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Background: Alternative splicing (AS), a pivotal post-transcriptional process across more
than 95% of human transcripts, is involved in transcript structural variations and protein
complexity. Clinical implications of AS events and their interaction with tumor immunity
were systematically analyzed in lung adenocarcinoma (LUAD).

Methods: Transcriptome profiling as well as AS data of LUAD were retrospectively
curated. Then, the network of the overall survival (OS)-relevant AS events with splicing
factors was established. After screening OS-relevant AS events, a LASSO prognostic
model was conducted and evaluated with ROC curves. A nomogram that integrated
independent prognostic indicators was created. Immune response and immune cell
infiltration were estimated with ESTIMATE, CIBERSORT, and ssGSEA algorithms. Drug
sensitivity was inferred with pRRophetic package.

Results: In total, 2415 OS-relevant AS events were identified across LUAD patients. The
interaction network of splicing factors with OS-relevant AS events uncovered the
underlying regulatory mechanisms of AS events in LUAD. Thereafter, a prognostic
model containing 12 AS events was developed, which acted as a reliable and
independent prognostic indicator following verification. A nomogram that constituted
stage and risk score displayed great effectiveness in evaluating the survival likelihood.
Moreover, the AS-based prognostic model was in relation to immune response and
immune cell infiltration. Patients with a high-risk score displayed therapeutic superiority to
cisplatin, erlotinib, gefitinib, and gemcitabine. Finally, three AS-relevant genes (CDKN2A,
TTC39C, and PKIB) were identified as prognostic markers.

Conclusion: Collectively, our findings developed an AS event signature with powerful
prognostic predictive efficacy in LUAD.
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INTRODUCTION

As the highest incidence cancer type, lung cancer also causes the
most cancer-related deaths (1, 2). According to reports, 85% of
all new lung cancers each year are non-small cell lung cancer
(NSCLC), with a dismal 5-year survival rate of < 16% (3).
Currently, lung adenocarcinoma (LUAD) accounts for the
leading pathological subtype of NSCLC, which exhibits rising
morbidity among young women and non-smokers (4).
Moreover, patients with advanced lung adenocarcinoma are
often accompanied by poor long-term prognosis. Currently,
surgical resection plus radio- or chemotherapy represents the
first choice and main therapeutic means against LUAD (5, 6).
Despite recent advances in immunotherapeutic strategies, LUAD
patients display diverse responses to immune-based therapies
(6–8). Few schemes to prevent and early treat LUAD are
developed mainly because of the few characteristic targets
upon molecular pathogenesis (9).

Alternative splicing (AS), a pervasive cellular process, exerts a
critical function in thepost-transcriptionalprocesswhere avarietyof
transcripts from the same gene are generated, contributing to
proteome complexity (10). More than 95% of human genes incur
AS events during physiological process (11). AS events are
remarkedly modulated with tissue and developmental stage-
specific manners, which are often deregulated in diverse cancer
types (12). Abnormal RNA splicing drives tumor initiation and
progression through affecting metabolic reprogramming,
proliferation, metastases, and resistance of tumor cells and
microenvironment (13–16). Moreover, deregulated splice variants
produce effects on the therapeutic responses to targeted therapy,
radio-, chemo- and immunotherapies (17). Thus, it is mostly
important to ascertain pathological splicing isoforms regarding the
development of novel practical markers and clarifying the
mechanisms involving in deregulated AS events, eventually
expounding the influences on cancers, and offering more effective
treatment schemes. To date, accumulated evidence uncovers the
biological relevance as well as clinical implications of AS events
during lung tumorigenesis (18–21). Lung carcinogenesis principally
evolves by sequential genetic changes and genomic deregulation,
which is also influenced by tumor microenvironment. LUAD
exhibits interpatient and intratumor heterogeneity in tumor cells
and microenvironment (22). Nevertheless, the underlying relations
of AS events with tumor microenvironment of LUAD remain
ill-defined.

