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Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tis-

sues and organs. Skeletal muscle produces and releases significant levels of

IL-6 after prolonged exercise and is therefore considered as a myokine.

Muscle is also an important target of the cytokine. IL-6 signaling has been

associated with stimulation of hypertrophic muscle growth and myogenesis

through regulation of the proliferative capacity of muscle stem cells. Addi-

tional beneficial effects of IL-6 include regulation of energy metabolism,

which is related to the capacity of actively contracting muscle to synthesize

and release IL-6. Paradoxically, deleterious actions for IL-6 have also been

proposed, such as promotion of atrophy and muscle wasting. We review

the current evidence for these apparently contradictory effects, the mecha-

nisms involved and discuss their possible biological implications.

Introduction

Adult skeletal muscle is a dynamic tissue capable of

responding to environmental stimuli in addition to being

an organ that produces and secretes trophic factors.

Numerous cytokines and growth factors are produced

by the muscle itself, or by infiltrating inflammatory cells

during regeneration. These cytokines include hepatocyte

growth factor, insulin-like growth factor (IGF1),

fibroblast growth factor, transforming growth factor b
and interleukin (IL)-4. These factors have been shown

to control skeletal muscle homeostasis, regeneration and

growth, in part by regulating critical muscle stem cell

(satellite cell) functions. During the last decade, several

members of the IL-6 family, particularly IL-6 and leuke-

mia inhibitory factor (LIF), have also been recognized
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as myokines, that is, cytokines produced by the working

skeletal muscle during exercise [1–4].

The IL-6 family of cytokines

IL-6 was first cloned and characterized in the mid-

1980s by several independent groups assessing immu-

noglobulin production and acute-phase protein

responses in different cell lines [5]. Although at first

characterized as interferon-b2, amongst other names, it

has since gone on to become the cytokine of reference

for a subgroup of molecules. IL-6 belongs to the

broader four-a-helix family, in which members are

structurally defined by a 3D structure of four bundles

of a helices, and is the most studied of the IL-6 family

which also includes IL-11, IL-27, IL-31, ciliary neuro-

trophic factor, cardiotrophin-1, cardiotrophin-like

cytokine, LIF, neuropoietin and oncostatin M

(reviewed in Ref. [6]). One of the defining features of

this family is that they signal via the ubiquitously

expressed transmembrane protein gp130 (CD130).

Moreover, IL-6 signaling is further complicated by its

ability to operate via both ‘classical’ and ‘trans-signal-

ing’ mechanisms.

In classical IL-6 signaling, the cytokine first binds to

the membrane-bound IL-6 receptor (IL-6R; CD126)

that is induced to associate with a homodimer of gp130

which then transmits the intracellular signal. Expres-

sion of the IL-6R is limited to several cell types includ-

ing hepatocytes, neutrophils, monocytes/macrophages

and some lymphocytes [7] and thus the range of actions

of IL-6 is theoretically limited. However, alternative

splicing and limited proteolytic processing of IL-6R

generate a soluble and secreted form of the receptor

(sIL-6R) that is found in many body fluids. Unlike

many other soluble receptors, sIL-6R is not only able

to bind to IL-6, but the IL-6–sIL-6 complex is able to

bind to and activate gp130 homodimers on cells that

do not express membrane-bound IL-6R, thereby medi-

ating ‘trans-signaling’ and increasing the potential

range of IL-6 target tissues and activities [7]. IL-6 fam-

ily members typically signal through the common

gp130 receptor, with the Janus kinase/signal transducer

and activator of transcription (JAK/STAT) pathway

being the major intracellular mediator of their effects.

IL-6 is principally defined as a proinflammatory

cytokine (reviewed in Ref. [5]). For example, in IL-6-

deficient mice, the inflammatory acute-phase response

after tissue damage or infection is severely compro-

mised [8]. In addition, IL-6-deficient mice also have

reduced IgG and IgA, but not IgM, responses,

whereas T-cell activity is also blunted because IL-6 is

able to induce the differentiation of B cells to anti-

body-producing plasma cells, and induce T-cell growth

and differentiation [5]. IL-6 may also act as a growth

factor for some cell types, although it appears to inhi-

bit the growth of others ([5]; see also below), in addi-

tion to possessing many other effects. One of its most

important roles is in fever because it not only crosses

the blood–brain barrier to stimulate prostaglandin E2

synthesis in the hypothalamus, but it also facilitates

peripheral heat production by mediating the mobiliza-

tion of fuels for heat production in adipose tissue and

of course skeletal muscle [9]. Indeed, although IL-6 is

by definition pleiotropic, it is also one of the few genu-

ine myokines, or cytokines that are produced by and/

or act on skeletal muscle. In response to muscle stress,

satellite cells are activated, proliferate, differentiate

and fuse to form new myofibers. The IL-6 family of

cytokines released by either the muscle compartment

(myofibers and/or satellite cells) and/or by infiltrating

inflammatory cells might potentially trigger and con-

trol the distinct actions of satellite cells throughout the

myogenic process.

Skeletal myogenesis

Formation of skeletal muscle (myogenesis) in the

mammalian embryo relies on muscle progenitor cells

which express Pax3 and Pax7, two paired-homeobox

transcription factors responsible for myogenic lineage

specification. After birth, these progenitors adopt a

satellite position outside the myofiber and under the

basal lamina, hence the name satellite cells. Sometime

around postnatal day 21 they enter a quiescent state

[10,11]. However, in response to external signals

derived from stress or trauma, quiescent satellite cells

are activated and undergo asymmetric division to both

maintain the satellite cell pool through self-renewal

and to generate a progeny of committed myoblasts

[12]. It is these myoblasts that subsequently proliferate,

migrate, differentiate and fuse into new myofibers,

thereby maintaining adult muscle homeostasis and

repairing the injured muscle tissue (reviewed in Ref.

[11]).

