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Abstract

Background: Eosinophils are involved in various inflammatory processes including allergic inflammation during
which angiogenesis has been documented. Angiogenesis is most likely connected to the hypoxia which
characterizes inflamed tissues. Eosinophils produce VEGF and are pro-angiogenic. However, to the best of our
knowledge no study has been performed to verify the existence of a direct link between eosinophils, hypoxia and
angiogenesis in allergic inflammation.

Objective: To characterize eosinophil function and angiogenic potential under hypoxic conditions.

Methods: Human peripheral blood eosinophils were cultured in normoxic or hypoxic conditions with or without
cytokines. Viability and apoptosis were assessed by Annexin V/PI staining. Anti- or pro-apoptotic protein levels, HIF-
Ta levels and MAPK phosphorylation were analyzed by immunoblot analysis. Angiogenic mediator release was
evaluated by ELISA.

Results: Hypoxic eosinophils were more viable than normoxic ones after up to three days. In addition in hypoxia,

anti-apoptotic Bcl-XL protein levels increased more than pro-apoptotic Bax levels. Hypoxia increased VEGF and IL-8
release. In hypoxic eosinophils high levels of HIF-1a. were observed, particularly in the presence of GM-CSF. MAPK,

particularly ERK1/2 inhibitors, decreased hypoxia-mediated VEGF release and HIF-Ta expression.

Conclusion: Eosinophils respond to hypoxia by up-regulation of survival and of some of their pro-angiogenic
functions indicating a correlation between eosinophilic inflammation and angiogenesis.

Introduction

Allergic diseases are generally characterized by inflam-
mation, in which tissue infiltration of myeloid cells,
mainly eosinophils and Th2 cells, is an important fea-
ture [1-5].

The microenvironment of injured inflamed tissues is
mostly characterized by high concentrations of lactate
and reductive metabolites, as well as by low levels of
glucose and oxygen [6]. This low oxygen level, or
hypoxia, is due to an inadequate blood supply and high
consumption of oxygen by the infiltrated cells [7-9].

Hypoxic conditions have been shown to profoundly
affect a broad range of myeloid cell properties in vitro,
e.g., phagocytosis, cell surface marker expression, secre-
tion of cytokines, chemokine receptor levels, adhesion,
migration, and cell survival [9]. In addition, hypoxia pro-
motes remodeling and angiogenesis, the sprouting of
new blood vessels from pre-existing ones, thus renewing
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the blood supply and increasing oxygen levels in the tis-
sue [10,11]. Several transcription factors are involved in
the response to hypoxic stress. Among them, hypoxia
inducible factor (HIF)-1 functions as a master regulator
of oxygen homeostasis and is responsible for vascular
endothelial growth factor (VEGF) synthesis [9,12]. Inter-
estingly, in asthmatic lungs as well as in nasal polyps,
there is a high expression of VEGF [8,13-16].
Considering the key function of eosinophils as effector
cells in allergic inflammation, we became interested in
their role in angiogenesis. The first important link
between eosinophils and angiogenesis was reported by
Horiuchi et al. [17]. They demonstrated that eosinophils
contain VEGF protein in their granules and release it
after stimulation with either granulocyte macrophage col-
ony stimulating factor (GM-CSF) or interleukin (IL)-5.
We have shown that eosinophils display a direct pro-
angiogenic effect promoting endothelial cell prolifera-
tion, inducing VEGF production by endothelial cells,
and rendering these cells more sensitive to VEGF via
up-regulation of the VEGF receptor [18]. These phe-
nomena appear to be mostly, but not exclusively,
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mediated by VEGF. Recently we demonstrated that the
eosinophil cationic major basic protein (MBP) can
induce angiogenesis in the same experimental models
[19]. Moreover, we found that eosinophils express
osteopontin, a glycoprotein molecule which exhibits
pro-fibrogenic and pro-angiogenic properties and is
implicated in allergic diseases [20].

To the best of our knowledge, there are no reports on
the influence of hypoxia, the main driver of angiogen-
esis, on eosinophil functions. In this study we therefore
aimed to investigate the possible effect of hypoxia on
eosinophil activity and pro-angiogenic potential.

