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Abstract: The majority of cancer-related deaths are due to hematogenous metastases, and the
bone marrow (BM) represents one of the most frequent metastatic sites. To study BM metastasis
formation in vivo, the most efficient approach is based on intracardiac injection of human tumor
cells into immunodeficient mice. However, such a procedure circumvents the early steps of the
metastatic cascade. Here we describe the development of xenograft mouse models (balb/c rag2-/-

and severe combined immunodeficient (SCID)), in which BM metastases are spontaneously derived
from subcutaneous (s.c.) primary tumors (PTs). As verified by histology, the described methodology
including ex vivo bioluminescence imaging (BLI) even enabled the detection of micrometastases in the
BM. Furthermore, we established sublines from xenograft primary tumors (PTs) and corresponding
BM (BM) metastases using LAN-1 neuroblastoma xenografts as a first example. In vitro “metastasis”
assays (viability, proliferation, transmigration, invasion, colony formation) partially indicated
pro-metastatic features of the LAN-1-BM compared to the LAN-1-PT subline. Unexpectedly, after s.c.
re-injection into mice, LAN-1-BM xenografts developed spontaneous BM metastases less frequently
than LAN-1-PT xenografts. This study provides a novel methodologic approach for modelling the
spontaneous metastatic cascade of human BM metastasis formation in mice. Moreover, our data
indicate that putative bone-metastatic features get rapidly lost upon routine cell culture.
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1. Introduction

Cancer is largely incurable as soon as metastatic spread has occurred, with the bone marrow (BM)
being one of the most frequent secondary sites in malignancies such as prostate, breast, renal, thyroid,
and lung cancers as well as neuroblastoma. BM metastases can lead to severe clinical complications
such as pathologic bone fracture, immobility, compression of the spinal cord, or hypercalcemia [1].
For the development of novel curative approaches, it is necessary to improve the pathophysiological
understanding of BM metastasis formation.

Metastatic dissemination occurs via a sequential process initiated by the invasion of primary
tumor (PT) cells across the basement membrane, migration through the adjacent connective tissue,
intravasation into tumor microvessels, circulation and survival within the bloodstream as well
as extravasation at the secondary site by crossing the endothelial barrier of the vascular wall [2].
Subsequently, these disseminated tumor cells (DTCs) have to proliferate within the connective tissue
of the invaded organ in order to form a clinically relevant metastasis (colonization) (see Figure 1A
for illustration). If the cancer cells fail to proliferate initially, they can remain quiescent for a highly
variable period as “dormant” cells before they overcome dormancy under largely unknown conditions
and give rise to late metastatic relapse [3,4].

The molecular mechanisms that drive the metastatic cascade, however, are still poorly understood.
As reviewed by Vogelstein and Kinzler, a genomic signature that would predict metastasis formation
of human tumor cells has so far not been identified [5]. Metastasizing tumor cells are facing
rapidly changing environmental conditions during the single steps of the metastatic cascade so that
metastatic competence may rather be the result of a peculiar transcriptomic/ epigenomic plasticity [6].
Some pro-metastatic features are already acquired at the primary tumor site, for example, through
epithelial–mesenchymal transition (EMT) [6]. The majority of animal models currently used to study
BM metastasis formation in vivo, however, circumvent early steps of the metastatic cascade (see below
and [7]). Therefore, we aimed to investigate whether it is possible to develop mouse models that
reflect the metastatic cascade starting with the establishment of primary tumors and ending with the
process of bone marrow colonization. Here we provide proof-of-concept data that spontaneous BM
metastasis formation can be modeled after subcutaneous (s.c.) injection of human tumor cells into
immunodeficient mice. Furthermore, we established novel cancer cell sublines from xenograft primary
tumors and corresponding spontaneous BM metastases for functional characterization.

2. Results

2.1. Study Concept and Comparison of “Bone-seeking” vs. Parental Breast Cancer Cells in a Spontaneous
Metastasis Xenograft Model