Activation of a muscle-specific transcription factor

network composed of four muscle-specific regulatory

factors is fundamental for the formation of new myofi-

bers. These muscle-specific regulatory factors, Myf5,

MyoD, myogenin and MRF4, all belong to the basic

helix–loop–helix family of transcription factors. They

cooperate with ubiquitous E proteins (the E2A gene

products, E12 and E47, and HEB), and with MEF2

transcription factors on muscle gene promoters,

thereby inducing expression of muscle-specific genes

[13–16]. Recent studies have also demonstrated an epi-
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genetic level of regulation during myogenesis,

involving both chromatin modifications and microR-

NAs [17–19]. Thus, transition of satellite cells from a

quiescent (repressive) to an activated state in response

to environmental signals is caused by a combination of

genetic and epigenetic events, which in turn determine

the gene expression program of the satellite cells at the

distinct myogenic stages. The IL-6 cytokine family,

their downstream effectors and their actions in differ-

ent models of skeletal muscle growth and repair are

the focus of this review.

Beneficial effects of IL-6 on muscle
formation and growth

Regulation of adult skeletal muscle growth and

regeneration by the IL-6 cytokine family

There are several approaches to studying the role of

satellite cells and trophic factors in muscle function.

Relatively simpler models such as denervation (atro-

phy) and overloading (compensatory hypertrophy),

where the sciatic nerve is severed or where the soleus

and plantaris muscles are forced to compensate for the

loss of the surgically isolated gastrocnemius, respec-

tively, are two examples that occur in the absence of

inflammation, thereby minimizing the confounding

contribution of inflammatory cells. For example,

increasing the mechanical load on adult skeletal muscle

by overloading constitutes one of the most extreme

modes of inducing hypertrophic growth of the tissue.

IL-6 and LIF are induced in overloaded muscles dur-

ing the process of hypertrophy in rodents [20–22]. LIF
(and IL-6) expression is also significantly induced by

resistance exercise in human muscle and in electrically

stimulated cultured human myotubes [3]. Confirming

the role of these cytokines in muscle hypertrophy, both

LIF and IL-6 knockout mice were shown to have an

impaired hypertrophic response to overloading [20,21].

Myofiber hypertrophy in response to overloading

requires not only increased net protein synthesis, but

also accretion of new nuclei from the progeny of satel-

lite cells. Notably, the impaired hypertrophic muscle

growth in IL-6 null mice has been ascribed to blunted

accretion of myonuclei, while protein synthesis path-

ways are preserved [21]. This impaired myonuclei

incorporation is a consequence of the defective prolif-

eration and migration capacities of satellite cells in the

absence of IL-6 [21], reinforcing the idea that muscle-

produced IL-6 critically regulates satellite cell func-

tions. Similarly, LIF has been shown to control the

proliferation of satellite cells both in mice and humans

[3]. Indeed, exogenous LIF can induce human myo-

blast proliferation, an effect that likely occurs via

induction of the cell proliferation-associated factors

c-Myc and JunB. These effects can be abrogated by

genetic interference with the LIF receptor. Treatment

with IL-6 also promotes murine satellite cell prolifera-

tion via regulation of the cell-cycle-associated genes

cyclin D1 and c-myc [21]. Importantly, a complemen-

tary role to IL-6 in stimulating muscle growth may be

attributed to IL-4 because it promotes myoblast fusion

without affecting their proliferative capacity [23]. Simi-

lar to IL-6, IL-4 is produced by exercising muscle

[4,24] and the expression of both cytokines has been

shown to depend on the transcription factor serum

response factor. Thus, serum response factor can be

used by the myofibers to translate mechanical cues

into paracrine growth-promoting signals that impact

positively on satellite cell proliferation and fusion [22].

Functional studies in rodents have shown that IL-6

and LIF also contribute to muscle regeneration after

injury and this may involve a similar stimulatory effect

on satellite cell proliferation [25–28]. However, the cel-

lular source of IL-6 and LIF in the damaged muscle

tissue is less clear than in overloaded muscle. It is

likely that distinct cell types contribute to increasing

the local production of cytokines, which in turn

impact on satellite cells to modify their reparative

functions. In regenerating muscle, IL-6 is produced by

infiltrating macrophages and neutrophils [28], by fibro-

adipogenic progenitors [29], as well as by satellite cells

[30,31], thus implying potential paracrine and auto-

crine functions of IL-6 in satellite cell-dependent myo-

genesis. Early studies showed that cultured human

myoblasts produced and secreted IL-6 in response to

treatment with proinflammatory cytokines such as

IL-1b or tumor necrosis factor (TNF)a [32]. Thus,

inflammatory cells infiltrating the injured muscle not

only produce IL-6, but also may secrete other

proinflammatory cytokines which might lead to fur-

ther IL-6 expression by satellite cells, thus increasing

the concentration of IL-6 in the local satellite cell

microenvironment.

This local increase in IL-6 may lead not only to pro-

liferation of satellite cells, but also to their differentia-

tion and fusion, thus playing a dual role in

myogenesis. For example, cultured myoblasts undergo-

ing differentiation have been shown to be a source of

IL-6 and, more importantly, ablation of IL-6 expres-

sion with specific siRNAs reduced the extent of myo-

blast differentiation and fusion. However, genetic

overexpression or addition of exogenous IL-6 aug-

mented the expression of muscle-specific genes, sup-

porting its promyogenic function [33]. The requirement

of IL-6 for myogenic differentiation has been recently
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confirmed genetically, because myoblasts derived from

IL-6 null mice displayed reduced differentiation and

fusion capacities in vitro [34]. Like IL-6, LIF has also

been associated with myoblast differentiation [35].

Thus, the IL-6 family of cytokines appears as a pivotal

regulator of myogenesis, acting during both prolifera-

tion and differentiation. This dual mode of action is

similar to IGF, a critical regulator of myogenesis,

which can promote both proliferation and differentia-

tion of satellite cells. Even more interestingly, it has

been proposed that during myogenic differentiation,

IGF1 can activate the signal transducer and activator

of transcription/suppressor of cytokine signaling

(STAT/SOCS) pathway [36], which has classically been

associated with the intracellular transmission of IL-6

cytokine family signals.