Materials and methods

Cells

Eosinophils were purified as previously described [21,22]
from the peripheral blood of untreated, mildly atopic
volunteers (blood eosinophil levels 5%-10%), who were
asymptomatic and therefore not taking any drug for
their condition, and on the day of blood donating, any
other drug. Written informed consent was obtained
according to the guidelines of the Hadassah-Hebrew
University Human Experimentation Helsinki Committee.
Briefly, venous blood (150 ml) was collected in hepari-
nized syringes and left to sediment in 6% dextran
(Sigma Chemicals, St Louis, MO). Leukocytes were cen-
trifuged on Ficoll-Hypaque (density 1.077; Sigma Che-
micals) for 25 minutes at 700 g at 20°C. Neutrophils and
lymphocytes were tagged in the granulocyte-enriched
pellet with micromagnetic beads bound to anti-CD16
and anti-CD3 antibodies, respectively (Miltenyi Biotech
GmbH, Bergisch Gladbach, Germany). Eosinophils were
purified by passing this cell suspension through a mag-
netic field and were then collected at a purity of >98%
(Kimura staining), with a viability of >98% (trypan blue
staining). Thereafter, eosinophils were re-suspended
(5*10° or 10° cells/ml) in culture medium consisting of
RPMI 1640 supplemented with L-glutamine (300 mg/l),
10% heat-inactivated FCS, and penicillin-streptomycin
solution (100 u/ml) (Biological Industries, Beit Haemek,
Israel).

Eosinophil culture in hypoxic or normoxic condition

Eosinophils were cultured in 96 well u-shaped plates
(Nunc, Rochester, NY) in 200 ul of medium alone or
supplemented with cytokines (see below) according to
the experiment. For experiments in hypoxia, plates were
placed in a closed humidified chamber at 37°C, with a
continuous flow of gas mixture of 95% N, and 5% CO,.
The oxygen percentage in the medium was monitored
with a dissolved oxygen meter before each time point
checked and found to be <3% (MettlerToledo, Schwer-
zenbach, Switzerland). Two hours after the starting of
gas flow in the chamber, the oxygen level equilibrated at

Page 2 of 8

<3%. At this time point eosinophils were added to the
wells. All the assays were performed on eosinophils cul-
tured for a further 1 h, to permit full re-equilibration of
the oxygen in the chamber (<3%). For experiments in
normoxia, plates were placed at 37°C in a humidified
incubator with 5% CO, and air.

Annexin V and propidium iodide (PI) staining and flow
cytometry

Eosinophils (10° cells/ml, 0.2 ml) were incubated either
in normoxia or hypoxia in the presence or absence of
GM-CSF, IL-3, or IL-5 (20 ng/ml; Peprotech, Rocky
Hill, NJ) for 24, 48 and 72 h. Cells were then washed
and re-suspended in 0.2 ml buffer (218 mM Hepes,
1.4 mM sodium chloride, 38.1 mM calcium chloride)
and incubated for 20 min on ice with AnnexinV-FITC
(10 pl/10° cells; IQ Products, Groningen, Netherland).
The cells were washed and propidium iodide (5 pg/ml)
was added. Apoptosis and viability were analyzed by
flow cytometry (FACScalibur System, Becton Dickinson,
San Jose, CA).

HIF-a staining for flow cytometry

Eosinophils (10° cells/ml, 0.2 ml) incubated for the indi-
cated time points in medium in either normoxia or
hypoxia, were fixed in 2% formaldehyde (15 min, 4°C),
washed in a final volume of 100 pl of HBSS supplemen-
ted with 0.1% BSA and 0.02% sodium azide (HBA) for
30 min on ice and permeabilized in HBA containing
Saponin 0.1%, BSA 10%, serum 0.1%, and Hepes 10 mM
(20 min, RT). Anti- HIF-1a (5 pg/ml; R&D Systems,
Minneapolis, MN) or irrelevant control Abs were added
to these fixed permeabilized cells (30 min on ice), and
cultures were incubated with anti-goat Cy5-conjugated
IgG (1:100; 20 min, RT; Jackson ImmunoResearch
Laboratories, West Grove, PA). After staining, the cells
were analyzed by flow cytometry collecting 10,000
events, and data analysis was performed using CellQuest
software (BD Biosciences).