As revealed by a current PubMed search for the term “bone metastasis xenograft mouse model”
and after investigating the Materials and Methods sections of the resulting publications, we concluded
that the vast majority of currently used BM metastasis mouse models indeed circumvent important
steps of the metastatic cascade (Figure 1A): 44% of bone “metastasis” studies were based on intracardiac
injection, followed by intraosseous (40%) and intravenous (8%) injection. A novel approach used
in single publications so far is the intra-caudal artery injection, which is also limited by the lack of
primary tumors [8]. Spontaneous metastasis models were used in 8% of all studies (6% orthotopic
and 2% s.c. injection), whereas only 2% of all studies demonstrated the presence of spontaneous BM
metastases by histology and even less proved their human origin. Therefore, we aimed to develop a
protocol for modeling spontaneous BM metastasis formation in vivo. In our initial experiments, we
injected human cancer cells of different cell lines (PC-3, VCaP, DU4475) s.c. into immunodeficient mice
(xenograft) and sacrificed the mice as soon as the s.c. xenograft tumors were about 1.5 cm3. At this
stage, we determined the metastatic cell load in the BM by means of human-specific genome sequences
quantified by Alu-PCR (Figure 1B) and detected rather low cell numbers in the BM [9,10]. This approach
was also used in an additional model to compare the spontaneous BM metastasis capacity of wild-type
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MDA-MB-231 breast cancer cells and the “bone-seeking” subline MDA-MB-231(SA) [11,12]. In the
present study, we observed no difference in the BM metastasis formation rate (50% in the MDA-MB-231
model vs. 40% in the MDA-MB-231(SA) model) or total number of metastatic cells (median number
of 0.05 vs. 0.45 human cells per 60 ng BM DNA in the MDA-MB-231 vs. MDA-MB-231(SA) model)
(Figure 1C).
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means of the human DNA content (Alu-PCR). (C) The MDA-MB-231(SA) cell line, a “bone-seeking” 
subline of MDA-MB-231 established by others using intracardiac injection experiments [11,12], 
showed no increased BM metastasis formation in our spontaneous metastasis xenograft model 
compared to the parental MDA-MB-231 cell line. The black lines represent the median number of 
human cells per 60 ng bone marrow DNA, the dashed red line indicates the detection limit of human 
cells in the respective Alu-PCR. 

2.2. Detection of Spontaneous Bone Metastases by BLI and Corresponding Histology 

The next step was to improve the methodology in a way that metastatic cells are detectable not 
only by Alu-PCR, but also by histology. For this purpose, we transduced the tumor cells with the 
LeGO-Luc2-iC2-Puro+ vector for bioluminescence imaging (BLI) (see Materials and Methods) and 
decided to surgically resect the primary tumors. We again chose the tumor size of 1.5 cm³ from the 
initial experiments to define the time of surgery (Figure 2A). 

Figure 1. Concept of the study and development of spontaneous bone marrow (BM) metastasis
xenograft models. (A) About 92% of currently used models circumvent early steps of the metastatic
cascade by using intravenous, intracardiac, or intraosseous tumor cell injection (illustration modified
from Lange et al. [13]). (B). After subcutaneous (s.c.) engraftment of human tumor cells and growth
of primary xenograft tumors, the spontaneous metastatic cell load can be determined in the BM by
means of the human DNA content (Alu-PCR). (C) The MDA-MB-231(SA) cell line, a “bone-seeking”
subline of MDA-MB-231 established by others using intracardiac injection experiments [11,12], showed
no increased BM metastasis formation in our spontaneous metastasis xenograft model compared to the
parental MDA-MB-231 cell line. The black lines represent the median number of human cells per 60 ng
bone marrow DNA, the dashed red line indicates the detection limit of human cells in the respective
Alu-PCR.

2.2. Detection of Spontaneous Bone Metastases by BLI and Corresponding Histology

The next step was to improve the methodology in a way that metastatic cells are detectable not
only by Alu-PCR, but also by histology. For this purpose, we transduced the tumor cells with the
LeGO-Luc2-iC2-Puro+ vector for bioluminescence imaging (BLI) (see Materials and Methods) and
decided to surgically resect the primary tumors. We again chose the tumor size of 1.5 cm3 from the
initial experiments to define the time of surgery (Figure 2A).
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at relatively late stages when the BM cavity was already widely infiltrated with tumor cells (Figure 
2B,C). The human origin of such lesions could be verified by immunohistochemistry (IHC) as 
demonstrated by anti-hNCAM staining in the SCLC model (Figure 2B). In individual cases, such 
lesions caused radiographically detectable osteolyses (Figure 2C). As one major achievement of this 

Figure 2. Modeling spontaneous BM metastasis formation after s.c. engraftment of xenograft primary
tumors (PTs). (A) Use of Luc2-expressing human cancer cell lines, surgical resection of established
primary tumors, and post-surgical monitoring of metastatic outgrowth by bioluminescence imaging
(BLI). (B) In a human small cell lung cancer (SCLC) model (H69AR-Luc2/mCherry), metastases became
apparent by in vivo BLI in the retroperitoneal region and the left hindlimb 69 days after tumor cell
injection (33 days post-OP). Anti-hNCAM immunostaining demonstrated the human origin of the
metastatic cells in the murine BM, which can be discriminated by their different morphology as well
(H&E stain). (C) Importantly, in vivo BLI signals obtained 62 days after injection (35 days post-surgery)
of H69AR-Luc2/mCherry cells remain visible for up to 45 min ex vivo (top, ventral view). This lesion
caused a radiographically detectable osteolysis (top right) and was due to a large bone metastasis
infiltrating the entire tibia diaphysis (bottom). Based on this observation, ex vivo BLI of isolated bones
was henceforth performed, even if no bone-related BLI signals were detectable in vivo. As shown
in (D), early metastatic colonies of the BM became apparent by this procedure, for example, 40 days
after injection of tumor cells (7 days post-OP, LAN-1-Luc2/mCherry neuroblastoma model). BLI =

