generate a much broader set of augmentations.99 GANs learn

the data distribution from some training data and then generate

new samples that are as realistic as possible from this distribu-

tion. They use two competing neural networks: one that gener-

ates new samples from noise and one that discriminates sam-
4 Patterns 2, December 10, 2021
ples as real or synthetic. GANs have been used in medical

imaging to generate additional realistic training data.100 For

example, Calimeri et al.39 generated magnetic resonance imag-

ing (MRI) slices of the human brain with GANs and human physi-

cians were not able to distinguish the artificially generated exam-

ples from the real ones.

Augmentation strategies are often carefully selected and fine-

tuned for each individual case, taking domain-specific under-

standing of medical image data into account to avoid noise

and artifacts. For instance, Mok and Chung40 have proposed a

new data augmentation technique that generates images with

the desired invariance and robustness properties for brain tumor

segmentation. They have fine-tuned their GAN to generate im-

ages with realistic tumor boundaries. In another study, Gupta

and colleagues used image-to-image translation GAN to enrich

images with a broader pallet of readouts.101 In contrast to con-

ventional augmentation, however, such an approach did not

lead to an increase of individual data points.

In contrast to semi-supervised and active learning techniques,

data augmentation strategies are useful even when a large

amount of unlabeled data is not available. Data augmentation

can be used to address class imbalance by generating more ex-

amples of underrepresented classes. For example, Ollagnier and

Williams43 have compared several text data augmentation tech-

niques to remedy class imbalance in clinical case classification.

In the case of image data, Jin et al.41 have used a GAN to in-

crease the training data of their DL model for pathological lung

segmentation of CT scans. They have particularly focused on

generating examples where nodules lie on the lung border

because these specific cases were previously segmented poorly

and underrepresented in the original training dataset.

TRANSFER LEARNING

Transfer learning is an ML technique where a model that is

trained on one task is then repurposed on a second related

task102 (Figure 3D). It is not specific to DL, but it has been widely

leveraged in this field as the representation layers can be easily

shared by different prediction tasks. In practice, the weights of

the representation layers are set according to a model trained

on a previous task. Then, these weights can be either used for

initialization with subsequent update during the training process

(fine-tuning) or completely frozen, and only the task-specific

layers are trained.

Transfer learning is a relevant solution to deal with the lack of

annotated data if you can identify a related task with abundant

labeled data or if a pre-trained model is available. It has signifi-

cantly fostered the use of representation learning in biomedical

applications.

Manual feature engineering was often preferred over repre-

sentation learning in the biomedical field because of the lack of

training data. Thanks to transfer learning, generic DL models

and generic annotated datasets can be leveraged to train

biomedical prediction models with few domain-specific anno-

tated examples. For instance, the natural language model

BioBERT103 has been created from the generic model BERT104

through transfer learning to obtain better performance on

biomedical text mining tasks. It has been initialized with the

weights of BERT (trained on general domain corpora) and trained



Table 3. Relevant approaches according to the amount of labeled

and unlabeled data available

Amount of available

data Some unlabeled data No unlabeled data

Enough labeled

data to train a

supervised model

Supervised learning Supervised learning

Data augmentation Data augmentation

Semi-supervised

learning

Active learning

Some labeled data,

but not enough to

train a supervised

model

Data augmentation Data augmentation

Semi-supervised

learning

Transfer learninga

Active learning

Transfer learninga

Self-supervised learninga

Few/one/zero-shot

learninga

No labeled data Active learning

Zero-shot learninga
Zero-shot learninga

aLarge labeled datasets are required for pre-training.
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on biomedical domain corpora. BioBERT has also been further