Immunoblot determination of eosinophil protein
expression

For MAPK analysis, eosinophils (5 x 10°cells/ml, 0.2
ml) were incubated in normoxia or hypoxia for 1 h
and 3 h in medium alone, or in medium containing
GM-CSF with or without the specific inhibitors for
ERK1/2 (PD98059) or p38 (SB203580; 10 uM; Calbio-
chem, San Diego, CA). The inhibitors were added to
the media at the beginning of the culture. After incu-
bation, cells were immediately centrifuged (3 min, 4°C
150 g) and re-suspended in sample buffer X1.5 (10°
cells in 50 pl), boiled for 10 min, and vortexed. Cells
were counted before incubation and in representative
experiments after incubation, and no significant
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differences in cell numbers were found. Samples
(15 pl) were resolved in SDS-PAGE using 10% polya-
crylamide gel and transferred to nitrocellulose mem-
branes. Membranes were incubated for 1 h at RT with
anti-ERK1/2 (1:1000; Cell Signaling Technology, Dan-
vers, MA), anti-phospho ERK1/2 (1:1000; Cell Signal-
ing Technology), anti-pP38 (1:1000; BD Bioscience,
San Diego, CA) antibodies, and then for 1 h with
horseradish peroxidase (HRP)-conjugated goat-anti-
mouse or goat-anti-rabbit antibodies (1:10000; Jackson
ImmunoResearch Laboratories). For HIF-1a analysis
samples were loaded in 8% SDS-PAGE gel and incu-
bated o.n. with goat anti-HIF-1la antibodies (1:1000;
R&D System) and then with HRP-conjugated anti-goat
antibodies (1:10000; Santa Cruz Biotechnology, Santa
Cruz, CA) for 1 h. For apoptotic protein analysis, sam-
ples were loaded in 15% SDS-PAGE gel. Membranes
were incubated with goat anti-Bax or anti-Bcl-XL anti-
bodies (1:1000; Cell Signaling Technology) and with
HRP-conjugated anti-goat antibodies (1:10000; Cell
Signaling Technology). Detections were made by ECL-
plus (GE Healthcare, Amersham, UK).

ELISA

Eosinophils [5 x 10° cells/ml, 0.2 ml] were cultured in
normoxic or hypoxic conditions o.n. and supernatants
were collected after centrifugation. VEGF was detected
by Human VEGF ELISA Development kit (PeproTech
Inc.) and IL-8 by DuoSet kit (R&D system) according to
the manufacturer’s instructions. The lower limit of the
assay sensitivity was 16 pg/ml in both cases.

Statistical analysis

The control and experimental groups were compared by
paired ¢-test for evaluation of significance (p < 0.05).
The data are expressed as mean * standard error of
measurement (SEM) of at least three independent
experiments performed in triplicate. The KyPlot™ analy-
sis tool-pack was used to perform the statistical analysis.

Results

Hypoxia increases peripheral blood eosinophil survival
To determine whether hypoxic conditions influence
eosinophil behavior, eosinophils were cultured in
hypoxia or in normoxia in medium alone, or with an
optimal concentration of either GM-CSF, IL-3, or IL-5.
After 24 h in medium, the percentage of viable eosino-
phils in hypoxia was significantly higher than in nor-
moxia (83.1 + 4.21% in hypoxia and 60.42 + 2.63% in
normoxia, Fig. 1A; p = 0.019). Similar results were
obtained after 48 h of culture (72.8 + 8.93% and 24.98 +
6.8% respectively; p = 0.013) and were more pronounced
after 72 h (49.96 + 5.41% and 10.46 + 0.74%, p = 0.018).
The viability of eosinophils cultured with either one of
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the three survival cytokines was ~80% for normoxia and
hypoxia at all three time points assessed.

The impact of hypoxia on eosinophil survival was
evaluated by specifically assessing their viability/apopto-
sis using AnnexinV/PI double staining. After 24 h in
normoxia, PI negative eosinophils were ~60% and 28.03
+ 4.95% were AnnexinV positive. In the case of hypoxic
eosinophils, ~80% were PI negative cells and only 14.47
+ 6.13% were AnnexinV positive (p = 0.043). Also after
48 h there were significant differences between nor-
moxic and hypoxic AnnexinV positive eosinophils (nor-
moxia 10.3 + 3.68%, hypoxia 28.28 + 2.67%; p = 0.037).
After 72 h the differences were no longer significant
(normoxia 4.76 + 0.64%; hypoxia 35.34 + 4.42%). To
further investigate the involvement of apoptosis in the
death of eosinophils, Bax and Bcl-XL, pro- and anti-
apoptotic proteins respectively, were analyzed by Wes-
tern blot in normoxic and hypoxic eosinophils. After o.
n. incubation, normoxic eosinophils expressed similar
levels of BAX and Bcl-XL. In hypoxic conditions Bcl-XL
expression was strongly increased while that of Bax
slightly augmented (Fig. 1C).