bioluminescence imaging; p.i. = post injectionem; hNCAM = human neuronal cell adhesion molecule;
H = human; M = murine; E = epiphysis; EC = epiphyseal cartilage; D = diaphysis; SM = skeletal
muscle; T = tumor; BM = murine bone marrow.

When we used regular post-operative BLI scans for in vivo monitoring of metastasis outgrowth,
spontaneous BM metastases became reproducibly apparent in the case of the H69AR (small cell lung
cancer (SCLC)) and LAN-1 (neuroblastoma) models. Using in vivo scans, we detected BM metastases at
relatively late stages when the BM cavity was already widely infiltrated with tumor cells (Figure 2B,C).
The human origin of such lesions could be verified by immunohistochemistry (IHC) as demonstrated
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by anti-hNCAM staining in the SCLC model (Figure 2B). In individual cases, such lesions caused
radiographically detectable osteolyses (Figure 2C). As one major achievement of this study, however,
we additionally observed that the in vivo BLI signal was still visible ex vivo by reimaging of the
prepared skeletal system (Figure 2C). Regular post-surgical ex vivo BLI in all subsequent experiments
revealed that bone-related BLI signals could be detected ex vivo even if no bone-related BLI signal
was present in vivo (Figures 2D and 3A,B). The presence of human tumor cells in such lesions was
verified by histology (Figure 2D (Giemsa), Figure 3A (H&E), and Figure 3B (Toluidin blue)) and IHC
by anti-human mitochondria staining (Figure 3A).
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Figure 3. Ex vivo BLI is useful to detect small metastatic colonies. (A,B) In a human neuroblastoma
xenograft mouse model (LAN-1-Luc2/mCherry cells), early BM colonies became apparent 50 days after
tumor cell injection (21 days after resection of the xenograft tumor) by ex vivo BLI (despite missing
bone-related BLI signals in vivo). TB = trabecular bone; for further abbreviations, please see legend to
Figure 2.

2.3. Characterization of Re-Cultivated Primary Tumor and BM Metastases Sublines in Vitro

We next aimed to characterize the functional differences between tumor cells recovered from
spontaneous BM metastases and tumor cells recovered from corresponding primary tumors. For this
purpose, we generated sublines of the neuroblastoma cell line LAN-1-Luc2/mCherry by re-cultivating
xenograft primary tumor (LAN-1-PT) and spontaneous BM metastasis (LAN-1-BM) cells. We observed
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that LAN-1-BM cells form longer and wider, but less filopodia-like cellular protrusions per cell
in comparison to LAN-1-PT cells (Figure 4A), suggesting potential differences in the migratory
and/or invasive potential of the sublines. The relative transmigration rate (normalized to the
number of adhering cells in the transwell) was similar between both sublines, while the invasive
potential of the LAN-1-BM cells was nearly significantly increased (p = 0.058, Figure 4B). Vimentin
expression was strongly induced in the LAN-1-BM cells as determined by Western blot (Figure 4C).
Cell viability and proliferation were notably reduced in the bone metastasis subline (Figure 4D);
the anchorage-independent growth capacity was also decreased as indicated by a smaller diameter
and a reduced number of spheroid tumor colonies in soft agar assays (Figure 4E). Moreover, reported
drivers of neuroblastoma metastasis and other crucial determinants of bone marrow metastasis, such
as loss of CD44 [14] or increase in CXCR4 [15], NCAM [16], VCAM1 [17], several integrin subunits [18]
as well as GD2 gangliosides [19], were all not differentially expressed on the surface of LAN-1-PT vs.
LAN-1-BM cells (Figure S1, Supplementary Materials).

