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Copyright © 200? JCBNSummary Many researchers have hypothesized that differences in reactive oxygen species

levels can trigger the cellular decision between hypertrophy and cell death in cardiomyocytes.

In the present study, we examined the relationship between reactive oxygen species levels and

hypertrophy or cell death in H9c2 cardiomyocytes after the addition of hydrogen peroxide.

Following addition of hydrogen peroxide, we observed a slight increase in fluorescence intensity

of 2',7'-dichlorofluorescein, a probe of intracellular reactive oxygen species, and cell hyper-

trophy in H9c2 cells (normal cells). In contrast, a dramatic increase in fluorescence intensity

was followed by cell death in glutathione-depleted H9c2 cells. In the presence of the anti-

oxidant Trolox or the iron chelator deferoxamine, both normal and glutathione-depleted cells

developed hypertrophy without a concomitant increase in levels of reactive oxygen species. An

inhibitor of p53, pifithrin-alpha, prevented cell death after the addition of hydrogen peroxide;

instead a substantial increase in levels of reactive oxygen species and hypertrophy were

observed. These results suggest that H9c2 cells exhibit differential sensitivity to intracellular

reactive oxygen species generation with regard to their hypertrophic versus death responses

to exogenously added hydrogen peroxide.
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Introduction

Numerous studies have demonstrated that reactive oxygen

species (ROS) may cause aging [1] and diseases such as

malignant neoplasm [2], Alzheimer’s disease [3], cataracts

[4] and cardiac dysfunction [5]. Hydrogen peroxide that can

be converted to HO· is removed by intracellular enzymes

such as catalase and glutathione peroxidase (GPx). GPx

catalyzes the elimination reaction of H2O2 using reduced

glutathione (GSH). Large quantities of GSH, an antioxidant,

are found in organisms that eliminate ROS by enzymatic or

non-enzymatic mechanisms. In contrast, the heart has low

activity of GPx and catalase and an overall lower GSH

content as compared with other organs [6], suggesting that

the heart is more sensitive to ROS. Indeed, it has been

demonstrated that ischemia-reperfusion leading to an increase

in ROS levels results in cardiac contractile dysfunction

[7, 8]. Administration of L-buthionine-sulfoximine (BSO)

which blocks GSH biosynthesis to diabetic rats increases

cardiac cell death [9]. These findings suggest that when the

generation of ROS exceeds the elimination of it, excess ROS

can impair normal biological functions.

There are numerous studies that various stimuli cause

myocardial cell death and hypertrophy. Takemoto et al.

[10] demonstrated that angiotensin II (Ang II) results in the



K. Oyama et al.

J. Clin. Biochem. Nutr.

362

generation of ROS through NADPH oxidase activation and

the induction of hypertrophy in neonatal rat cardiomyocytes.

Grishko et al. [11] observed that Ang II-induced apoptosis

and the cell death are inhibited by an NADPH oxidase

inhibitor in neonatal cardiomyocytes. In adult rat ventricular

myocytes, β-adrenergic receptor stimulation by norepin-

ephrin induces apoptosis mediated by the ROS/c-Jun N-

terminal kinase (JNK)-dependent mitochondrial death

pathway [12]. In addition, norepinephrin also induces hyper-

trophy in H9c2 cells, a cardiomyocyte cell line derived

from rat ventricles [13]. These findings imply that ROS are

associated with cell death and/or hypertrophy in cardio-

myocytes. It is demonstrated that cyclic mechanical stretching

of neonatal rat ventricular myocytes generates superoxide

anion radical (O2
•−) that induces hypertrophy and/or cell

death depending on the stretch levels [14]. Chen et al. [15]

demonstrated that a fraction of cells undergoes apoptosis

at low concentrations of added H2O2 and the surviving cells

develop hypertrophy, whereas high dose of H2O2 causes

necrosis in H9c2 cells and primary cultured neonatal rat

cardiomyocytes. These findings suggest the possibility that

differences in intracellular ROS levels can trigger the deci-

sion between hypertrophy and cell death in cardiomyocytes.

In the present study, we investigated the relationship

between ROS levels and hypertrophy or cell death in H9c2

cardiomyocytes after the addition of H2O2. Here, we propose

that the development of hypertrophy might not be connected

with the levels of intracellular ROS, but death is, after the

addition of H2O2 to H9c2 cells.