Activation of distinct JAK/STAT signaling

pathways by the IL-6 family of cytokines regulate

satellite cell-dependent myogenesis

Many intracellular signaling pathways are known to

regulate myogenesis. Among them, the p38 mitogen-

activated protein kinase (MAPK), insulin-like growth

factor/phosphatidylinositol 3-kinase/AKT, calcium/cal-

modulin-activated protein kinase, and calcineurin posi-

tively regulate myogenic differentiation [16,37–40].
Alternatively, the extracellular signal-regulated kinase

(ERK) pathway has dual roles: it inhibits differentia-

tion at the early stage of differentiation, but promotes

myocyte fusion at the late stages of differentiation [41–
43]. Similarly, NF-KB has been shown to promote

myoblast proliferation, while also favoring differentia-

tion at later stages by acting as a downstream mediator

of p38 MAPK signaling [33,44]. Interestingly, IL-6

expression in differentiating myoblasts was shown to

depend on p38 MAPK and NF-KB signaling pathways,

and is an effector of their myogenic activities [33].

Consistent with the dual functions of IL-6 and LIF

in myogenesis that have emerged in recent years, the

JAK/STAT signaling pathway has also been associated

with both promotion of myoblast proliferation and/or

differentiation. The distinct myogenic actions appear

to depend on the particular intracellular mediators of

the JAK/STAT pathway engaged at every step. Early

studies showed that proliferating satellite cells in

regenerating muscle-expressed activated (phosphory-

lated) STAT3 [31], and cultured myoblasts showed

expression of activated STAT3 when stimulated with

LIF [45,46]. In addition, STAT3 was shown to be

capable of associating directly with MyoD and inhibit-

ing its myogenic activities when overexpressed in

C2C12 cells [47].

In recent years, much additional progress has been

made in the understanding of the role of the JAK/

STAT pathway as an essential intracellular mediator

of the IL-6 family of cytokines in myogenesis, particu-

larly from studies by Wu and colleagues [48–51].
In vivo analysis of JAK1, STAT1 and STAT3 mole-

cules in regenerating muscles has revealed that they

are activated at early times when satellite cells prolifer-

ate rapidly [48]. Consistent with this, the JAK1/

STAT1/STAT3 pathway was shown to be necessary

for myoblast proliferation in vitro, based on its capac-

ity to regulate the expression of cell-cycle-associated

genes such as p27, p21 and Id1. Further analysis

showed that stimulation of myoblast proliferation by

LIF treatment requires formation of a STAT1/STAT3

complex, because genetic interference with these mole-

cules abrogates LIF-mediated proliferation. This result

is consistent with the delayed muscle regeneration of

LIF�/� mice, which can be rescued by delivery of

exogenous LIF [25]. Thus, LIF is essential for the pro-

liferation of myoblasts both in vivo and in vitro. Con-

sistent with this, IL-6-dependent activation of STAT3

was also shown to be required for satellite cell prolifer-

ation in response to muscle overloading, and inhibition

of this pathway in IL-6 null mice impaired myofiber

hypertrophy in vivo as well as satellite cell proliferation

in vitro [21,22].

However, important studies by Wu and colleagues

demonstrated that activation of the JAK1/STAT1/

STAT3 pathway not only stimulates myoblast prolifer-

ation, but also prevents their premature differentiation

by blocking the expression of genes critical for myo-

blast differentiation and fusion, such as MyoD, MEF2

and myogenin [48]. In this way, the JAK1/STAT1/

STAT3 pathway constitutes a differentiation check-

point, ensuring that differentiation commences only

when a sufficient number of myoblast cell progeny

have been generated during the proliferative phase.

Consistent with this, specific knockdown of JAK1 or

STAT1 reduces myoblast proliferation and leads to

premature differentiation. Thus, LIF, and to certain

extent, IL-6, play dual roles in proliferating myoblasts

by inducing the JAK1/STAT1/STAT3 pathway, which

is able to promote their proliferation and also inhibit

their precocious differentiation. Interestingly, exposure

of myoblasts to LIF in differentiating conditions

appeared to maintain the number of proliferating cells

as differentiation proceeded [52]. More precisely, LIF

treatment reduced the percentage of cells positive for

active caspase 3 through a MEK/ERK-dependent

pathway. Because previous studies had shown that cas-

pase 3 activity is required for myogenic differentiation

[53], LIF might inhibit differentiation not only via
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modulation of the JAK1/STAT1/STAT3 pathway, but

also through inhibition of caspase 3.

At variance with the JAK1-mediated actions, Wu’s

group demonstrated that JAK2 is required for myo-

genic differentiation in a pathway requiring STAT2

and STAT3, because pharmacological and genetic

interference with JAK2, STAT2 or STAT3 activation

prevented the differentiation process [49]. Whereas the

JAK1/STAT1/STAT3 pathway repressed the expres-

sion of MyoD and MEF2, the JAK2/STAT2/STAT3

pathway enhanced their expression, consistent with

their opposite action on myogenesis. The JAK2/

STAT2/STAT3 pathway also regulates the expression

of hepatocyte growth factor and IGF2 in differentiat-

ing cells [49]. The expression of hepatocyte growth fac-

tor was shown to be repressed by the JAK2/STAT2/

STAT3 pathway at the initial stages of differentiation

in agreement with the known role of this growth factor

in promoting proliferation and inhibiting differentia-

tion. Alternatively, IGF2 was induced by the same

pathway as differentiation progressed, a result consis-

tent with the capacity of IGF2 to stimulate myotube

formation and growth [54,55]. The role of STAT2 and

STAT3 might not be fully redundant because STAT2

appeared to mediate principally the action of JAK2 on

hepatocyte growth factor expression, whereas the

expression of IGF2 was mediated by both STAT2 and

STAT3 [49]. Taken together, these studies indicate that

various members of the JAK/STAT family are

involved in the regulation of muscle cell proliferation

and differentiation through different partners and

effectors, thereby exerting distinct actions throughout

myogenesis. It is not yet well known which ligands

engage the JAK2/STAT2/STAT3 pathway during

myogenic differentiation. Because IL-6 is expressed in

differentiating myoblasts, and it promotes their differ-

entiation and fusion [33,34], IL-6 (as well as LIF) [35]

may be a potential trigger of these actions.