2.4. Metastatic Behavior of PT and BM Cells after s.c. Re-Injection into Mice

As the process of metastasis formation cannot be studied as a whole in vitro, we analyzed potential
changes in the metastatic behavior of LAN-1-PT vs. LAN-1-BM cells by re-injection into novel recipient
mice (n = 10). We again used primary tumor surgery (~ 1.5 cm3) and post-surgical ex vivo-BLI for
detection of distant metastases. A few mice had to be excluded from further analyses due to lymphoma
development as is commonly observed in rag2-/- and severe combined immunodeficient (SCID) mice.
The individual pre- and post-operative survival periods of mice injected with LAN-1-PT or LAN-1-BM
cells, illustrated in Figure 4F, were quite similar between both groups (pre-operative: PT 51 d, BM 45 d,
p = 0.398; post-operative: PT 24 d, BM 31 d, p = 0.376). There was also no difference in the tumor
weights of resected primary tumors (Figure 4G). Unexpectedly, we observed no increase, but rather a
decrease in the incidence of spontaneous BM metastases in the LAN-1-BM group as compared to the
LAN-1-PT group (Figure 4H). Other distant sites such as lung, liver, and spleen were also less frequently
affected by metastatic cells in the LAN-1-BM compared to the LAN-1-PT group, whereas other sites
such as kidney, brain, adrenal gland, and ovary were affected with similar frequency (Figure 4H). After
a second round of re-cultivation and re-injection (of the respective sublines LAN-1-PT2 vs. LAN-1-BM2),
we again observed no difference in the pre- or post-operative survival periods (pre-operative: PT2

37d, BM2 45d, p = 0.069; post-operative: PT2 22d, BM2 20d, p = 0.701) or tumor masses of resected
primary tumors (Figure 4F,G) and no increase, but a decrease in the BM metastasis rate of LAN-1-BM2

xenografts (Figure 4H).
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Figure 4. Characterization of LAN-1 cells recovered from a xenograft primary tumor (LAN-1-PT)
and corresponding spontaneous bone metastasis (LAN-1-BM). (A) F-actin immunocytostaining of
LAN-1-PT and LAN-1-BM cells analyzed for length, width, and number of filopodia-like protrusions
per cell. (B) Cell transmigration through a porous membrane was similar between both sublines, while
the relative invasive potential was by trend higher in the LAN-1-BM subline. (C) LAN-1-BM cells
showed a strong increase in vimentin expression. (D) Cell viability (MTS assay) and proliferation
was decreased in the LAN-1-BM subline. (E) Colony formation assays in soft agar showed decreased
numbers and diameters of tumor spheres formed by the LAN-1-BM subline. (F,G) After re-injection
and a second round of re-cultivation and re-injection (of the respective sublines LAN-1-PT2 and
LAN-1-BM2), the pre- and post-surgical survival periods and tumor weights at surgery were quite
comparable between the PT/BM and PT2/BM2 groups. (H) Unexpectedly, there was no increase, but
rather a decrease in the incidence of spontaneous BM metastases in the LAN-1-BM/BM2 as compared
to the LAN-1-PT/PT2 groups. * p < 0.05, ** p < 0.01, *** p < 0.001.



Cancers 2020, 12, 385 8 of 15

3. Discussion

Spontaneous metastasis xenograft models are important to reflect the majority of steps of the
metastatic cascade in vivo, but they are particularly rare concerning metastasis to the BM as revealed
by a current PubMed search. Based on our long-standing expertise in developing xenograft mouse
models of spontaneous lung metastasis formation, we became interested in the question of whether
the BM of such mice harbors metastatic human cells as well. At this initial stage, the experimental
setup was to inject tumor cells from different human cancer cell lines s.c. into immunodeficient mice
and to terminate the experiment when the s.c. tumor reached around 1.5 cm3. By using quantitative
PCR for human-specific DNA sequences (Alu-PCR), we indeed observed variable metastatic cell loads
in the murine BM depending on the respective cell line [9,10,18,20]. This methodology was used to test
whether MDA-MB-231(SA) cells have an increased bone-metastatic potential compared to wild-type
MDA-MB-231 cells. This question was of interest since MDA-MB-231(SA) cells have been established
from the parental counterpart (MDA-MB-231) by recurrent intracardiac injection/ recovery from BM
and are claimed to have particular “bone-seeking” properties [11,12]. Interestingly, in our spontaneous
BM metastasis model, we observed no difference in the metastatic load in the BM between both cell
lines. This finding needs to be carefully interpreted since intracardiac injection is currently the most
widely used approach for modeling bone metastasis in vivo. Our finding suggests that tumor cells
that preferentially disseminate into the BM after intracardiac injection do not necessarily represent
the phenotype of tumor cells that spontaneously metastasize to the BM from a s.c. primary tumor.
This would not be surprising at all since tumor cells grown in vitro (two-dimensional, on plastic) and
tumor cells grown as primary tumors in vivo (three-dimensional, with a complex microenvironment)
should differ from each other at multiple (sub)cellular levels [21–24].