Hypoxia increases VEGF and IL-8 release from eosinophils
To study the influence of hypoxia on eosinophil activ-
ity, the release of different factors was evaluated.
Hypoxia did not influence eosinophil degranulation as
assessed by EPO release after 1 h of incubation (data
not shown). However, eosinophils cultured o.n. in
hypoxic conditions released significantly more VEGF
compared to cells cultured in normoxic conditions
(Fig. 2A; normoxia: not detectable; hypoxia: 60.03 +
17.87 pg/ml; p = 0.0186). In addition, IL-8 release was
significantly higher in hypoxic eosinophils (2639.17 +
258.15 pg/ml) than in normoxic ones (831 = 52.1
pg/ml) (Fig. 2B; p = 0.005).

Hypoxia increases HIF-1a levels in eosinophils

We then evaluated whether hypoxia affects HIF-1a
levels in eosinophils. HIF-1ow expression was assessed
after 1 or 3 hours, in order to evaluate the short-term
hypoxia-mediated up-regulation of this factor due to its
stabilization, rather than to synthesis of new proteins, as
in longer time points. Flow cytometric analysis for intra-
cellular staining of eosinophils showed an increase in
the MFI of HIF-1a after 3 h in hypoxia compared with
normoxia (Fig. 3A). This hypoxic dependent increase in
HIF-1o was confirmed by Western blot analysis of eosi-
nophils cultured 1 h and 3 h in medium alone or in the
presence of GM-CSF (Fig. 3B). After 1 h, no evident dif-
ference in HIF-1a expression was detected between nor-
moxia and hypoxia (lanes 2 and 4). At this time point
the cells incubated with GM-CSF showed a faint band
for HIF-1a in both normoxia and hypoxia (lanes 3
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Figure 1 Effect of hypoxia on eosinophil survival. Eosinophils were cultured in medium alone or supplemented with either GM-CSF, IL-3 or
IL-5 (20 ng/ml) in normoxia (solid columns) or hypoxia (stripped columns) for 24 h, 48 h and 72 h. (A) Flow cytometry analysis of Pl stained cells
was performed and viable eosinophils were identified as PI". (B) Eosinophils were cultured in medium in hypoxia or normoxia for 24 h, 48 h and
72 h and stained with AnnexinV and Pl. AnnexinV*/PI" cells were gated as viable apoptotic eosinophils; AnnexinV/PI” were gated as viable cells.
(O) Eosinophils were cultured o.n. in medium in normoxia or hypoxia and Bax and Bcl-XL expression was analyzed by Western blot after o.n.
incubation (C). Representative blot of three experiments performed on three different eosinophil donors (left panel), and average of
densitometry quantification of the three experiments (right panel) are shown.

an 5). After 3 h, eosinophils cultured in medium dis-
played no band in normoxia (lane 6) but a faint band
was still present in hypoxia (lane 8). At this time point
in the presence of GM-CSF, HIF-1a. was evident in nor-
moxia (lane7) and a stronger signal was detected in
hypoxia (lane 9).

Effect of GM-CSF on hypoxia-dependent VEGF release and
HIF-1a regulation in eosinophils

Because of the GM-CSF enhancing effect detected
above, we incubated eosinophils in the presence of
GM-CSF under normoxic and hypoxic conditions and
evaluated VEGF release. Hypoxia in the presence of
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Figure 2 The effect of hypoxia on VEGF and IL-8 release from
eosinophils. Eosinophils were cultured in medium in normoxia or
hypoxia. After o.n. incubation VEGF (A) and IL-8 (B) concentrations
were measured in supernatants by specific ELISAs. Data are the
mean + SEM of three experiments. (* p < 0.05; ** p < 0.005).

GM-CSF induced higher release of VEGF (186.46 +
33.93 pg/ml) when compared to the normoxic levels
(73.46 + 36.15 pg/ml). In the case of IL-8, the presence
of GM-CSF did not influence the cytokine release (data
not shown).