fine-tuned through transfer learning for specific NLP tasks

such as biomedical Named Entity Recognition.51 A similar

approach was applied to scientific text, clinical notes, and

PubMed articles, and yielded SciBERT,52 ClinicalBERT,53 and

PubMedBERT.54 Transfer learning is also widely used in com-

puter vision to create biomedical specific models.46 For

instance, Cheng et al.47 have leveraged transfer learning from

a model pre-trained on ImageNet14 to identify specific patterns

from abdominal radiographs with limited training data. Another

group48 also used ImageNet pre-trained ResNet-50 for a classi-

fication task in micrographs of virus-infected cells. While other

examples49 include transfer learning from models trained on,

for example, an MNIST dataset,105 overall transfer learning

from ImageNet-pre-trained models remains the most-favored

approach. Proteomics and genomics benefit from transfer

learning as well. For example, Deznabi et al.58 used ProtVec106

to predict kinase-phosphosite association.
SELF-SUPERVISED LEARNING

Self-supervised learning (Figure 3E) learns relevant representa-

tions (or embeddings) without any manual annotation

cost.75,107–112 It relies on a two-step process: (1) a pretext task

(or self-supervised task) is used to learn meaningful representa-

tions from annotations that are inherent to the data, and (2) the

learned representations are leveraged to address the downstream

task, the task at hand, with many fewer labeled data.

Pretext tasks themselves do not usually provide any useful

application. Their learning objective should be set properly to

receive supervision from the data themselves. This way, a large

amount of annotated data can be generated automatically to

learn high-quality representations. Several pretext tasks have

been proposed for images; Doersch et al.113 have proposed a

context prediction task where the objective is to predict the rela-
tive location of patches extracted from a given image. A similar

pretext task consists of solving jigsaw puzzles where the tiles

have been generated automatically by splitting images.107,114

Pretext tasks can also rely on generative models. For instance,

in-painting115 is a generative pretext task where an arbitrary frac-

tion of an image is removed, and the objective is to reconstruct it

from the remaining context. In-painting has recently been

demonstrated57 to be capable of predicting unseen fluores-

cence signals on a single-cell level in confocal microscopy.

Colorization116 is another example of a generative pretext task:

a gray-scale filter is applied to the input images and the objective

is to recover the colors. Pretext tasks for language data are

posed more natively, e.g., with next-word prediction117,118 or

masked language modeling and next-sentence prediction used

by BERT.104

This approachmay not immediatelymake intuitive sense. After

all, what practical use would such an ML model present for solv-

ing, e.g., a classification problem? However, in the sense of rep-

resentation learning, performing such a task achieves the main

part of the goal: it allows the system to learn meaningful repre-

sentation from a large dataset. Once done, these representa-

tions can be repurposed through transfer learning (weights

transfer) and fine-tuning to address an actual task at hand with

fewer labeled data. Furthermore, these two steps can bemerged

into one through shared weights.19,119–121

Representations learned through self-supervised learning

can be leveraged for both supervised and unsupervised down-

stream tasks. The learned representations can be used directly

for unsupervised learning tasks such as clustering122 or similar-

ity computation for search and retrieval tasks.123 The model

trained for the pretext task can also be repurposed through

transfer learning57 to address supervised tasks with many

fewer labeled data. Self-supervised learning bridges the gap

between supervised and unsupervised learning by focusing

on learning high-quality representations. The pretext task

must be chosen carefully to get representations as meaningful

as possible for the downstream task. Multi-task learning can

also be leveraged to train relevant representations from several

pretext tasks.124

Self-supervised learning is proving incredibly powerful across

various domains and types of data. This set of techniques

refocuses the field on learning high-quality representations

bridging domains of generative and discriminative modeling.125

FEW/ONE/ZERO-SHOT LEARNING

When there are only a limited number of valuable labeled data

points, ML solutions have to adapt and generalize to tackle

few-shot or one-shot learning, especially to avoid overfit-

ting.126,127 In some extreme situations, there are no labeled

data at all for training (for example, when there are too many la-

bels to annotate), and the model has to deal with unseen labels,

leading to a challenge called zero-shot learning.128 The solutions

to the few/one/zero-shot learning challenges essentially imitate

how humans recognize and learn by analogy when there is

limited evidence. These solutions often fall into three strategies:

relationship similarity, task reduction, and prior knowledge.