By using Alu-PCR for the detection of spontaneous BM metastatic cells, we were not able to obtain
morphological information of metastatic foci. It remained unclear whether the human DNA content
was due to single DTCs or to foci of colonizing metastases, whether the metastatic deposits still resided
within BM sinusoids or had extravasated into the BM. In addition, BM from only one or two bones
per mouse was included in the Alu-PCR (femur and/or tibia), possibly missing bone metastasis to
other sites. In addition, the metastatic cell load indicated by Alu-PCR was often very low. Therefore,
we sought to establish mouse models of histologically verifiable, spontaneous BM metastases, which
required an appropriate, full-body in vivo imaging methodology. Furthermore, we decided to prolong
the growth period of BM metastases by surgical resection of the primary tumors (at ~1.5 cm3). Previous
xenograft experiments showed that spontaneous lung metastases grew out to larger colonies when the
primary tumor was resected to allow for a longer growth period [25].

Using post-surgical BLI as full-body in vivo imaging, we detected spontaneous BM metastases at
late stages, where the tumor cells infiltrated large areas of the meta- and diaphysis of long bones of
the hindlimb (normally not found in the epiphysis). Other parts of the skeleton were not affected in
our studies with LAN-1 and H69AR cells. Importantly, we also noticed that such lesions remained
BLI-positive, when the resected skeleton was immediately re-scanned after necropsy. Therefore, we
henceforth routinely analyzed the entire resected skeleton by ex vivo BLI (irrespective of whether or
not BM metastases were indicated by in vivo BLI) and indeed observed that bone-related BLI signals
could specifically appear ex vivo. In the case of missing bone-related BLI signals in the in vivo scans,
the abandonment of the experiment was mainly determined by BLI-positive metastases at other sites or
relapsing primary tumors. In the neuroblastoma model using LAN-1-Luc2/mCherry cells, it took only
40–50 days to identify spontaneous BM metastases by this approach. As determined by corresponding
histology, the bone-related ex vivo BLI signals were derived from small metastatic colonies, which
may not have been visible in the in vivo BLI scans due to more intense signals emitted from larger
coinciding metastases at other sites, from relapsing primary tumor cells, or may have been absorbed
by the surrounding skeletal muscles and fur. The human origin of such deposits was demonstrated by
IHC. Interestingly, all histologically verified early-stage metastases started to colonize the BM from the
metaphysis, only a few micrometers below the epiphyseal cartilage (Figure 2C,D and Figure 3A,B),
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which is not surprising as this is a region of high bone turnover and strong vascularization [26].
Such early lesions did not alter the structure of the affected bones as determined by static and cellular
histomorphometry. These results demonstrate that post-surgical ex vivo BLI is a suitable approach for
the identification of spontaneous BM metastases at the beginning of colonization.

Furthermore, we recovered tumor cells from s.c. primary tumors and corresponding BM metastases
from LAN-1 neuroblastoma xenograft models resulting in the novel sublines LAN-1-PT and LAN-1-BM.
We assumed particular metastatic properties of the LAN-1-BM as compared to the LAN-1-PT subline.
Commonly used in vitro assays for tumor cell migration, invasion, proliferation, and colony formation
as well as quantification of common markers of neuroblastoma progression and bone metastasis
revealed inconclusive data on the metastatic properties of both sublines. Together with the markedly
increased vimentin expression in LAN-1-BM cells, our in vitro data to some extent argued for a more
EMT-like phenotype of this subline (longer protrusions, less proliferative, by trend more invasive, high
vimentin expression). However, in order to assess their metastatic capacity more rigorously, it was
necessary to re-inject the sublines s.c. into novel recipient mice. Importantly, we observed no increase,
but rather a decrease in the bone-metastatic potential of LAN-1-BM compared to LAN-1-PT xenografts.
A second round of re-cultivation and s.c. re-injection obtained similar results (comparing LAN-1-BM2

vs. LAN-1-PT2 xenografts). These findings were quite surprising since earlier studies from the 1980s
reported opposing observations, that is, increased metastatic potential of tumor cells derived from
metastases as compared to tumor cells derived from primary tumors [27–31]. However, the metastatic
potential and organotropism of tumor cells are influenced by a multifactorial interplay.

First, the bone-metastatic potential may depend on host factors that determine the BM metastasis
niche (e.g., cellular and secreted components of the local environment, such as bone stromal cells,
osteoblasts, osteoclasts, immune cells, growth factors, cyto- and chemokines, etc.). These niche factors
have been shown to control seeding, dormancy, and outgrowth of BM metastases [32]. During in vitro
cultivation, the niche factors are absent so that the gene expression profile of BM metastasis cells may
revert to that of the primary tumor cells. If this explanation was sufficient, both sublines should have
had similar bone-metastatic potential after re-injection. However, we observed a particular loss in the
BM metastasis rate of the LAN-1-BM and LAN-1-BM2 sublines.