Materials and Methods

Chemicals

BSO, deferoxamine (DFX), Dulbecco’s modified Eagle’s

medium (DMEM), pifithrin-α (PFT) and Trolox were

obtained from SIGMA Chemical Co. (St. Louis, MO). A

florescent probe 2',7'-dichlorofluorescin diacetate (DCFH2-

DA) was purchased from CALBIOCHEM (San Diego, CA).

Trypsin-EDTA was obtained from Invitrogen (Grand Island,

NY). Phosphate-buffered saline (PBS) was obtained from

TAKARA BIO INC. (Tokyo, Japan). H2O2 was obtained

from Kanto Chemical Co. Inc. (Tokyo, Japan). Fetal bovine

serum (FBS) was purchased from BIOSOURCE Inc.

(Camarillo, CA). The 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay kit was obtained

from Promega (Madison, WI). All other chemicals used

in this study were of the highest grade available from

commercial suppliers.

Cell culture

Rat cardiomyocyte H9c2 cells were obtained from the

American Type Culture Collection (Rockville, MD) and

were grown in DMEM containing 10% heat-inactivated

FBS in an incubator in an atmosphere of 5% CO2, 95% air at

37°C. The standard treatments for H9c2 cells were as fol-

lows: the cells were seeded onto 6-well plates at a density of

3 × 105 cells/well containing 3 ml culture medium. After an

overnight preincubation with or without 0.1 mM BSO, we

refer to BSO-untreated cells as normal cells, the cells

were incubated with H2O2 for various time periods at the

concentrations indicated in the figure legends. Cell number

was measured using a hemocytometer (Erma, Tokyo,

Japan). After removal of the medium, the cells were washed

once in PBS and once in culture medium before trypsiniza-

tion. The cells were resuspended with culture medium and

washed twice with PBS by centrifugation at 300 × g for

5 min. The cell pellets were resuspended with PBS and the

cell number was determined.

Cell viability

Cell viability was determined using an MTT assay kit.

After incubation with H2O2, the medium was removed. For

the MTT assay, fresh culture medium (1725 μl) containing

a dye solution (225 μl) was added to each of the wells

containing cells and incubated for 2 h at 37°C. A solubiliza-

tion/stop solution (1500 μl) was then added for an additional

overnight incubation. The absorbance at 540 nm (formation

of formazan) and 690 nm (reference) were recorded with

a microplate reader (Labsystems Multiskan Bichromatic,

Helsinki, Finland). Viability was determined as compared

to control cells (normal H9c2 cells incubated without H2O2).

Measurement of ROS levels

Intracellular ROS levels were assessed using DCFH2-DA

[16]. Cells were preincubated with DCFH2-DA in the culture

medium at a final concentration of 10 μM for 15 min.

Following incubation with H2O2 for 15 min, the cells were

trypsinized, collected and washed with PBS by centrifuga-

tion at 300 × g for 5 min. The cell pellets were resuspended

with PBS (1 ml) and analyzed using a flow cytometer

(Beckman Coulter, Fullerton, CA). The cells (5 × 103 cells)

were screened and the fluorescence of DCF was detected

by fluorescence channel 1. The relative intensity of DCF

fluorescence was determined as compared to control cells.

Measurement of cell size

Relative change in cell size was observed using a flow

cytometer. After incubation with H2O2 for 72 h, the medium

was removed from the cultures and the cells were washed

once in PBS and once in culture medium before trypsiniza-

tion. The cells were collected and washed with PBS by

centrifugation at 300 × g for 5 min. The cell pellets were

resuspended with PBS (1–2 ml) and analyzed using a flow

cytometer. The cells (1 × 104 cells) were screened and the

forward light scatter (FS) and side light scatter (SS) were

recorded for each cell to determine the relative size and
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density, respectively. Control cells were gated so that large

sizes were presumed to represent 10% of the cell population

(region hypertrophy).

ANP gene expression

After incubation with or without H2O2 for 72 h, total

cellular RNA was extracted from H9c2 cells using an illustra

RNAspin Mini RNA Isolation kit (GE Healthcare, Tokyo,

Japan) according to the manufacturer’s instructions, and

was quantified by absorbance at 260 nm. RNA (2.5 μg) was

reverse transcribed into cDNA using a High-capacity cDNA

Reverse Transcription kit (Applied Biosystems, Foster, CA)

according to the manufacturer’s instructions. TaqMan PCR

primer and probe for target gene atrial natriuretic peptide

(ANP) and internal standard gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) were obtained from