First, in most cases, with proper embedding or vector repre-

sentation, the few/one/zero-shot learning models can locate
Patterns 2, December 10, 2021 5



A B C Figure 2. Example of data point importance
for model selection
Magenta and green circles are data points that
correspond to respective class labels.
(A) An example of a full dataset with 8 data points
belonging to magenta class and 14 belonging to the
green class; dashed line represents a selected
model.
(B) A subset of six data points selected from the full
dataset is less valuable for accurate model defini-

tion, as multiple models (e.g., two dotted lines of incorrect models and one dashed line for correct model) can be fitted to this subset, but not the full dataset.
(C) A subset of six data points selected from the full dataset are more valuable for accurate model definition (single dashed line).
For simplicity of graphical illustration, all the data points are depicted in a 2D space of 31 and 32. However, similar concepts apply to n-dimensional space.
Dashed line represents an abstraction for a model or a decision boundary.
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the data or labels in the high-dimensional ‘‘semantic space’’,

measure the similarity of their relationship to those in the training

set, and provide proper predictions accordingly.129,20 The

embedding approach has proved its effectiveness in multiple

biomedical domains, such as affinity prediction,58 drug discov-
A

C

E

Figure 3. Strategies between supervised and unsupervised approache
Magenta and green colors correspond to respective class labels, blue circles rep
(A) In a semi-supervised learning approach, clustering and manual annotation of
(B) In an active learning approach, an active request to the user to obtain annotatio
(C) In the data augmentation approach, light circles with dashed borders repres
transformation).
(D) A transfer learning approach uses a model pre-trained on one dataset (regula
Here the trained model parameters transfer is symbolized by the dashed model
(E) Self-supervised learning approach. Here, a jigsaw in-painting task, which is no
pretext task is formulated automatically and allows learning of representations fr
(F) Weakly supervised learning approach. Here, magenta and green inequalities
For simplicity of graphical illustration, all the data points are depicted in a 2D sp
Dashed line represents an abstraction for a model or a decision boundary.
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ery,59 literature indexing,60 image recognition for cancer detec-

tion,61,62 and patient clustering.63 To generate suitable embed-

dings or vector representations in each biomedical domain,

self-supervised learning and transfer learning methods can be

leveraged.
B

D

F

s
resent unlabeled data, dashed lines represent the learned decision boundary.
few points is performed.
n is performed; here it is depicted in a gray bubble with a ‘‘select’’ call to action.
ent data points obtained from the original through augmentation (e.g., linear

r circles) and fine-tuned on another dataset (light circles with dashed borders).
line ‘‘transferred’’ from left to right as indicated by the blue arrow.
t related to labels (so-called pretext task) is depicted as an example. The jigsaw
om the data.
represent coarse heuristic rules used for data annotation.
ace of 31 and 32. However, similar concepts apply to n-dimensional space.
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Second, when there are well-established models in the

same domain, it is more straightforward to format data to fit

the models than to tune the models to fit the data. For example,

with auxiliary sentences, the input and output of a text classifica-

tion task can be compatible with a question-and-answer

model,19 a natural-language-inference model,20 or a cloze

model21,22 (Table 1). Last, but not least, prior structured knowl-

edge can provide additional domain knowledge to themodels130

to support ‘‘reasoning.’’ For example, the International Classifi-

cation of Diseases (ICD) hierarchy improves the classification

model performance of infrequent labels in electronic medical

records (EMR).131

WEAKLY SUPERVISED LEARNING

Many challenging prediction tasks require complex models (i.e.,

with large numbers of parameters) that need large training data-

sets. However, it is often difficult to acquire strong supervision

such as large fully annotated datasets with perfectly accurate la-

bels due to the high cost of the data-labeling process. In some

cases, only weak supervision can be collected, and some

training algorithms, called weakly supervised, can handle this

imperfect supervision to build predictive models.132 The goal

of weak supervision is to train predictive models on large imper-

fectly labeled training datasets to get better performance than

fully supervised models trained on small datasets annotated

with perfectly accurate labels.