Herein, our research conducted comprehensive analyses
upon AS events across LUAD and identified LUAD-specific AS
events for developing novel prognostic markers. Moreover, our
Abbreviations:NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma;
AS, alternative splicing; PSI, Percent Spliced In; AD, Alternate Donor site; AA,
Alternate Acceptor site; AT, Alternate Terminator; AP, Alternate Promoter; ME,
Mutually Exclusive Exons; ES, Exon Skip; RI, Retained Intron; OS, overall survival;
LASSO, least absolute shrinkage and selection operator; ROC, receiver operating
characteristic; ssGSEA, single-sample gene set enrichment analysis; CIBERSORT,
Cell type Identification By Estimating Relative Subsets Of RNA Transcripts;
ESTIMATE, Estimation of Stromal and Immune Cells in Malignant Tumors
using Expression Data; TMB, Tumor mutational burden; IC50, half-maximal
inhibitory concentration; AUC, area under the curve.
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findings provided novel thinking about the interactions between
AS events and immunity in LUAD.
MATERIALS AND METHODS

Data Retrieval
Transcriptome profiling and clinicopathologic characteristics of
522 LUAD specimens were retrospectively curated from the
Cancer Genome Atlas (TCGA) project utilizing TCGAbiolinks
R package (23). Table 1 lists clinicopathological data of 522
LUAD patients. AS data were curated from TCGA SpliceSeq
(https://bioinformatics.mdanderson.org/TCGASpliceSeq) (24).
Then, Percent Spliced In (PSI) values that ranged from 0 to 1
were determined for AS events across transcripts. AS events were
classified into seven forms, containing Alternate Donor site
(AD), Alternate Acceptor site (AA), Alternate Terminator
(AT), Alternate Promoter (AP), Mutually Exclusive Exons
(ME), Exon Skip (ES), and Retained Intron (RI). AS events
with PSI value ≥ 75%, and average PSI value ≥ 0.05 were enrolled
for subsequent analysis. UpSetR package was employed for
visualizing the distribution of AS events in LUAD (25).

Screening OS-Relevant AS Events in LUAD
OS-relevant AS events were selected across LUAD patients
through the survival R package utilizing univariate regression
analyses following the criteria of p-value < 0.05. In addition,
UpSet and volcano plot were adopted for describing the
distribution of OS-relevant AS events. Thereafter, the first 20
AS events in different types of AS were visualized into
bubble plots.

Establishment of an OS-Relevant Splicing
Factor-AS Interaction Network
SpliceAid project was employed to curate specific splicing factors
(26). Furthermore, Pearson correlation test was adopted for
analyzing the interactions of splicing factors with OS-relevant
June 2022 | Volume 12 | Article 880478
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TABLE 1 | Clinicopathological characteristics of 522 LUAD patients from TCGA
cohort.

Characteristics Type n Proportion (%

Age ≤65
> 65
unknown

241
262
19

46.2
50.2
3.6

Gender Female
Male

280
242

53.6
46.4

Stage I-II
III-IV
unknown

403
111
8

77.2
21.3
1.5

T stage T1-2
T3-4
unknown

453
66
3

86.8
12.6
0.6

N stage N0-1
N2-3
unknown

433
77
12

83.0
14.8
2.2

M stage M0
M1
unknown

353
25
144

67.6
4.8
27.6
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AS events. The Cytoscape (version 3.8.0) was utilized for
visualizing this interactional network of splicing factors with
OS-relevant AS events and correlation coefficient > 0.6 as well as
p < 0.05 as the filtering criteria (27).

Construction and Validation of Predictive
Models Based on AS Events
The glmnet R package was adopted to establish a least absolute
shrinkage and selection operator (LASSO) prognostic model
based on OS-relevant AS events across LUAD patients (28).
The prognostic scoring formula was conducted with this
formula: risk score= PSI value of AS event1 × Coef1 + PSI
value of AS event2 × Coef2… + PSI value of AS eventn × Coefn,
in which Coefn represented the regression coefficient. Then, we
stratified LUAD patients into different risk subpopulations
according to median risk score. The receiver operating
characteristic (ROC) curve was generated utilizing timeROC R
package for showing the specificity and sensitivity of risk score in
evaluating prognosis of LUAD. The Kaplan-Meier curves were
applied to assess the differences in OS rate with the survival R
package. Additionally, Cox regression models were conducted
for analyzing the interactions of age, gender, tumor stage, and
risk score with OS outcomes.