Applied Biosystems. TaqMan PCR was performed with 1 μl

of sample cDNA in a 50-μl reaction mixture containing

TaqMan Universal PCR Master Mix using a TaqMan gene

expression assay (Applied Biosystems). Amplification was

performed using a 7500 real time PCR system (Applied

Biosystems). Cycling conditions were 50°C for 2 min, 95°C

for 10 min followed by a 50-cycle amplification at 95°C for

15 s and 60°C for 1 min. A threshold cycle number (Ct)

at which each PCR amplification reaches a significant

threshold level was calculated with the software equipped by

the 7500 system. The threshold cycle number is proportional

to the number of ANP and GAPDH mRNA copies existing

in the reaction mixture. GAPDH was used to normalize

mRNA expression. Data were calculated using the ΔΔCt

method.

Statistical analysis

Data are represented as the means ± SD and were statisti-

cally analyzed by Student’s t test or Welch’s t test following

the F test for pair data. The value p<0.05 was considered

statistically significant.

Results

Effects of H2O2 on H9c2 cells pretreated with or without

BSO

To evaluate oxidative stress, the H9c2 cells were treated

with various concentrations of H2O2. As shown in Fig. 1A,

the number of normal cells exposed to H2O2 remained

constant during a 72-h incubation period. In BSO-pretreated

H9c2 cells, treatment with H2O2 noticeably decreased the

total cell number within 24 h. After the 72-h incubation

period, the numbers of normal cells without H2O2 treatment

and BSO-pretreated cells without H2O2 treatment were

about 4.1 and 3.9 times compared with it at 0 h, respectively.

The addition of H2O2 dramatically decreased cell viability

after 3 h in H9c2 cells pretreated with BSO (Fig. 1B). When

BSO-pretreated cells were exposed to H2O2 at 250 μM or

higher for 6 h, the remarkable decrease in cell viability was

observed (Fig. 1C). In normal cells, however, the decrease

of cell viability was barely noticeable at 250 μM, slightly

apparent at 500 μM, but remarkably observed at 750 μM of

H2O2. To examine the effect of H2O2 exposure time on cell

death in BSO-pretreated cells, we replaced the medium at

various times after the addition of H2O2. When the medium

containing H2O2 was removed at 5, 15 and 360 min after the

addition of H2O2 (250 μM), cell viabilities were approxi-

mately 63, 37 and 33%, respectively (Fig. 1D), suggesting

that a signal of the cell death developed within 15 min after

the addition of H2O2. We measured the changes of cell size

after the addition of H2O2 using a flow cytometer to assess

hypertrophy. FS and SS were recorded to determine the

relative size and density of cells, respectively. Normal H9c2

cells not exposed to H2O2 were gated so that larger cell sizes

were 10% of the total cell population (hypertrophic cells).

The population of cells that belong to a region of hyper-

trophy was approximately 30% at 72 h after the addition of

H2O2 (Fig. 1E). The expression of ANP gene, a maker of

cardiac hypertrophy [14], in normal cells treated with H2O2

for 72 h, was remarkably increased compared with normal

cells without H2O2 (Fig. 1F). We were unable to detect the

alteration of cell sizes and gene expression in the BSO-

pretreated cells because the substantial decrease in cell

viability was caused within 6 h after the addition of H2O2.

These results indicate that H2O2 induces cell death in BSO-

pretreated H9c2 cells and hypertrophy in normal cells.

ROS levels and cell viability in H9c2 cells

The levels of intracellular ROS in H9c2 cells were

measured 15 min after the addition of H2O2 using a fluores-

cent probe, DCFH2-DA (Fig. 2). In normal cells exposed

to H2O2, the intensity of DCF fluorescence was slightly

increased. In BSO-pretreated H9c2 cells, addition of H2O2

significantly increased the intensity of DCF fluorescence

compared to that obtained in the normal cells (Fig. 2),

suggesting the increasing generation of ROS resulting from

H2O2 in the GSH-depleted cells. The intensity of DCF

fluorescence decreased 15 min or later after H2O2 treatment

and returned to basal levels at 60 min.

To determine whether ROS are associated with cell death,

we examined the effect of the antioxidant Trolox on ROS

levels and cell viability in H9c2 cells. As shown in Fig. 3A,

Trolox prevented the increase in intensity of DCF fluores-

cence in a dose-dependent manner, and very little DCF

fluorescence was observed at 50 μM or higher concentra-

tions of Trolox. Trolox also protected H9c2 cells pretreated

with BSO from cell death by the addition of H2O2 in a

dose-dependent manner (Fig. 3B). Trolox (200 μM) almost

completely prevented cell death induced by the addition of

H2O2 in BSO-pretreated cells. Other antioxidants such as
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butylated hydroxyanisole and butylated hydroxytoluene also

prevented the increase in the ROS levels and the death

induced after the addition of H2O2 (data not shown).