There are many settings of weak supervision. For instance,

distant supervision leverages knowledge bases to derive some

weak supervision.133 In other cases, only partial labels, coarse-

grained labels, may be available. Only the partial ordering may

be provided when learning user preferences over items, or the

coarse-grained label ‘‘flower" can be provided for a picture of

an arum lily instead of spending a consequent amount of time

to find the exact taxonomy.134

Multi-instance learning is another setting of weak supervision

where the learner receives a set of labeled bags, each containing

many instances. In the simple case of multiple-instance binary

classification, a bag may be labeled negative if all the instances

in it are negative. On the other hand, a bag is labeled positive if

there is at least one instance in it which is positive. Multi-instance

learning has been applied to drug-activity prediction,64 com-

puter-aided diagnosis,65 and pathology.66

Weak supervision can also rely on labels with a low accuracy

coming from rule-based heuristics135,136 (Figure 3F) or crowd-

sourcing annotations.137 In this setting, each instance can be

associated with several labels, and the key technical challenge

is how to unify and de-noise them, given that they are each noisy,

may disagree with one another, may be correlated, and may have

arbitrary (unknown) accuracies that may depend on the subset of

the dataset being labeled.136 This type of weak supervision is

gaining rapid adoption by the biomedical research community

to assist in labeling electronic health records69 or MRI images.67

CONCLUSIONS: BIOMEDICAL APPLICATIONS

The recent advances in data-intensive computing have been

accelerated by improvements in performance due to techniques

such as representation learning that address data curation and
feature engineering problems. Yet, as we improve the perfor-

mance, models tend to get larger and the requirement for anno-

tated datasets grows.

The set of techniques described in this review aim to make

more efficient use of limited annotated data. These techniques

focus on generating synthetic data from existing annotations,

automating data annotation processes, or lowering the amount

of annotated data needed to train the machine learning systems.

Even though they were proposed independently, these methods

show increasing overlap. For example, weak supervision and

self-supervision in DL ultimately serve the same purpose, exploit

similar implicit properties of the learning systems, and often

require fine-tuning for the best performance. Weak supervision

also has some conceptual overlap with data augmentation:

both techniques generate labeled data automatically with a

rule-based approach to provide some supervision at low cost.

Another example is the similarity between semi-supervision,

weak supervision, and active learning: they all leverage unla-

beled data to enrich or create an annotated dataset with different

levels of involvement from domain experts. While semi-super-

vised learning pseudo-labels unlabeled data automatically,

weakly supervised learning requires domain experts to provide

pseudo-labeling rules, and active learning requires even more

involvement of domain experts to manually annotate some unla-

beled data points. Finally, transfer learning is closely related to

self-supervised learning and few/one/zero-shot learning. Self-

supervised learning and transfer learning are often applied

jointly: self-supervised learning allows the collection of relevant

representations at low cost, which are then fine-tuned through

transfer learning to answer the problem at hand with fewer anno-

tated data points. As for few/one-shot learning, it often leverages

a model previously trained for another task such as transfer

learning, while zero-shot learning often leverages a model pre-

trained with self-supervised learning without fine-tuning.

Several dawning and established techniques have been

omitted from this review due to their broader focus on the way

systems learn. They include meta-learning,138 and universal rep-

resentations.139 The former relates to approaches aimed at opti-

mizing the representation learning algorithms using training

meta-data, i.e., learning to learn. Recent work in this field shows

further improvement of learning algorithms is still possible.140

The latter seeks to identify the best algorithmic way to obtain

reusable (i.e., ‘‘universal’’) representations valid across multiple

domains building upon self-supervised learning approaches.

Perhaps it is those, or the methods reviewed in this work, that

will one day allow us to stop searching for the labels in a haystack

of data.
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Processing (EMNLP-IJCNLP), S. Padó and R. Huang, eds. (Association
for Computational Linguistics), pp. 3914–3923.
8 Patterns 2, December 10, 2021
21. Schick, T., and Sch€utze, H. (2020). It’s not just size that matters: small
language models are also few-shot learners. ArXiv http://arxiv.org/abs/
2009.07118.

22. Tam, D., Menon, R.R., Bansal, M., Srivastava, S., and Raffel, C. (2021).
Improving and simplifying pattern exploiting training. ArXiv http://arxiv.
org/abs/2103.11955.
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