Construction of a Prognostic Nomogram
In order to evaluate OS outcomes, a prognostic nomogram
comprised of independently prognostic indicators AS-relevant
risk signature as well as stage was conducted for estimating 1‐, 2‐,
and 3‐year OS probabilities with the rms R package. Subsequently,
calibration curves which showed the survival implications of this
nomogram were depicted. The calibration curve close to 45° was
considered as an excellent indicator in this nomogram.

Immune Cell Infiltrations Estimated via
Deconvolution Algorithm and Single-
Sample Gene Set Enrichment
Analysis (ssGSEA)
The cell type identification by Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) deconvolution algorithm was
adopted to estimate the abundances of 22 diverse leukocyte
subsets (29). CIBERSORT results for samples with p < 0.05
indicated that the estimated abundances of leukocyte subsets
were reliable, which were eligible for subsequent analysis. For
each specimen, estimations were standardized to sum up to 1,
thereby being interpreted directly as cellular fraction. The
ssGSEA from Gene Set Variation Analysis (GSVA) was
employed for quantification of the relative abundances of 29
immune cells as well as functions following the special feature
gene panels across LUAD specimens (30). The ssGSEA
enrichment score was indicative of the relative abundance,
which was standardized to range from 0 to 1.

Identifying and Comparing the Immune
Profiles of Different Risk Groups
The Estimation of Stromal and Immune Cells in Malignant
Tumors using Expression Data (ESTIMATE) R package
Frontiers in Oncology | www.frontiersin.org 3
possesses the significant advantage in estimating the specific
features of transcriptome profiles (31). The gene sets of immune
checkpoints were downloaded from recent research (32, 33). The
mRNA expression of immune checkpoints was quantified across
LUAD specimens. Tumor mutational burden (TMB) was
employed to predict clinical response to immunotherapy (34).
TMB was calculated according to the formula: (entire counts
of variants)/(the entire lengths of exons) in line with the
variants of LUAD specimens that were extracted from the
mutational profiles.

Estimation of Drug Sensitivity
Half-maximal inhibitory concentration (IC50) values for
cisplatin, gemcitabine, gefitinib, and erlotinib were estimated
with the pRRophetic R package by ridge regression analysis (35,
36). IC50 indicated the treatment response to above
chemotherapeutic agents in TCGA cohort.

Statistical Analysis
Spearman’s correlation analysis was conducted to estimate
composition differences. Wilcoxon signed rank test was applied
for comparisons in two groups. Kaplan-Meier survival curve was
implemented for evaluating the survival differences between
groups. Cox regression analysis was conducted for verifying
the associations of certain indicators with LUAD prognosis. To
evaluate the performance of prognosis prediction, time-
independent ROC curves were conducted and area under the
curve (AUC) was calculated with timeROC R package. Statistical
analysis was achieved utilizing R software (version 4.02). P <0.05
was taken into consideration statistically.
RESULTS

Identification of OS-Relevant AS Events
in LUAD
In total, 43,945 AS events were identified across 522 LUAD
patients (Figure 1A). ES accounted for the most frequent AS
signature, followed by AT and AP. Univariate analyses were
presented to qualify the impact of each AS event on patients’
OS. Subsequently, 2415 AS events displayed remarked
associations with survival outcomes of LUAD patients, in
which 1356 were protective factors and 1059 were risk factors
(Figure 1B). Notably, one gene may possess two or more OS-
relevant AS events across LUAD patients, as shown in the
UpSet plots (Figure 1C). The first 20 significant OS-relevant
genes of AS events are separately shown in Figures 1D–J, which
indicated that the seven alternative splicing modes exhibit
great variability.

Construction of an OS-Relevant Splicing
Factor-AS Interaction Network in LUAD
Splicing factors act as dominant regulators of AS events, which
may affect the splicing of oncogenes as well as tumor suppressors
(37). For exploring the underlying interactions of the expressions
of splicing factors with AS events, we visualized the splicing-
June 2022 | Volume 12 | Article 880478
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regulatory network, as depicted in Figure 1K. In total, three
splicing factors (including SEC31B, CLK1, and DDX39B)
displayed prominent associations with 44 OS-relevant AS
events. Furthermore, most favorable AS events exhibited
Frontiers in Oncology | www.frontiersin.org 4
positive interactions with the expression of splicing factors and
the three splicing factors were in relation to multiple AS events.
Thus, splicing factors may act as an indispensable role in
modulating AS events during lung carcinogenesis.
A B