We examined the effect of DFX, an iron chelator, on

intracellular ROS levels and cell viability, because H2O2 is

converted to HO·, the most highly reactive species of ROS,

under biological conditions through the Fenton reaction

between H2O2 and ferrous ion [2]. As shown in Fig. 4A,

DFX inhibited the increase in DCF fluorescence intensity in

a dose-dependent manner, and at 100 μM DFX the increase

was no longer observed. DFX also prevented cell death

induced by H2O2 in a dose-dependent manner in cells

pretreated with BSO, and completely abolished cell death

at 100 μM DFX (Fig. 4B). These results indicate that the

increase in ROS levels is associated with the cell death in

BSO-pretreated H9c2 cells after the addition of H2O2.

Fig. 1. Effects of H2O2 on H9c2 cells pretreated with or without BSO. H9c2 cells were pretreated with (open diamond and closed
diamond) or without (open circle and closed circle) BSO. Cells (closed diamond and closed circle) were exposed to H2O2

(250 μM) and the number of cells (A) and viability (B) were determined at the times indicated in the figures by counting and an
MTT assay, respectively. (C) Cell viability 6 h after exposure to different concentrations of H2O2. (D) Effect of H2O2 (250 μM)
exposure time on viability of the BSO-pretreated H9c2 cells. These data represent the means ± SD of three independent
experiments. (E) Size of cells was analyzed using a flow cytometer at 72 h after the addition of H2O2 (250 μM). FS and SS were
recorded for each cell to determine the relative size and density, respectively. Similar results were obtained in two additional
independent experiments using different cell preparations. (F) ANP gene expression in normal H9c2 cells at 72 h after the
addition of H2O2 (250 μM). Data represent the means ± SD of three independent experiments. * p<0.05 compared with
H2O2-untreated normal cells (C and F) and cells pretreated with BSO (D).
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Relationship between hypertrophy and ROS levels

To determine whether ROS is associated with the cell

hypertrophy induced by the addition of H2O2, we examined

the effects of Trolox and DFX on hypertrophy in normal

cells. In the presence of Trolox, the percentage of the

population of normal cells belonging to a region of hyper-

trophy was approximately 42% at 72 h after the addition of

H2O2, but that of cells without H2O2 treatment was about

11% (Fig. 5A). When the cells were incubated with DFX

alone for 72 h, cell death was observed (data not shown). To

remove the toxic effect of DFX, the medium containing

DFX was exchanged for fresh medium 3 h after the addition

of H2O2. After incubation with DFX, the percentage of the

normal cell population belonging to a region of hypertrophy

was approximately 28% at 72 h after the addition of H2O2,

although the fraction of hypertrophic cells without exposure

to H2O2 was approximately 12% (Fig. 5B). After incubation

with Trolox or DFX, the fraction of BSO-pretreated cells

belonging to a region of hypertrophy was approximately

35% or 33%, respectively, 72 h after the addition of H2O2;

that of cells without H2O2 was about 10% in both cases

(Fig. 5B). In cells pretreated with (Figs. 3A and 4A) or

without (Fig. 5C) BSO, the intensity of DCF fluorescence

observed after the addition of H2O2 in the presence of Trolox

or DFX was lower than the basal intensity in normal cells

incubated without H2O2. These results indicated that cell

hypertrophy is induced even when intracellular ROS levels

do not increase after the addition of H2O2.

Because several studies have demonstrated that the addi-

tion of H2O2 induces activation of p53 protein and then cell

death [17–19], we examined the effect of PFT, an inhibitor

of p53 [20, 21], on the death and ROS levels in cells

incubated with H2O2. PFT prevented cell death induced by

H2O2 in BSO-pretreated H9c2 cells and cell viability was

approximately 76% in the presence of PFT (Fig. 6A). PFT

did not significantly affect the increase in DCF fluorescence

intensity after the addition of H2O2 (Fig. 6B). These data

indicate that PFT inhibits cell death without significantly

influencing the ROS levels after the addition of H2O2 in

BSO-pretreated H9c2 cells. We examined whether hyper-

Fig. 2. Intracellular ROS levels by the addition of H2O2 in H9c2
cells. H9c2 cells pretreated with or without BSO were
preincubated with DCFH2-DA (10 μM) for 15 min prior
to the addition of H2O2. After incubation with H2O2

(250 μM) for 15 min, the intensity of DCF fluorescence
was analyzed using a flow cytometer. Data represent
the mean intensities of DCF fluorescence ± SD relative
to the DCF fluorescence intensity of the control of
seven independent experiments. * p<0.05 compared with

normal cells untreated with H2O2.