A conclusion that can be deduced from the studies

described above is that the JAK1/STAT1/STAT3

pathway needs to be tuned down for cessation of myo-

blast proliferation and commencement of differentia-

tion. Consistent with this idea, the kinase activity of

JAK1 is reduced upon differentiation [48]. Three fami-

lies of regulators of JAK/STAT signaling are known:

the SOCS family of proteins, the protein inhibitor of

activated STAT (PIAS) family of proteins and the

SH2-containing phosphatase family of proteins [56].

These proteins target distinct members of the JAK/

STAT pathway in distinct cellular compartments.

SOCS1 and SOCS3 target JAK1 and gp130, respec-

tively, near the plasma membrane to prevent cytoplas-

mic STATs from being activated, whereas PIAS1

principally targets activated STAT1 in the cell nucleus

and prevents it from binding to DNA. The inhibition

at distinct levels and positions might function to

ensure that the pathway can be effectively turned off

thus allowing progression of myogenesis. The fact that

STAT1 and STAT3 are capable of inducing the inhibi-

tion of the pathway by activating the expression of

SOCS1 and SOCS2, but not PIAS1, in a feedback

inhibitory mechanism constitutes a further level of

specificity and regulation of this pathway during myo-

genesis [50]. It is worth noting that in differentiating

myoblasts, IGF was shown to induce SOCS gene tran-

scription, suggesting that this protein could be

involved in the differentiation process [36]. In agree-

ment with this notion, SOCS3 overexpression in

human myoblasts resulted in an increased expression

of genes associated with skeletal muscle growth,

although the mechanism underlying this effect requires

further investigation [36]. Interestingly, SOCS3 signal-

ing during aging appears dysregulated [57,58], and

therefore, the decline in the regenerative capacity of

muscle with aging may be connected to STAT3/SOCS3

dysregulation. PIAS1 has been shown to modulate

myogenesis also through the interaction with proteins

that can regulate myoblast differentiation, such as

SnoN or Msx1 [59–61]. PIAS1 interacts with and

directly sumoylates SnoN, which increases the SnoN

capacity to block myogenin gene expression and subse-

quent cell differentiation [59,61]. In addition, PIAS1

was also shown to interact with and sumoylate Msx1,

which is then capable of binding to the MyoD pro-

moter thus repressing MyoD gene expression [60].

However, the precise role of PIAS1 in myogenic differ-

entiation remains debatable, because distinct pheno-

types have been obtained after interfering with its

expression [59,60]. Therefore, additional studies are

necessary to confirm the myogenic function of these

molecules. Similarly, further investigation is necessary

to decipher the function the SH2-containing phospha-

tase family inhibitors of JAK/STAT. Although SH2-

containing phosphatase has been associated with

myoblast differentiation [62], siRNA knockdown did

not affect the activity of the JAK1/STAT1/STAT3

pathway during the differentiation process [50].

Finally, evidence that other IL-6 family members

oncostatin M and cardiotrophin-1 are also active in

myogenesis in vitro and in vivo was recently provided

[51,63]. Oncostatin M was shown to inhibit myoblast

differentiation by activating the JAK1/STAT1/STAT3

pathway. STAT1 can interact with, and repress the

transcriptional activity of, MEF2 in vitro. Further-

more, prolonged expression of oncostatin M in injured

skeletal muscles resulted in defective regeneration. By
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contrast, treatment of myoblasts with cardiotrophin-1

inhibited their differentiation. However, this action

was preferentially mediated through activation of

MEK/ERK signaling [51,63], which in turn might

interfere with activation of critical myogenic regulatory

factors. These findings suggest that cardiotrophin-1

and oncostatin M may be implicated in the mainte-

nance of the undifferentiated state in muscle progeni-

tor cells, in collaboration with the proliferative actions

of IL-6 and LIF. Collectively, these data suggest that

several members of the IL-6 family of cytokines con-

tribute to myogenesis in vitro and muscle regeneration

and growth in vivo, acting at distinct stages of these

processes in a timely and regulated fashion, through

distinct signaling pathways and effectors.

Local and systemic beneficial
metabolic effects of muscle-derived
IL-6

During the past decade, skeletal muscle has been iden-

tified as a secretory organ. In accordance, we have

suggested that cytokines and other peptides that are

produced, expressed and released by muscle fibers and

exert either autocrine, paracrine or endocrine effects

should be classified as ‘myokines’ [4,64,65]. Although

myostatin was the first muscle-derived peptide that ful-

filled the criteria for a myokine, IL-6 was the first

myokine that was found to be secreted into the blood

stream in response to muscle contractions [1]. Interest-

ingly, IL-6 was serendipitously discovered as a myoki-

ne because of the observation that it increased in an

exponential fashion proportional to the length of exer-

cise and the amount of muscle mass engaged in the

exercise (for review see Ref. [66]). Circulating levels of

IL-6 may increase up to 100-fold, although it should

be said that less dramatic increases are more frequent.

It is important to highlight the fact that the increase

of IL-6 in the circulation occurs during dynamic exer-

cise without any sign of muscle damage [66]. More-

over, the IL-6 response to exercise is not preceded by

an increase TNF a. This finding was in contrast to the

common belief that the increase in IL-6 during exercise

represented a classic acute-phase response initiated by

local damage in the working muscles [67]. It was

hypothesized that macrophages were responsible for

this increase [68], however, early studies clearly demon-

strated that immune cells were not the source of origin

of IL-6 [69–71]. It was also made clear that the liver

clears, rather than secretes, IL-6 during exercise [72].

Human studies revealed that the nuclear transcrip-

tion rate for IL-6, as well as the IL-6 mRNA levels

are rapidly and markedly increased immediately after

the onset of exercise [73,74]. This finding suggested

muscle contraction as such would lead to an increase

in IL-6 transcriptional rate within the nuclei from

myocytes. Further evidence that contracting muscle

fibers themselves were a source of IL-6 mRNA and

protein was achieved by analysis of biopsies from the

human vastus lateralis using in situ hybridization and

immunohistochemistry techniques [75]. Other studies

applied the microdialysis technique and demonstrated

that the concentration of IL-6 within the contracting

skeletal muscle may be 5–100-fold higher than the lev-

els found in the circulation and that IL-6 appears to

accumulate within the contracting muscle fibers as well

as in the interstitium during exercise [76]. The simulta-

neous measurement of arteriovenous IL-6 concentra-

tions and blood flow across the leg in humans has

demonstrated that large amounts of IL-6 are released

into the circulation from the exercising leg [77].