C D

E F

K

G H I J

FIGURE 1 | Prognosis-relevant AS events and their interactions with splicing factors across LUAD patients. (A) UpSet plot showing numbers and percentages of AS
events as well as their interactions across LUAD specimens. (B) Volcano plots of OS-relevant AS events in LUAD. Red dots represented AS events that were
distinctly correlated to OS, but green dots did not affect patients’ OS. (C) UpSet showing numbers and percentages of seven types of OS-relevant AS events and
their interactions in LUAD. (D–J) Bubble plots of the distribution of the first 20 most significant AS events in LUAD, which indicated that the seven alternative splicing
modes exhibit great variability. (K) The OS-relevant splicing factor-AS interaction network in LUAD. Triangle bubbles indicated splicing factors and diamond bubbles
indicated AS events. The red and blue line separately indicated positive and negative connection in splicing factors and AS events. Red and green diamond bubbles
separately meant adverse and favorable prognosis-relevant AS events.
June 2022 | Volume 12 | Article 880478
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Development of a Reliable Prognostic AS
Event-Based Signature in LUAD
For avoiding over-fitting, LASSO Cox analysis was adopted for
developing a prognostic model of LUAD on the basis of OS-
relevant AS events. Through cross-verification, the optimal
parameters were selected (Figure 2A) and the coefficients in
LASSO regression model were determined (Figure 2B).
Ultimately, 12 OS-relevant AS events (BEST3|23330|AT,
CDKN2A|86004|AP, TTC39C|44852|AP, MEGF6|315|ES,
PKIB|77377|AP, CA5B|98313|ES, HNRNPLL|53258|AT, LDB1|
12935|AP, C12orf76|24406|AT, AP2B1|40327|AD, LETM2|
83398|AT, MRPL33|53046|ES) were identified (Table 2). In
line with the regression coefficients and PSI value of 12 OS-
relevant AS events, we calculated risk scores of LUAD patients.
Thereafter, LUAD patients were classified into different groups
with median risk score of 0.8834 (Figure 2C). Moreover, we
noticed that high-risk subpopulations were often accompanied
by high mortality (Figure 2D). Heatmap depicted the
heterogeneity in PSI values of 12 OS-relevant AS events
(Figure 2E). Prognostic analyses uncovered that high-risk
Frontiers in Oncology | www.frontiersin.org 5
subpopulations exhibited remarkedly dismal OS outcomes
(Figure 2F). The validity of the prognostic model in prognosis
prediction was verified through ROC analysis. The AUC values
at 1-, 3-, and 5-year OS were separately 0.762, 0.770, and 0.725,
showing the good effectiveness of this model in prognosis
prediction (Figure 2G).

Associations of the Prognostic Model
With Clinicopathological Characteristics
of LUAD
Through ROC analysis, we presented the comparisons of AUC
values and noticed that risk score displayed the higher AUC
values under 1-, 3-, and 5-year survival compared with
clinicopathological features (age, gender, and stage;
Figures 3A–C). Additionally, the differences in risk score
between distinct clinicopathological features were compared
among LUAD patients. No significant differences were
observed between age ≤65 and > 65 (Figure 3D) as well as
between non-metastasis (M0) and metastasis (M1; Figure 3E).
Increased risk score was investigated in male and female patients
A B C

C

D

E G

FIGURE 2 | Development of a reliable prognostic model for LUAD patients. (A) The distribution of partial likelihood deviance corresponding to l-logarithm value.
(B) LASSO coefficient profiling of OS-relevant AS events. The lines stood for OS-relevant AS events and candidates AS events were chosen utilizing ten-fold cross-
verification with minimum criteria. (C) The distribution of risk score across LUAD patients. Red dots meant high-risk patients while green dots meant low-risk patients.
(D) Scatter plots depicted distribution of LUAD patients’ survival time and status. Red dots denoted patients who were dead, whereas green dots denoted patients who
were alive. (E) Heatmap displayed the distribution of PSI values for the established prognostic model. (F) Kaplan–Meier survival curves of high- and low-risk LUAD patients.
(G) ROC curves at 1, 3, and 5 years of the prognostic model for LUAD patients.
June 2022 | Volume 12 | Article 880478
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(Figure 3F). As T, N, and stage increased, risk score was
gradually elevated (Figures 3G–I), indicating that the
prognostic model contributed to LUAD progression.