In the next series of experiments we therefore ana-
lyzed the effect of MAPK phosphorylation as a down-
stream signaling of GM-CSF. ERK1/2 and p38 MAPK
phosphorylation were evaluated in normoxia/hypoxia.
After 1 h and 3 h of incubation no bands were detected
when eosinophils were cultured in medium alone (M.W.
42 KDa; Fig. 4A lanes 3 and 5 and lanes 7 and 9). How-
ever, when incubated with GM-CSF, eosinophils dis-
played two bands corresponding to pERK1/2 both in
normoxia and in hypoxia after 1 h (lanes 4 and 6) and
after 3 h (lanes 8 and 10). The expression of the total
ERK1/2 was similar in all samples. When the phos-
phorylated p38 was analyzed, no differences between
normoxia and hypoxia were observed (Fig. 4B; lanes 3
and 5). In this case, addition of GM-CSF had no evident

HIF-1a
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GM-CSF - - s o BE = " -
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Figure 3 HIF-1a expression by eosinophils. (A) Flow cytometry
analysis of intracellular staining for HIF-1a in eosinophils incubated
in normoxia (solid line) or hypoxia (dashed line) up to 3 h. (B)
Western blot analysis for HIF-1a levels in eosinophils incubated in
normoxia or hypoxia with or without GM-CSF for 3 h. Data are
representative of three experiments.

effect on p38 phosphorylation (lanes 4 and 6). A similar
result was obtained after 3 h of incubation (lanes 7 and
9 and lanes 8 and 10).

When PD98059 was added together with GM-CSF in
o.n. cultures, a significant decrease in VEGF release
under hypoxic conditions was observed compared to
cultures with no inhibitor (Fig. 4C; hypoxia: with GM-
CSF 165.62 + 63.83 pg/ml; with GM-CSF and PD98059
23.77 £ 6.18 pg/ml; p < 0.05; normoxia: with GM-CSF
42 + 12.7 pg/ml; with GM-CSF and PD98059 22.9 +
9.97 pg/ml; n.s.). In addition, when the p38 MAPK inhi-
bitor SB203580 was added to the GM-CSF cultured
eosinophils in hypoxia, VEGF release decreased, though
not significantly (Fig. 4C; normoxia: with GM-CSF 24.34
+ 12.13 pg/ml; with GM-CSF and SB203580 30.64 +
7.25 pg/ml; hypoxia: with GM-CSF 113.26 + 41.93 pg/
ml; with GM-CSF and SB203580 58.55 + 6.33 pg/ml;
p < 0.05).

The influence of MAPK inhibitors was also tested on
HIF-1a regulation. As shown in Fig. 4D, in 3 h hypoxic
cultures in the presence of GM-CSF, HIF-1a levels
highly decreased and reached levels similar to those in
normoxia when PD98059 was added (lane 7). Addition
of SB203580 slightly decreased HIF-1lo expression in
these hypoxic cultures (lane 8).
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Figure 4 Effect of GM-CSF signaling on hypoxia mediated HIF-1a and VEGF regulation. Eosinophils were incubated in normoxia/hypoxia
in the absence or presence of GM-CSF. Western blot analysis was performed for phospho ERK1/2 and total ERK1/2 (A) or pP38 (B). The results
are from one representative experiment out of three. (C) Eosinophils were cultured in medium with or without GM-CSF and with or without
PD98059 (left panel; n = 5) or SB203580 (right panel; n = 3). MAPK inhibitors were added at the starting of the culture. VEGF levels were
analyzed by ELISA. Data are the mean + SEM of three experiments (* p < 0.05). (D) Eosinophils were cultured for 3 h in medium alone (lanes 1
and 5), with GM-CSF alone (lanes 2 and 6) or with GM-CSF with PD98059 (lanes 3 and 7) or SB203580 (lanes 4 and 8). HIF-1a levels were
analyzed by Western blot (left panel). Densitometry analysis is shown as a column chart (right panel). Data are representative of four
experiments.

Discussion

Inflammation, angiogenesis, and remodeling are present
in allergic inflamed tissues together with prominent
eosinophil infiltration. We hypothesized that the
inflamed hypoxic milieu can lead to eosinophil activa-
tion and promote neo-vascularization in allergic states,

and investigated whether hypoxia could influence eosi-
nophil properties in vitro.