Studies on human myoblasts [78,79] and human cul-

tured myotubes [80] have, more recently, added sub-

stantial findings to the initial human physiological

experiments. It has been shown that IL-6 is locally

and transiently produced by growing murine myofibers

and associated satellite cells [21]. In addition, IL-6 is

released from human primary muscle cell cultures from

healthy individuals [81,82] and from patients with

type 2 diabetes [82]. Moreover, IL-6 is upregulated in

human primary muscle cells following electrical stimu-

lation in vitro [83,84].

Skeletal muscle production and release of IL-6 are

regulated both by muscle contraction as well as by

substrate availability. Thus, when muscle glycogen is

low, more IL-6 is produced and released during exer-

cise. This finding is compatible with the idea that mus-

cle-derived IL-6 works as an energy sensor [85,86]. In

accordance, enhanced glucose availability and training

adaptation attenuate the exercise-sensitive increase in

IL-6 plasma concentration [85,87]. The finding that

IL-6 is released into the blood stream during exercise

and that this release is dependent on substrate avail-

ability during exercise, suggested that IL-6 plays a role

in maintaining energy status during exercise. To study

this hypothesis, recombinant human IL-6 was infused

into healthy volunteers and glucose and lipid metabo-

lism were studied using stabile isotopes [88–91]. These
studies were combined with animal models, studies on

isolated muscle as well as cellular studies, and showed

that physiologically relevant levels of IL-6 have impor-

tant acute metabolic effects. One study clearly showed

that IL-6 is an endocrine myokine with cardinal bio-

logical across organs because it contributes to hepatic

glucose production during exercise [92]. It was also

discovered that IL-6 enhances fat oxidation in skeletal
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muscle via an activation of AMP-activated protein

kinase [91,93,94] and enhances lipolysis in skeletal

muscle with little effect on adipose tissue [88].

Acute administration of IL-6 enhances glucose

uptake and translocation of the glucose transporter

GLUT4 from intracellular compartments to the

plasma membrane and enhances insulin-stimulated glu-

cose uptake in humans [91]. It has recently been shown

that IL-6 transgenic mice with sustained elevated circu-

lating IL-6 display enhanced central leptin action and

improved nutrient homeostasis leading to protection

from diet-induced obesity [95]. Human studies show

that IL-6 mediates anti-inflammatory effects and inhib-

its lipopolysaccharide-induced increase in circulating

TNF [4,64]. Moreover, IL-6 signaling in liver-paren-

chymal cells suppresses hepatic inflammation and

improves systemic insulin action in mice [96]. Thus,

IL-6 can induce both pro- and anti-inflammatory

effects.

Evidence is emerging that IL-6 is also playing a

major role in pancreatic b-cell metabolism and insulin

secretion. Bouzakri et al. clearly suggested a new route

of communication between skeletal muscle and b cells

that is modulated by insulin resistance and could con-

tribute to normal b-cell functional mass in healthy sub-

jects, as well as to the decrease seen in type 2 diabetes

[97]. In another study, Ellingsgaard et al. showed that

the exercise-induced glucagon-like peptide-1 (a hor-

mone that induces insulin secretion) response was

dependent upon muscle-derived IL-6 [98]. Hence IL-6

mediates cross-talk between insulin-sensitive tissues, the

gut and pancreatic islets to adapt to changes in insulin

demand by increasing glucagon-like peptide-1 secretion.

Collectively, these data show that IL-6 is produced

by contracting skeletal muscle and play important

roles in regulating metabolism in other organs. To

view skeletal muscle as a secretory organ provides a

conceptual basis and a whole new paradigm for under-

standing how muscles communicate with other organs

such as adipose tissue, liver, pancreas, bones and

brain, explaining why lack of physical activity appears

to be a cause of a whole network of diseases, including

cardiovascular diseases, type 2 diabetes, cancer and

osteoporosis [65].

Negative regulation of muscle mass
by IL-6

Is IL-6 signaling directly involved in muscle

atrophy?

Since the early 1990s, the implication that elevated

systemic IL-6 levels, together with the complexity of

the underlying cytokine network, could participate in

the development of the multifactorial syndrome of

cachexia have been thoroughly studied [99–102].
Cachexia is often associated with cancer and other

pathological conditions and not surprisingly the first

experimental evidences for a possible negative role of

IL-6 in the control of muscle mass were obtained

using animal models of inflammation and tumor

induced cachexia. In these models, circulating IL-6

concentrations were elevated, along with those of

other inflammatory mediators. Inhibiting IL-6 signal-

ing by neutralizing antibodies was shown to have a

protective effect on body weight loss [103,104]. How-

ever, whether IL-6 signaling is sufficient and/or has a

direct role in the induction of muscle atrophy

remains controversial. We focus this section in

reviewing the research on the catabolic effects of

IL-6 on skeletal muscle and the possible mechanisms

involved.

Effects of IL-6 on muscle protein synthesis and

degradation rates

The rate of protein breakdown in isolated rat muscles

exposed to recombinant IL-6 [105,106], or after injec-

tion of IL-6 into normal mice [107], was found to be

unaltered. Similarly, no effect of exogenous IL-6 on

the proteolytic rate of rat and murine myotubes could

be demonstrated [108], which agrees with the

unchanged net muscle protein catabolism in mice after

1 week of daily IL-6 administration [109]. These data

are also supported by the lack of ubiquitin gene upreg-

ulation in muscle after infusion of a single dose of

IL-6 to rats, contrary to the effects observed by treat-

ing the animals with inflammatory cytokines like

TNFa, interferon-c or IL-1 [110].

In contrast to these data, increased muscle proteoly-

sis was found after administration of high doses or

long-term exposure to IL-6 in rats or mice [106,111].