The Prognostic Model Acts as an
Independently Prognostic Indicator
of LUAD
We further verified the prognostic value of clinical characteristics
and risk score and found that risk score and stage possessed the
potential to independently predict LUAD prognosis (Figures
4A, B). Thereafter, a prognostic nomogram containing
independent prognostic indicators risk score as well as
clinicopathological stage was conducted for forecasting patients’
outcomes (Figure 4C). Calibration curves were indicative of the
powerful prognostic predictive capacity of this nomogram in 1-, 3-,
and 5-year OS (Figures 4D–F).

Development of a Prognostic Nomogram
Containing the Prognostic Model
and Stage
For further applying our findings to clinical practice, this study
constructed a nomogram prognostic score system in the
prediction of 1-, 3-, and 5-year OS outcomes of LUAD patients
(Figure 4C). The scoring system included the prognostic model
and stage. Thereafter, for verifying the reliability of the prognostic
nomogram, calibration plots were conducted and confirmed the
practical significance of the model. As depicted in Figures 4D–F,
the model possessed the potential in determining survival
outcomes with a high predicted accuracy.

Associations of the Prognostic Model With
Tumor Immunity
We firstly estimated infiltration levels of immune and stromal
cells across LUAD patients. Accordingly, patients with a high-
risk score displayed reduced immune score and stromal score
(Figures 5A, B). Nevertheless, higher tumor purity was
investigated in high-risk patients (Figure 5C). Then, we
determined ESTIMATE and noticed the prominently decreased
ESTIMATE score in the high-risk group (Figure 5D). Thus, low-
risk tumors were accompanied by abundant infiltrations of
immune and stromal cells. Then, we systematically investigated
Frontiers in Oncology | www.frontiersin.org 6
the immune cell infiltration landscape across LUAD with
CIBERSORT algorithm. We noticed that the low-risk group
displayed high infiltration levels of B cells naïve, T cells CD4
memory resting, monocytes, and mast cells resting (Figure 5E).
Oppositely, the high-risk group exhibited increased infiltration
levels in T cells CD4memory activated, T cells follicular helper, T
cells regulatory (Tregs), NK cells resting, macrophages M0, and
macrophages M1. Supplementary Figure 1 displays interactions
of risk score signature with above immune cell infiltrations.
Subsequently, we revealed the activities of immune functions
and immune cell infiltrations across LUAD ssGSEA method. In
Figures 5F, G, higher abundance levels of aDCs, B cells, HLA,
iDCs, mast cells, neutrophils, T helper cells, TIL, and type II IFN
response were investigated in the low-risk group while MHC
class I and NK cells exhibited higher abundance levels in the
high-risk group. We also evaluated the interactions of the
prognostic model with immune checkpoints across LUAD. As
depicted in Figure 5H, this prognostic model possessed a
positive association with CD274. Moreover, we observed that
the low-risk group was characterized by increased expression of
most immune checkpoint-related genes (Figure 5I). Thus, low-
risk patients were indicative of higher immune response as well
as immune cell infiltration.

Associations of the Prognostic Model With
TMB and Drug Responses
The interaction of the prognostic model with TMB was also
observed across LUAD. As shown in Figure 6A, the high-risk
group exhibited a remarkedly increased TMB score. Moreover,
we presented survival analysis among diverse subgroups. We
noticed that subpopulations possessing an elevated TMB score as
well as a reduced risk score displayed the most favorable survival
outcomes while those with a low TMB score and high-risk score
exhibited the poorest survival outcomes (Figure 6B).
Chemotherapy and targeted therapy were gradually applied in
treatments for patients with advanced lung adenocarcinoma. It is
of great significance to evaluate the responses of certain drugs in
different risk subpopulations. Herein, we identified the treatment
responses of some drugs that were widely used in the treatment
of LUAD. As shown in Figures 6C–F, the high-risk group
possessed prominently lowered IC50 values of cisplatin,
erlotinib, gefitinib, and gemcitabine, indicating that this
TABLE 2 | Twelve OS-relevant AS events in the LASSO prognostic model.