Fig. 3. Effect of Trolox on intracellular ROS levels and viability.

The culture medium of H9c2 cells pretreated with BSO
(0.1 mM) was replaced by one containing BSO and
Trolox (0, 10, 50 or 200 μM) 1 h before the addition of
H2O2 at a final concentration of 250 μM. (A) Levels of
intracellular ROS were determined using DCFH2-DA at
15 min after the addition of H2O2. (B) Cell viability 6 h
after the addition of H2O2. Data represent the means ±
SD of three independent experiments. * p<0.05 com-
pared with cells treated with H2O2 in the absence of
Trolox.
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trophy is induced in the presence of PFT where ROS levels

are remarkably increased after the addition of H2O2. As

shown in Fig. 6C, the fraction of the population of cells

belonging to a region of hypertrophy increased (approxi-

mately 38%) in the presence of PFT at 72 h after the addition

of H2O2. PFT itself had no effect on the cell size and viability

of normal (data not shown) and BSO-pretreated cells in the

absence of H2O2 (Fig. 6C). We found that the development

of hypertrophy might not be connected with the levels of

intracellular ROS after the addition of H2O2 in H9c2 cells.

Discussion

We demonstrated that the addition of H2O2 induces cell

hypertrophy in normal H9c2 cells and cell death in BSO-

pretreated H9c2 cells. BSO would deteriorate the ability of

H9c2 cells to scavenge ROS, because BSO inhibits de novo

synthesis of GSH, a key compound playing roles in the

function to prevent accumulation of ROS, and then results in

lower amounts of intracellular GSH [6, 22]. A remarkable

Fig. 4. Effect of DFX on intracellular ROS levels and viability.
The culture medium of H9c2 cells pretreated with BSO
(0.1 mM) was replaced by one containing BSO and
DFX (0, 10, 25, 50 or 100 μM) 1 h before the addition of
H2O2 at a final concentration of 250 μM. (A) Levels of
intracellular ROS were determined using DCFH2-DA at
15 min after the addition of H2O2. (B) Cell viability 6 h
after the addition of H2O2. Data represent the means ±
SD of three independent experiments. * p<0.05 com-
pared with cells treated with H2O2 in the absence of
DFX.

Fig. 5. Effects of Trolox and DFX on hypertrophy. The culture
medium of H9c2 cells was replaced by one containing
Trolox (200 μM) or DFX (100 μM) with (B) or without
(A) BSO 1 h before the addition of H2O2 at a final
concentration of 250 μM. The size of cells was analyzed
72 h after the addition of H2O2 using a flow cytometer.
FS and SS were recorded for each cell to determine
the relative size and density, respectively. The culture
medium containing DFX was replaced with the fresh
medium 3 h after the addition of H2O2. Similar results
were obtained in two additional independent experiments

using different cell preparations. (C) ROS levels obtained

15 min after the addition of H2O2 in normal cells in the
presence or absence of Trolox or DFX. Data represent
the means ± SD of three independent experiments.
* p<0.05 compared with normal cells untreated with
H2O2.
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increase in intracellular ROS generation was observed after

the addition of H2O2 in BSO-pretreated cells as compared

with normal cells (Fig. 2). Trolox and DFX significantly

prevented the increase in intracellular ROS generation and

cell death by the addition of H2O2 in BSO-pretreated H9c2

cells (Figs. 3 and 4).

We showed that normal H9c2 cells exhibited a slight

increase in intracellular ROS levels followed by cell

hypertrophy upon the addition of H2O2 (Figs. 1 and 2).

Kwon et al. [23] and Chen et al. [15] proposed that H2O2-

treatement at a low concentration induces cell hypertrophy.