This is the case for transgenic mice engineered to over-

express elevated circulating levels of human IL-6 which

display severe muscle atrophy by the age of 10 weeks,

together with myofiber-intrinsic activation of the lyso-

somal enzymes cathepsins B and L and increased pro-

teosomal subunit expression [111,112]. Because

blockade of IL-6 signaling by sustained treatment with

a mouse IL-6R antibody completely reversed the mus-

cular changes reported in IL-6 transgenic mice [112]

and reduced muscle atrophy of tumor-bearing wild-

type mice [113], it was proposed that IL-6 might have

a permissive role in the development of skeletal muscle

degradation and body weight reduction when other

circulating cytokines were also present [114,115].
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It is important to note that differential effects of

IL-6 on muscle have also been reported depending on

the dose applied and the manner of administration

[116–118]. For example, a significant decrease in myo-

fibrillar protein content was induced in rats by local

IL-6 infusion (0.7 pg�muscle�1�h�1) [116]. This

approach produced a local IL-6 concentration mimick-

ing the muscle IL-6 concentrations reached after stren-

uous exercise in humans (22 ng�L�1) [119], which did

not induce systemic effects on circulating IL-6 levels,

nor on body and heart mass. Low systemic doses of

IL-6 (50 lg�kg�1�day�1) infused into rats did not cause

a significant reduction of fiber size or muscle weight,

or altered contractile properties of the diaphragm mus-

cle [117]. However, much higher doses of IL-6

(250 lg�kg�1�day�1) significantly decreased limb mus-

cle weight by 15% and reduced myofiber size in both

fast and slow muscle types, affecting particularly the

gastrocnemius muscle. Because this treatment also

induced severe cardiovascular alterations, it is not

clear to what extent peripheral skeletal muscle atrophy

was secondary to myocardial failure and/or any meta-

bolic actions of the cytokine [117].

However, IL-6 may not be required for accelerated

muscle protein degradation, even in circumstances in

which the cytokine is found at high circulating concen-

trations. For example, muscles of IL-6 knockout and

wild-type mice showed similar increases in total and

myofibrillar protein breakdown rates in an experimen-

tal model of sepsis, and no increase in muscle protein

breakdown rates were found in wild-type mice sub-

jected to a sterile turpentine abscess model that

increased IL-6 plasma concentration by 100-fold [107].

In humans, the effects of IL-6 may also depend on

the particular context of other systems and organs. In

healthy human subjects, infusion of a dose of recombi-

nant IL-6 (30 lg�h�1) that mimics the IL-6 plasma

concentrations after intense prolonged exercise, slightly

increased net muscle protein breakdown [120]. How-

ever, the most surprising effects were that this IL-6

administration reduced the concentration of arterial

amino acids by 20–40%, despite their net release from

the muscle, and that there was an ~ 50% reduction in

total muscle protein turnover. These effects could be

ascribed to an increased demand for circulating amino

acids by other organs, leading secondarily to their

depletion in plasma. In turn, this would lead to a

decrease in intracellular synthesis and breakdown of

muscle proteins, with a minimal net predominance of

protein degradation. Thus, in a healthy state, IL-6

might function as a strong metabolic signal rather than

directly controlling protein turnover rates in the mus-

cle [120]. By contrast, in situations in which the

demand for amino acids for acute-phase protein syn-

thesis is elevated, and where the muscle catabolic rates

is increased, such as in patients with end-stage renal

disease, IL-6 could be released by the muscle indepen-

dent of amino acid availability. IL-6 would then be

related with muscle protein degradation, supporting

the notion that IL-6 in this context functions as a

prominent protein catabolic signal [121]. In summary,

no proatrophic role for IL-6 could be experimentally

corroborated in a short time period and/or with low

dose treatments. Alternatively, persistent and systemic

IL-6 levels may be necessary for the induction of cata-

bolic effects and muscle wasting, with the possible par-

ticipation of other mediators.

Indirect effects of IL-6 on muscle atrophy:

interference with the growth hormone/insulin-

like growth factor-1 pathway

Another layer of complexity of the negative effects of

IL-6 on muscle growth is represented by its interference

with the growth hormone/insulin-like growth factor-1

(GH/IGF1) axis. Indeed, reduced growth was observed

in several transgenic mouse models overexpressing

human IL-6 [122]. These mice possess high circulating

levels of IL-6 from early stages of life, have normal

growth hormone levels, but noticeably reduced serum

IGF1 levels and enhanced muscle SOCS3 mRNA

expression. Short-term IL-6 administration to wild-type

mice and humans also reduced circulating IGF1 levels

[122,123]. Similarly, neutralization of IL-6 activities in

IL-6 transgenic mice rescued the circulating IGF1 lev-

els and fully restored growth, reinforcing the mechanis-

tic connection between high IL-6 and low IGF1 levels

in plasma [124]. IGF1 is produced primarily by the

liver and is transported in the blood bound to IG-

FBP3, the most abundant circulating IGF-binding pro-

tein, in heterotrimeric complexes that also contain a

glycoprotein termed acid-labile subunit [125]. When

carefully examining transgenic animals overexpressing

IL-6, which also have reduced circulating IGF1 levels,

liver IGF1 production and the amount of functional

serum acid-labile subunit were found to be unaffected.

However, circulating IGFBP3 was markedly reduced,

which was associated with its increased proteolysis

[126]. Because a similar reduction of IGFBP3 levels

were found in wild-type mice treated with exogenous

IL-6, it was concluded that an impairment in the for-

mation of stable ternary complexes of IGF1/IGFBP3/

acid-labile subunit negatively affected the half-life of

IGF1 in the blood and increased its clearance. The

mechanisms by which IL-6 may stimulate IGFBP3 pro-

tein degradation have not been clarified.
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Importantly, studies in humans revealed that short-

term maximal exercise, which is associated with muscle

release of IL-6, or acute IL-6 infusion resembling the

concentrations of IL-6 in serum observed after exer-

cise, did not affect circulating IGFBP3 levels or its

proteolytic degradation rate [123,127,128]. On the con-

trary, reduced circulating IGF1 and IGFBP3 levels

were confirmed in patients with chronically elevated

serum IL-6 [122,126]. Overall, these results again sup-

port strikingly different actions of acute and persis-

tently circulating IL-6 on the interference with IGF1

levels. IGF1 levels may, in turn, influence muscle IL-6

production. Indeed, sustained IGF1 administration to

mice prevented sepsis-induced muscle atrophy and

inhibited the muscle IL-6 mRNA upregulation in this

model [129]. Finally, an indirect contribution to muscle

atrophy by inflammatory cytokines occurring via the

hypothalamic–pituitary–adrenal axis should also be

considered in chronic conditions. Inflammatory media-

tors acting on the central nervous system can trigger a

catabolic program in skeletal muscle leading to severe

atrophy, independent of the actions of the cytokines

on the muscle [130]. These effects would be mediated

in part by a glucocorticoid response, as muscle atro-

phy is inhibited in adrenalectomized animals after cen-

tral nervous system inflammatory stimulus. The

contribution of IL-6-induced signaling to this newly

described central nervous system-mediated atrophy

remains to be fully explored.