Another explanation may be that the PT-derived sublines stem from a much more heterogeneous
cell population than the BM-derived sublines, as the initial PT samples were much larger and
presumably contained tumor and stroma cells in many more different states than the BM samples,
where small metastatic lesions were flushed out of the femora and/or tibiae resulting in low tumor cell
yields. We therefore assume that a certain loss of tumor heterogeneity may also have contributed to
the lower metastasis rates of the LAN-1-BM/BM2 sublines. It is currently widely recognized that tumor
heterogeneity is essential for metastasis formation [33].

Third, the bone-metastatic potential of single primary tumor cells may also depend on a particular,
epigenetically determined cellular plasticity that could, for example, contribute to EMT [34]. However,
it has been shown that mammalian cells undergo a rapid epigenetic reprogramming in comparison
to the original tissue within the first seven days of cell culture [35]. As the establishment of LAN-1
sublines took several weeks, an epigenetic reprogramming and hence alterations of the gene expression
profile before re-injection is likely and may explain the missing bone-metastatic phenotype of the
LAN-1-BM/BM2 xenografts. Future studies are required to investigate epigenetic and transcriptomic
changes between BM metastases and BM metastasis-derived sublines in vitro.

Finally, there is the common hypothesis that the metastatic potential of primary tumor cells
is genetically pre-determined in terms of genomically distinct tumor subclones that preferentially
infiltrate the BM (metastatic evolution) [36]. Such clonal selection should have been stable during the
short interval of cell culture in our experiments, but an increased incidence of bone metastases was not
detectable after re-injection of the bone metastasis subline. Hence, our findings strongly suggest that
the widely assumed evolution of metastatic clones within a primary tumor is not a pre-requisite for
metastasis formation. As outlined above, leading experts in the field of cancer genomics (Vogelstein
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and Kinzler) also came to the conclusion quite recently that there is no genetic signature that can
predict metastasis in human cancer [5].

Further experiments comparing the bone metastatic burden after intracardiac injection of the PT
vs. BM sublines may be additionally useful to identify possible factors that specifically contribute to
the extravasation of circulating tumor cells into the bone marrow.

4. Materials and Methods

4.1. Cell Culture

Human cancer cells H69AR (small cell lung cancer (SCLC)) (provided by U. Zangmeister-Wittke,
Department of Pharmacology, University of Bern, Bern, Switzerland; authenticated by DSMZ
Braunschweig in 2017) and LAN-1 (neuroblastoma) (gift from Prof. Dr. R. Erttmann; Department
of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany; authenticated by DSMZ Braunschweig in 2017) were cultured under standard cell culture
conditions (37 ◦C, 95% relative humidity, 5% CO2) in RPMI-1640 medium, supplemented with
10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL
streptomycin (all obtained from Gibco, Paisley, Scotland). The human breast cancer cell lines
MDA-MB-231 and MDA-MB-231(SA) were kindly provided by Dr. T.A. Guise (Department of
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA) and cultured in DMEM
medium plus supplements as listed above. The cells were tested negative for the presence of
mycoplasma using the PCR-based VenorGeM Mycoplasma Detection Kit (Minerva Biolabs GmbH,
Berlin, Germany).

4.2. Lentiviral Transduction

For bioluminescence imaging (BLI), cell line derivatives stably expressing the luciferase from
Photinus pyralis and the fluorescent protein mCherry were generated by lentiviral transduction
(LeGO-Luc2-iC2-Puro+), followed by puromycin selection and fluorescence-activated cell sorting
(mCherry+) as described previously [37,38].

4.3. Animals

In this study, pathogen-free balb/c severe combined immunodeficient (SCID) mice (Charles River,
Wilmington, MA, USA) as well as balb/c rag2-/- mice (rag2 Model 601, Taconic) were used. The mouse
experiments were approved by the local licensing authority (Freie und Hansestadt Hamburg, Behörde
für Gesundheit und Verbraucherschutz, Amt für Verbraucherschutz, projects #09/59, #09/88, and #16/80)
and supervised by the institutional animal welfare officer. The mice were 10 to 15 weeks old and
weighed 20 to 25 g at the beginning of the experiments. They were housed in individually ventilated
cages and provided with sterile water and food ad libitum. All manipulations were carried out
aseptically inside a laminar flow hood. For injection, 1 × 106 viable cancer cells in 200 µL cell culture
medium without FCS or in medium blended 1:2 with matrigel (BD Bioscience, Bedford, MA, USA)
were injected subcutaneously (s.c.) between the scapulae of each mouse.