AS events Coefficient HR HR.95L HR.95H P-value

BEST3|23330|AT 1.23 3.43 1.07 10.93 0.038
CDKN2A|86004|AP 1.27 3.55 1.68 7.52 < 0.001
TTC39C|44852|AP 0.78 2.19 0.86 5.59 0.101
MEGF6|315|ES -1.57 0.21 0.08 0.52 < 0.001
PKIB|77377|AP 0.35 1.42 0.75 2.71 0.281
CA5B|98313|ES -0.99 0.37 0.14 0.98 0.045
HNRNPLL|53258|AT -3.38 0.03 0.004 0.30 0.002
LDB1|12935|AP -0.65 0.52 0.16 1.67 0.275
C12orf76|24406|AT 0.70 2.01 0.39 10.38 0.402
AP2B1|40327|AD 0.51 1.68 0.38 7.51 0.497
LETM2|83398|AT -1.13 0.32 0.11 0.93 0.036
MRPL33|53046|ES 1.40 4.06 0.57 29.21 0.163
Jun
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subpopulation possessed higher sensitivity to these therapeutic
agents. The above findings provide more clues for individualized
treatment strategies in LUAD patients.

Identification of Prognostic AS Events-
Related Genes
We found that CDKN2A, PKIB, and TTC39C exhibited a higher
expression in LUAD than normal tissues among the 12 AS
events-relevant genes in the prognostic models (Figures
7A–C). Moreover, survival analysis uncovered that highly
expressed CDKN2A and PKIB were in relation to more dismal
Frontiers in Oncology | www.frontiersin.org 7
survival probabilities of LUAD (Figures 7D, E). In contrast, high
TTC39C expression was indicative of the marked survival
advantage (Figure 7F).

Associations of Prognostic AS Events-
Related Genes With Immune
Microenvironment
We further investigated the interactions of the three prognostics
AS events-related genes (CDKN2A, PKIB, and TTC39C) with
immune response and immune cell infiltration across LUAD.
We found that deregulated CDKN2A did not affect estimate,
A B C

D E F

G H I

FIGURE 3 | Associations of the prognostic model with clinicopathological characteristics of LUAD. (A–C) Comparisons of AUC at 1-, 3-, and 5-year survival
estimated by risk score and clinicopathological characteristics through ROC analysis. (D–I) Box plots showing the distribution of risk scores in distinct
clinicopathological characteristics, containing (D) age (≤65 vs. > 65), (E) M stage (M0 vs. M1), (F) gender (female vs. male), (G) T stage (T1 vs. T2 vs. T3 vs. T4),
(H) N stage (N0 vs. N1 vs. N2 vs. N3) and (I) stage (stage I vs. stage II vs. stage III vs. stage IV).
June 2022 | Volume 12 | Article 880478
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immune, and stromal score as well as tumor purity (Figures 8A–
D). For Figures 8E–H, high PKIB expression was characterized
by increased estimate, immune, and stromal score but reduced
tumor purity. Moreover, high TTC39C expression displayed
remarkedly decreased estimate, immune, and stromal score but
elevated tumor purity (Figures 8I–L). In Figure 8M, CDKN2A
upregulation was in relation to increased infiltration levels of T
cells CD8, T cells CD4 memory activated, and macrophages M1.
PKIB deregulation was in relation to infiltrations of B cell naïve,
B cells memory, plasma cells, T cells CD8, macrophages M1,
macrophages M2, dendritic cells resting and mast cells resting
(Figure 8N). B cells native, plasma cells, T cells follicular helper,
and NK cells activated exhibited the increased infiltration levels
Frontiers in Oncology | www.frontiersin.org 8
in high TTC39C expression group (Figure 8O). The ssGSEA
results uncovered the increased infiltrations of APC co-
inhibition, CD8+ T cells, inflammation-promoting, MHC class
I, NK cells, T cell co-stimulation, Tfh, and Th1 cells in high
CDKN2A expression group (Figure 8P). PKIB upregulation was
in relation to most immune functions and immune cell
infiltrations (Figure 8Q). In Figure 8R, we noticed the
prominent interactions of high TTC39C expression with
activation of most immune functions and immune cell
infiltrations. We also estimated the associations of CDKN2A,
PKIB, and TTC39C with immune checkpoint molecules. Most
immune checkpoint molecules exhibited positive interactions
with CDKN2A, PKIB, and TTC39C (Figures 8S–U).
A B