Downstream effectors of IL-6 in muscle atrophy

The specific mediators of IL-6 action in muscle atro-

phy have not been characterized, but some molecules

have been proposed for these proatrophic effects. IL-6

overexpression in transgenic mice [131], or in normal

mice by intramuscular electroporation of plasmid

DNA [132], decreased muscle mass and induced

SOCS3 gene expression, suggesting a putative involve-

ment of SOCS3 in muscle atrophy. In agreement with

these findings, infusion of IL-6 in muscle for 2 weeks

induced STAT3 activation and SOCS3 transcription,

correlating with a local reduction of myofibrilar pro-

tein content [116]. SOCS3, in turn, might downregulate

IL-6 signaling in this system. Surprisingly, the

expression of muscle ubiquitin ligases atrogin-1 and

MURF-1 was not affected in the later study, but IL-6

treatment reduced the phosphorylation of ribosomal

S6K1 and STAT5 proteins and increased muscle IGF1

expression [116]. In a similar approach, local low doses

of IL-6 (0.0014 pg�mg muscle�1�h�1) infused for

2 weeks into rat muscle decreased myofibrillar protein

content with respect to the contralateral muscles [118].

These changes were associated with a concomitant

reduction of circulating levels of IL-6 and IL-1band
increased local expression of IGF1, SOCS3, atrogin,

TNFa and its receptor.

The interpretation of these results with respect to

the control of muscle degradation pathways is difficult

to make unequivocally. Increased muscle IGF1 levels

[133] and STAT3 phosphorylation were also observed

in models of hypertrophy [133,134], whereas S6K1

activation appeared dispensable for normal protein

synthesis and degradation rates, as well as polysome

formation in skeletal muscle [135]. TNFa has been

shown to upregulate atrogin-1 expression in skeletal

muscle via p38 MAPK-mediated phosphorylation of

C/EBPb [136–138]. Thus, indirect local upregulation of

TNFa and its receptor might have contributed to the

reduced myofibrillar protein content after local unilat-

eral IL-6 infusion into rat muscles [118].

Whereas reduced muscle STAT5 levels may indicate

local low growth hormone signal activity [139], the

direct role for SOCS3 in atrophy is not yet clear, since

its expression also increases in paradigms associated

with muscle hypertrophy [133] and exercise training

[140], and decreases in unloading-induced atrophy

models [141]. Augmented SOCS3 expression was

reported in experimental cancer-induced muscle wast-

ing in mice undergoing an exacerbated proteolysis

leading to a 25% weight loss of limb muscles [142].

Interestingly, in this model, the SOCS3 protein level in

cachectic muscles was unchanged or even reduced in

the more atrophic muscles versus muscles of control

mice despite SOCS3 mRNA upregulation. This finding

was interpreted as a JAK/STAT-driven increase in

proteolytic degradation of SOCS3, which would in

turn lead to persistent STAT3 signaling in the muscle

because SOCS3 inhibits STAT3. In this case, STAT3

is the primary mediator of muscle wasting [143].

Indeed, transfection of a plasmid expressing consti-

tutively active STAT3 into normal mouse muscle

induced a significant reduction of myofiber cross-sec-

tional area, whereas a dominant negative mutant of

STAT3, or electroporation of a STAT3 short hairpin,

prevented the atrophy induced by injection of Chinese

hamster ovary cells overexpressing IL-6 in athymic

nude mice and in the C26 adenocarcinoma mouse

model [143]. These data suggest that persistent STAT3

signaling may play an important pathogenic role in

the development of muscle wasting in some disease

states through yet uncharacterized mechanisms. Inter-

estingly in this regard, a recent study has reported that

activation of STAT3 is involved in the regulation of

autophagy [144]. The nonreceptor tyrosine kinase Fyn

would be activated selectively in the fast-glycolytic
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fibers in the fed state, inducing phosphorylation of

STAT3 which, in turn, would inhibit expression of the

class 3 phosphatidylinositol kinase Vps34 protein,

which is necessary for autophagosome formation [144].

Thus, according to this model, persistent STAT3 acti-

vation might result in chronic inhibition of macroauto-

phagy which would lead to muscle atrophy [145].

Synergy of IL-6 with other molecules and

autocrine IL-6 upregulation

Circulating IL-6 may synergize with other molecules to

induce muscular atrophy in some disease states. For

instance, activation of the renin–angiotensin system,

which is commonly found to be induced in congestive

heart failure or chronic kidney disease, is known to

cause severe muscle degradation. Indeed, increased

muscle proteolysis is reproduced experimentally if

angiotensin II (Ang II) is infused into rodents [146].

This Ang II effect, which is associated with low levels

of circulating and muscle-intrinsic IGF1, as well as

downregulation of active AKT and caspase 3, can be

rescued by muscle overexpression of IGF1 [146]. IGF1

stimulation prevents Ang II-induced atrophy by acti-

vating AKT and inhibiting Foxo-1-dependent activa-

tion of atrogin-1 [147]. Because the Ang II receptor is

not expressed by skeletal muscle [138], the proatrophic

effects of Ang II must be indirect, and IL-6 has been

postulated as a significant mediator. Administration of

Ang II to wild-type mice induced elevated plasma IL-6

by release from the liver, whereas Ang II infusion to

IL-6-deficient animals did not cause muscle atrophy.