4.4. Excision of the Primary Tumor (PT)

Between day 26 and 90 after injection (depending on the respective cell line), mice were anesthetized
using a bodyweight-adapted i.p. injection scheme of ketamine hydrochloride (100 mg/mL; 1.2 mL/kg;
Graeub, Bern, Switzerland) and xylazine hydrochloride (20 mg/mL; 0.8 mL/kg; Bayer, Leverkusen,
Germany). PTs were excised under sterile conditions and immediately fixed in 3.7% neutral buffered
formalin for 48 h or stored in liquid nitrogen (fresh frozen samples). Skin defects were clipped
with disposable skin staples (3M; Health Care, Borken, Germany) and mice received carprofen s.c.
(5 mg/kg; Zoetis, Berlin, Germany) directly after surgery as well as for two days following surgery.
Subsequently, all mice were inspected daily and the overall clinical condition, including appearance
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(posture, behavior) and physiological responses as well as food and water intake were assessed. Mice
were sacrificed when they failed the United Kingdom Co-ordinating Committee on Cancer Research
(UKCCCR )health score system [39].

4.5. Detection of Xenograft Micrometastases via Human Alu-PCR

The femora and tibiae were resected, the bone marrow cavity opened by a proximal and distal
transversal section, and the BM flushed out using 500 µL 0.9% sodium chloride solution per bone.
The resulting bone marrow suspension was centrifuged and the pellet subjected to DNA extraction
using a commercial kit (DNA Blood Mini Kit, Qiagene, Hilden, Germany). Afterwards, quantitative
real-time PCR for human Alu-sequences was performed as described previously [40].

4.6. In Vivo and ex Vivo Imaging of Spontaneous Metastases

Development of spontaneous bone metastases was monitored by BLI. For examinations, mice were
set under inhalation anesthesia with isoflurane (1.5%–2%). Luciferin (Sigma, Steinheim, Germany) was
injected intraperitoneally (150 mg luciferin/kg body weight) and photon emission was measured with
an IVIS 200 system (PerkinElmer, Hopkinton, MA, USA) 5 min after injection. For ex vivo BLI, mice
were injected with luciferin as described, finally anesthetized with ketamine/xylazine, and sacrificed by
cervical dislocation. The musculoskeletal system was resected for immediate ex vivo imaging (not later
than 45 min after cervical dislocation) and thereafter processed for histology.

4.7. Contact Radiography

Selected bones showing BLI-positive lesions were additionally analyzed by contact radiography
using a Faxitron X-ray cabinet (Faxitron Xray Corp., Tucson, AZ, USA).

4.8. Histology and Immunohistochemistry

The dissected skeletons were fixed with 3.7% formaldehyde in 0.1M phosphate buffered saline for
24 h at 4 ◦C and stored in 80% ethanol afterwards. For non-decalcified histology, parts of the skeleton
(as indicated by BLI) were dehydrated in ascending alcohol concentrations and then embedded in
methylmetacrylate as described previously [41]. Sections of 4 µm thickness were cut on a Microtec
rotation microtome (Techno-Med GmbH, Bielefeld, Germany). All sections were stained by Giemsa or
toluidine blue staining procedures as described [41].

For hematoxylin-eosin (H&E) and immunohistochemical staining, bones were decalcified in
10% EDTA for 48 h after fixation, dehydrated, embedded in paraffin wax, and cut into 4 µm thick
sections. For immunohistochemistry with anti-hNCAM (CD56, diluted 1:500, Leica Novocastra, Wetzlar,
Germany) and anti-hMitochondria antibodies (113-1, abcam, diluted 1:80), sections were dewaxed
followed by heat-induced epitope retrieval. After blocking non-specific binding with 10% normal rabbit
serum (DAKO, Hamburg, Germany), sections were incubated 1 h at 37 ◦C with respective primary
antibody, rinsed, and then incubated for 30 min at room temperature with secondary biotinylated
antibody (DAKO, 1:200). Isotype controls served as negative controls. Antibody detection was
performed using a streptavidin-alkaline phosphate kit (ABC-AP; Vector Laboratories, Peterborough,
UK) and visualized by liquid permanent red (DAKO).