C D

E F

FIGURE 4 | Evaluation of the independence of prognostic model in prognostic prediction and construction of prognostic nomograms for LUAD. (A, B) Univariate
and multivariate Cox analysis of risk score and clinicopathological features with LUAD prognosis. (C) The nomogram of risk score signature and stage for prediction
of 1-, 3-, and 5-year OS of LUAD. (D–F) Calibration curves used to compare nomogram estimated 1-, 3-, and 5-year survival probabilities with actual survival time.
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DISCUSSION

AS, a crucial post-transcriptionalmodification, can produce diverse
mRNA variants, which results in structural transcription variation
and protein diversity (38, 39). Emerging evidence suggests the
functions of AS events in lung carcinogenesis (40). For instance,
diverse splicing types of regulators of cell apoptosis may affect
NSCLC progression through modulating the imbalance between
pro-apoptosis and apoptosis (41–43). Herein, we systematically
uncovered the prognostic implications and immunity of AS events
in LUAD.

Herein, in total, 43,945 AS events were identified across LUAD,
indicating that AS might be a common modification in LUAD.
Following survival analysis, we observed 2415 OS-related AS
Frontiers in Oncology | www.frontiersin.org 9
events as well as distinct splicing types had specific splicing
preferences, which might assist in formulating more effective
treatment regimens. Previous studies have shown that the
binding of splicing factors to specific RNA sequences in genome
determines precise regulation of RNA splicing (44). Thus, an
integrative analysis was conducted for addressing the underlying
mechanisms involving them during lung tumorigenesis. The OS-
relevant splicing factor-AS interaction network showed the
prominent interactions of 44 OS-relevant AS events with three
splicing factors (SEC31B, CLK1, and DDX39B). Previously, CLK1
could modulate the chemoresistance of glioma cells via glycolytic
signaling mediated by AMPK/mTOR/HIF-1a (45) as well as
participating in modulating the splicing process of gastric
cancer, serving as an underlying therapeutic target against this
A CB
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FIGURE 5 | Associations of prognostic model with immune microenvironment across LUAD patients. (A–D) Distribution of estimate, immune, and stromal score
and tumor purity in different risk groups. (E) Comparisons of the levels of tumor immune infiltration in different risk subpopulations with CIBERSORT algorithm.
(F) Comparisons of the abundance levels of immune cell infiltrations and immune functions in different risk subpopulations utilizing ssGSEA algorithm. (G)
Heatmap visualizing the distribution of the abundance levels of immune cell infiltrations and immune functions. (H) Associations of risk score signature and
common immune checkpoint molecules across LUAD. (I) Comparisons of the expressions of immune checkpoint molecules in different risk subpopulations. *P <
0.05; **p < 0.01; ***p < 0.001.
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malignancy (46). Chemical suppression of CLK1 may disrupt the
recruitment of internal kinetochores as well as impair cell cycle
progression, contributing to unprogrammed cell death (47).
Moreover, inhibition of DDX39B triggers sensitivity of BRCA1-
mutant ovarian cancer cells to chemotherapy drugs such as
platinum and PARPi (48). Our data indicate that splicing factors
and AS events were not only one-to-one coordination or
antagonistic regulatory interactions, revealing the complexity of
their regulatory network.
Frontiers in Oncology | www.frontiersin.org 10
With the LASSO method, we established an AS event-based
prognostic model (BEST3|23330|AT, CDKN2A|86004|AP,
TTC39C|44852|AP, MEGF6|315|ES, PKIB|77377|AP, CA5B|
98313|ES, HNRNPLL|53258|AT, LDB1|12935|AP, C12orf76|
24406|AT, AP2B1|40327|AD, LETM2|83398|AT, MRPL33|
53046|ES) in LUAD. In-depth analysis verified that this model
could accurately indicate outcomes of LUAD patients.
Accumulated evidence suggests that AS events are in relation
to the remodeling of the tumor microenvironment (15, 49).
A B