Nor did it reduce AKT activity, activated caspase 3,

ubiquitin–proteasome-dependent pathways or elevated

SOCS3 levels. SOCS3, which is induced by IL-6, has

been shown to inhibit insulin-dependent signaling by

promoting the proteasomal degradation of insulin

receptors [148]. However, IL-6 alone is not sufficient

to mediate the atrophic actions of Ang II on muscle

tissue. Elevated levels of the acute-phase protein serum

amyloid A (SAA), also induced in liver by Ang II,

synergistically acts with IL-6 to induce SOCS3 protein

expression up to the threshold level required for AKT

pathway inhibition. In vitro experiments confirmed

that neither IL-6 nor SAA alone induce significant

changes in protein degradation or myotube size, nor

were they able to activate the ubiquitin–proteasome

system. However, the combination of IL-6 and SAA

induced myotube atrophy and stimulated proteolysis

via proteasomal activation. Taken together, these data

indicate that Ang II stimulates liver-dependent sys-

temic release of IL-6 and SAA that synergistically tar-

get muscle cells to induce muscle proteolysis by

inhibiting IGF1-dependent signaling [138]. In this par-

ticular example, an interorgan pathway can be delin-

eated, with liver controlling muscle wasting and IL-6

having a necessary, but insufficient role, because the

action of other inflammatory mediators is also

required to trigger muscle atrophy.

Hyperactivation of IL-6/STAT3 signaling in muscle

may also stimulates the synthesis and systemic release

of acute-phase response proteins such as SAA and

fibrinogen [142], which may function as an amplifying

mechanism for catabolic signals in the muscle, turning

muscle into a key player in innate immunity with the

capacity of producing fivefold more protein than the

liver, considering that skeletal muscle represents

~ 40% of total body weight.

IL-6 signaling in skeletal muscle may induce activa-

tion of its own transcription in a sort of positive feed-

back loop. Autocrine upregulation of IL-6 production

is supported by the observation of increased muscle

IL-6 mRNA expression after infusion of recombinant

IL-6 in humans [149] and in cultured mouse and

human myotubes [150]. This regulatory mechanism

may involve Ca2+-dependent pathways and increased

mRNA stabilization [150]. SOCS3 mRNA was signifi-

cantly increased in rat muscles after a treadmill run-

ning training program, together with IL-6 expression

and enhanced NF-jB activity [140]. In vitro studies

using the IL-6 promoter linked to the luciferase repor-

ter gene suggested a positive feedback loop by which

exercise-induced IL-6 may activate SOCS3 expression

and sustain its own expression through NF-jB-depen-
dent pathways [140], thus suggesting the existence of

both positive and negative cross-regulatory loops. This

mechanism is consistent with the reported NF-jB acti-

vation in rat muscles by exercise [151] and the recent

findings in humans showing that NF-KB DNA-binding

activity to the IL-6 promoter increases transiently after

exercise [152]. Whether similar amplifying mechanisms

may be functional in accelerated catabolic conditions

deserves further investigation.

Conclusion and perspectives

Since the discovery of IL-6, many investigations have

explored the role of this pleiotropic cytokine and other

members of the IL-6 cytokine family on skeletal mus-

cle. It appears consistently in the literature that IL-6,

produced locally by different cell types, has a positive

impact on the proliferative capacity of muscle stem

cells. This physiological mechanism functions to pro-

vide enough muscle progenitors in situations that

require a high number of these cells, such as during

the processes of muscle regeneration and hypertrophic
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growth after an acute stimulus. IL-6 is also the found-

ing member of the myokine family of muscle-produced

cytokines. Indeed, muscle-produced IL-6 after repeated

contractions also has important autocrine and para-

crine benefits, acting as a myokine, in regulating

energy metabolism, controlling, for example, metabolic

functions and stimulating glucose production (see

Fig. 1 for an overview of IL-6 production, mechanisms

of action and effects). It is important to note that

these positive effects of IL-6 and other myokines are

normally associated with its transient production and

short-term action. The identification of new myokines

will potentially serve as novel targets for the treatment

of metabolic diseases.

On the contrary, persistent inflammatory conditions

and some types of cancer and other chronic disease

states are associated with long-lasting elevated systemic

IL-6 levels, which can be reproduced experimentally in

different animal model-systems. In such situations,

IL-6 actions are coupled with increased muscle wast-

ing, very often acting in combination with other mole-

cules or functioning indirectly to promote atrophy (for

example, by inhibiting IGF1-dependent signaling). The

direct action of IL-6 as a regulator of atrophy has not

been unanimously corroborated by experimental find-

ings. Future studies will take advantage of the avail-

able technology that allows the selective interference

with IL-6 production, IL-6 receptor and downstream

signaling in specific cell types at a desired experimental

stage to fully decipher the contribution of the cytokine

in different contexts. This knowledge will also poten-

tially allow selective interference of the deleterious

actions of IL-6 in pathological contexts and promoting

the beneficial effects of IL-6 for therapeutic purposes.
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Fig. 1. Integrative representation of IL-6 production, signaling mechanisms and local and systemic effects on skeletal muscle and peripheral

tissues. (Left) Myofiber released IL-6 after muscle contraction, satellite cell and local inflammatory cell-derived IL-6 after tissue injury impact

positively on muscle regeneration and growth by stimulating myoblast proliferation and myotube formation. Muscle-derived IL-6 also has a

positive impact on the metabolism of muscle and peripheral tissues, for example, by stimulating glucose availability during exercise and

thus acting as an ‘energy sensor’. In chronic inflammatory situations, when circulating IL-6 concentration is persistently elevated, a muscle

procatabolic effect of the cytokine (pink arrows) has been described by either direct and/or indirect mechanisms (see the text for details).

(Right) IL-6-signaling model. The complex of IL-6 and its receptor (IL-6R) binds to the ubiquitously expressed transmembrane protein gp130

homodimer that transmits the signal intracellularly. The major downstream signaling uses the JAK/STAT3 pathway. Once phosphorylated in

the cytoplasm, STAT3 migrates to the nucleus and activates transcription on target gene promoters. Members of the SOCS family of

proteins and the PIAS family are inhibitors of the JAK/STAT pathway at different levels. The IL-6-induced signaling exerts different effects

on distinct cell types and tissues.
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