4.9. Establishment of Primary Tumor and BM Metastasis Sublines

In a proof-of-principle experiment, small pieces of surgically excised primary tumors from the
LAN-1-Luc2/mCherry neuroblastoma xenograft model were minced with a scalpel and ground through
a 100 µm mesh filter, which was stored in one well of a 6-well plate containing cell culture medium.
Femora and tibiae from the same mice showing BLI-positive BM metastases after surgery were flushed
with cell culture medium and the bone marrow/tumor cell suspensions were seeded into 6-well plates.
After incubation of the 6-well plates under standard conditions for 48 h, the medium was replaced
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and adherent cells were sub-cultivated as appropriate. The resulting in vitro sublines LAN-1-PT
(derived from the primary tumor) and LAN-1-BM (derived from BM metastasis) were subjected to
functional analysis and re-injection. The primary tumors of the LAN-1-PT subline and BM metastases
of the LAN-1-BM subline were again re-cultivated, which gave rise to the LAN-1-PT2 and LAN-1-BM2

sublines. These were also re-injected into new recipient mice.

4.10. Characterization of Cellular Protrusions

After recovery from the mice, LAN-1-PT and LAN-1-BM cells showed obvious morphological
differences concerning cellular protrusions as determined by light microscopy. Therefore, cells were
seeded onto chamber slides and grown to about 50% confluence. Then, cells were fixed with 4%
PFA for 10 min at 37 ◦C and F-actin was stained with Alexa Fluor 488-labeled phalloidin (Thermo
Fisher, diluted 1:1000 in PBS) for 20 min at room temperature. Samples were analyzed by fluorescence
microscopy by taking images to quantify length, width, and number of cellular protrusions (counting
at least 25 cells per subline). Moreover, cells were analyzed by confocal fluorescence microscopy (Leica
TCS SP8).

4.11. Soft Agar Assay

The colony forming capacity of LAN-1-PT and LAN-1-BM cells was determined using soft
agar assays. First, 250 µL of 300 cells/mL 0.3% soft agar (1:6 dilution of 2% pre-heated liquid
2-hydroxyethylagarose (Sigma) in cell culture medium) were plated per well into a 24-well-plate
and cultured under standard conditions. The hardened soft agar was then covered with medium
(after 24 h). The number and diameter of spheroid colonies were quantified on day 4 after seeding
using a light microscope.

4.12. Cell Viability and Proliferation Assays

For MTS assays, 2000 cells were seeded in 100 µL RPMI medium per well on a 96-well plate.
Cell viability was measured after 24, 48, 72, and 96 h. A 20 µL amount of Cell Titer 96 Aqueous One
Solution Cell Proliferation Assay Reagent (Promega) was added and cells were incubated for 2.5 h at
37 ◦C. Thereafter, absorption at 490 nm was measured using the Tecan plate reader Infinite 200 PRO.

Cell proliferation was additionally determined by seeding 5 × 104 cells/mL into T25 cell culture
flasks and counting the cell number on day 4 after seeding (biological triplicates).

4.13. Tumor Cell Transmigration and Invasion Assay

The transmigratory activity of LAN-1-PT vs. LAN-1-BM cells was determined by seeding
4 × 104 cells suspended in 100 µL RPMI medium onto 8.0 µm polycarbonate membrane transwell
inserts (Costar). The inserts were placed in a 24-well plate filled with 600 µL RPMI medium.
After incubation for 48 h, cells on the upper side of the membrane were removed by a cotton swab and,
after washing three times with PBS, membranes were fixed with PFA and embedded in Vectashield
4–1200 mounting medium. DAPI-stained cells of the lower side of the membrane were counted using
the Keyence microscope cell count function. As adhesion control, cells were seeded onto parallel
transwell inserts and the cells on the upper side of the membrane were counted. The invasive capacity
of LAN-1-PT vs. LAN-1-BM cells was compared using CorningBioCoat transwell assays (8 µm pore
size). Subsequently, 1.2 × 105 cells were seeded and measured after 24 h incubation under standard
culture conditions, according to the manufacturer’s protocol (Corning, VWR, Darmstadt, Germany).

5. Conclusions

In summary, for modelling the formation of early colonies of spontaneous human BM metastases
in vivo, the most successful approach was to surgically resect the s.c. xenograft primary tumors and to
perform ex vivo BLI scans of isolated bones a few weeks after initial surgery (irrespective of whether
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or not bone-related BLI signals were present in vivo). We moreover described the establishment
of sublines of spontaneous BM metastases and corresponding primary tumors. Our findings from
in vitro “metastasis” assays and re-injection experiments strongly suggest that a putative bone-seeking
phenotype of spontaneous BM metastasis sublines is not stable in vitro.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/385/s1,
Figure S1: Cell surface protein levels of general or neuroblastoma-specific drivers of BM metastasis on primary
tumor and corresponding bone metastasis sublines.
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