C D

E F

FIGURE 6 | Associations of prognostic model with TMB and drug responses. (A) Comparisons of TMB score between high- and low-risk groups. (B) Survival
analysis of different TMB score and risk score groups. (C–F) Comparisons of sensitivity to cisplatin, erlotinib, gefitinib, and gemcitabine between high- and low-
risk groups.
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Herein, our data uncovered the high-risk group presented the
features of decreased infiltrations of immune and stromal cells as
well as increased tumor purity. Additionally, LUAD patients
with a high risk presented worse immune reactivity, which might
contribute to shorter survival duration as well as higher degree of
malignancy. TMB was characterized as an effective indicator for
prediction of clinical response to immunotherapy (34, 50, 51).
Our data indicated that the high-risk group presented higher
TMB score, which revealed that patients in high-risk groups may
experience better outcomes with immunotherapy. Subgroup
analysis uncovered those patients with reduced TMB score and
increased risk score tended to exhibit more malignant clinical
outcomes and shorter survival duration. Moreover, we noticed
that patients with a high-risk score presented higher priority to
cisplatin, gemcitabine, erlotinib, and gefitinib, providing a
reference for the choice of the optimal chemotherapeutic or
targeted therapeutic regimen.

Previous research revealed the parental genes of AS events
displayed deregulation owing to abnormal AS events (52).
Therefore, we identified 12 AS-relevant genes (BEST,
CDKN2A, TTC39C, MEGF6, PKIB, CA5B, HNRNPLL, LDB1,
C12orf76, AP2B1, LETM2, MRPL33) in the AS event-based
prognostic model. Further, we investigated the upregulation of
CDKN2A, TTC39C, and PKIB expressions in LUAD as well as
their upregulation was indicative of dismal outcomes in LUAD.
Further analysis uncovered that highly expressed PKIB was
related to increased infiltrations of immune and stromal cells
and opposite findings were investigated for TTC39C.
Additionally, CDKN2A, TTC39C, and PKIB exhibited positive
Frontiers in Oncology | www.frontiersin.org 11
associations with most immune checkpoint molecules across
LUAD. The data indicated that CDKN2A, TTC39C, and PKIB
exerted critical functions in modulating tumor immunity of
LUAD. Previously, CDKN2A was shown to be associated with
polymorphism of GSTs genes in esophageal squamous cell
carcinoma (53). PKIB facilitates breast and lung carcinogenesis
through modulating Akt signaling (54). To date, TTC39C has no
relevant literature reports on its role in tumorigenesis. Several
limitations have been pointed out in our study. Firstly, the AS
event-based prognostic model was developed based on a
retrospective cohort. The predictive power of this model needs
to be validated in more prospective cohorts. Moreover, the
limited evidence is not enough to fully explain the specific
roles of these genes in lung tumorigenesis. In follow-up
studies, we will conduct further experiments to validate
our findings.
CONCLUSION

Collectively, our research presented systematic analyses of AS
events across LUAD, and finally developed a reliable and
independent prognostic model on the basis of AS events. Our
in-depth analyses revealed the interactions of AS events with
immune response and immune cell infiltrations. Finally, we
identified three prognostic AS-event-related genes that might
play a non-negligible role in lung carcinogenesis. Nevertheless,
their potential significance as prognostic indicators and
therapeutic targets in clinical applications deserve further study.
A CB
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FIGURE 7 | Identification of prognostic AS events-related genes. (A–C) The expression patterns of CDKN2A, PKIB, and TTC39C in LUAD and normal tissues.
(D–F) Kaplan-Meier plots of different expression of CDKN2A, PKIB, and TTC39C. ***p < 0.001.
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FIGURE 8 | Associations of prognostic AS events-related genes with immune response and immune cell infiltration. (A–D) Violin plots depicted the distribution of
estimate, immune, and stromal score as well as tumor purity in high and low CDKN2A groups. (E–H) Violin plots depicted the distribution of estimate, immune, and
stromal score as well as tumor purity in high and low PKIB groups. (I–L) Violin plots depicted the distribution of estimate, immune, and stromal score as well as
tumor purity in high and low TTC39C groups. (M–O) The distribution of the abundance levels of tumor-infiltrating immune subpopulations in high and low expression
of CDKN2A, PKIB, and TTC39C groups. (P–R) The distribution of the abundance levels of immune cell infiltrations and immune functions in high and low expression
of CDKN2A, PKIB, and TTC39C groups. (S–U) Expression levels of immune checkpoint related genes in high and low CDKN2A, PKIB, and TTC39C subpopulations.
*P < 0.05; **p < 0.01; ***p < 0.001.
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