First, we found that hypoxia increases the viability of
eosinophils up to three days. This result confirms a pre-
vious work in which hypoxic conditions were found to
prolong eosinophil viability, as measured by trypan blue



Nissim Ben Efraim et al. Clinical and Molecular Allergy 2010, 8:10
http://www.clinicalmolecularallergy.com/content/8/1/10

exclusion assay [23]. We further evaluated the influence
of hypoxia on eosinophil apoptosis and found an increase
in both PI'/AnnexinV~ and PI'/AnnexinV" cells in
hypoxia. This would suggest a delaying effect on the eosi-
nophil apoptotic pathway. In addition, the increase of the
anti-apoptotic protein Bcl-XL more than the pro-apopto-
tic protein Bax in hypoxia, confirmed that this survival
can be partially due to the inhibition of apoptosis. Inter-
estingly, no differences in GM-CSF release were observed
in eosinophils cultured in normoxia vs. hypoxia (data not
shown). This data would suggest that the increased viabi-
lity of the cells is not a consequence of increased GM-
CSF production by hypoxic eosinophils.

Second, we found that hypoxia increases the release of
the most important pro-angiogenic factor VEGF from
eosinophils. VEGF is the key mediator of angiogenesis,
being a specific mitogen for endothelial cells [24,25].
Many cells, including structural cells such as endothelial
cells and inflammatory cells, release VEGF as a response
to hypoxia [9,11,26]. Interestingly, this effect was
enhanced by the presence of GM-CSF in a seemingly
synergistic fashion. In addition, the release of IL-8,
which stimulates endothelial cell proliferation and capil-
lary tube organization [27], was also found to be aug-
mented in eosinophils under hypoxia. It is important to
point out that in the time point in which cytokine
release was evaluated, no significant differences in cell
viability were observed (data not shown).

Finally, we demonstrated for the first time that eosino-
phils express HIF-1, and that its subunit HIF-1a is stabi-
lized after a short exposure to hypoxic conditions in these
cells. Based on the literature on HIF-1a induction, it may
be concluded that the classical stabilization mechanism
induced by hypoxia causes the up-regulation of HIF. In
addition in our study, HIF-1o. up-regulation was further
enhanced in the presence of GM-CSF. This effect of GM-
CSF seems to correlate to its increasing effect on VEGF
release. In assays performed after o.n. incubation, HIF-1a
levels were found to be still high (data not shown).

In eosinophils, GM-CSF-induced ERK1/2 phosphory-
lation is involved in their migration and degranulation
[28,29]. MAPK cascade is known to participate in cell
proliferation, differentiation, survival, and locomotion
[30]. In addition, ERK1/2 has a specific role in regulat-
ing VEGF gene expression [31,32]. Richard et al.
showed in fibroblasts that HIF-1a is strongly phos-
phorylated by ERK1/2 and that this is sufficient to pro-
mote the transcriptional activity of HIF-1 on VEGF
[32]. In the current study we showed that inhibition of
ERK1/2 phosphorylation decreased both GM-CSF-
induced HIF-1o and VEGF up-regulation in eosino-
phils. Interestingly, although no effect of hypoxia on
ERK1/2 phosphorylation could be detected, PD98059
addition decreased both ERK1/2 and VEGF in
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eosinophils, to levels comparable to normoxia. This
may be due to the multiple roles and interactions of
ERK signaling.

In summary, GM-CSF increases HIF-1a levels and
VEGF release by inducing ERK1/2 phosphorylation in a
hypoxia-independent way. We suggest that GM-CSF
might render the eosinophils more responsive to
hypoxia-induced activation by enhancing MAPK phos-
phorylation, which in turn contributes to HIF-1
stabilization.

The present data showing cooperation between
hypoxia and GM-CSF on eosinophil function might be
very relevant to what happens in vivo in allergic inflamed
tissues, in which high levels of GM-CSF and various
levels of hypoxia frequently coexist [33-35]. We believe
that because of their high infiltration in chronic allergic
inflammation, eosinophils play a pivotal role in promot-
ing angiogenesis in these tissues. As other inflammatory,
as well as structural cells, are involved in tissue response
to hypoxia, further studies should assess the relative con-
tribution of the eosinophils to this phenomenon.
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