Pimentel et al. [14] demonstrated that mechanical stretching

of neonatal rat ventricular myocytes, which generates O2
•−,

induces hypertrophy and/or cell death, depending on the

stretch levels. These results indicate the possibility that low

levels of ROS induce hypertrophy and high levels of ROS

induce cell death. In the present study, we also observed

that cell death induced by the addition of H2O2 was pre-

vented by an inhibitor of p53, PFT, in BSO-pretreated H9c2

cells. L’Ecuyer et al. [21] demonstrated that H2O2-treatment

induces DNA injury in H9c2 cells. DNA damage activates

p53, which mediates cell death in many types of cells

containing cardiomyocytes. From these findings, we specu-

late that PFT inhibited the cell death as a consequence of

inhibiting p53 function, although the detailed mechanism of

H2O2 cytotoxicity is not clearly understood. Prevention of

H2O2-induced cell death by PFT led to hypertrophy in BSO-

pretreated H9c2 cells though levels of intracellular ROS

dramatically increased (Fig. 6). In contrast, the addition of

H2O2 induced cell hypertrophy even when Trolox and DFX

lowered the ROS levels below basal levels in both H9c2

cells pretreated with or without BSO (Figs. 3–5). From these

findings, we conclude that the development of hypertrophy

might not be connected with the levels of intracellular ROS

after the addition of H2O2 to H9c2 cells.

In the presence of Trolox or DFX, the intensity of DCF

fluorescence was not increased in H9c2 cells after the

addition of H2O2, implying a possibility that the added H2O2

itself did not induce or hardly induced the increase in DCF-

fluorescence as compared with other oxygen species such

as O2
•− and HO•. Trolox is a cell-permeable, water-soluble

derivative of vitamin E and can scavenge free radicals

such as O•− and HO• [24]. In line with other studies that the

oxidation of DCFH2 by H2O2 requires mediation by a

catalyst such as peroxidase in cell free system [25, 26], we

have also confirmed that H2O2 itself doesn’t directly oxidize

DCFH2. DCF fluorescence may reflect generated HO• in the

present experiment system, because DFX, that is able to

lower the levels of intracellular free iron and inhibit the

Fenton reaction [2, 27], suppressed the increase in DCF

fluorescence intensity in H9c2 cells after the addition of

H2O2. We have also confirmed that hypertrophy developed

in H2O2-dose dependent manner in H9c2 cells in the presence

of Trolox and that catalase inhibited the hypertrophy. From

these findings, we hypothesize that H2O2 itself participates

in the induction of hypertrophy in H9c2 cells. The present

study would provide a new insight into the hypertrophy in

H9c2 cells, a cardiomyocyte cell line, from a standpoint of

sensitivity to ROS generated after the addition of H2O2. To

clarify our hypothesis, further studies are needed using

primary cultured cardiomyocytes, which should prove the

useful information to understand the role of H2O2 in the

development of cardiomyocyte hypertrophy.

Pretreatment with BSO decreased the content of intra-

cellular GSH to 30% as compared with that of normal H9c2

cells [28]. GSH not only plays key roles in the function to

prevent accumulation of ROS, but also regulates redox

Fig. 6. Effects of PFT on ROS levels and hypertrophy. The
culture medium of H9c2 cells pretreated with BSO was
replaced by one containing BSO and PFT (0, 1, 5 and
20 μM) at 1 h before the addition of H2O2 at a final
concentration of 250 μM. (A) Cell viability 6 h after the
addition of H2O2. (B) Levels of intracellular ROS were
determined using DCFH2-DA at 15 min after the addi-
tion of H2O2. Data represent the means ± SD of three
independent experiments. (C) The size of cells was
analyzed 72 h after the addition of H2O2 using a flow
cytometer. Similar results were obtained in two additional

independent experiments using different cell prepara-
tions. * p<0.05 compared with cells treated with H2O2

in the absence of PFT.
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signaling [29, 30]. Tanaka et al. [28] observed that GSH-

depleted H9c2 cells underwent cell hypertrophy after the

addition of H2O2 in the presence of exogenous thiol com-

pounds and also proposed a requirement of thiol for the

induction of cell hypertrophy. In the present study, BSO-

pretreated H9c2 cells underwent death by the addition of

H2O2, although the treatment of BSO may result in the

increase in intracellular cysteine content due to inhibition of

γ-glutamylcysteine synthetase. In addition, non-thiol com-

pounds Trolox and DFX inhibited the cell death in BSO-

pretreated H9c2 cells after the addition of H2O2 and these

cells underwent hypertrophy. From these findings, we think

that GSH, but not cysteine, plays a role of antioxidants and

that GSH itself could not be essential for the development of

hypertrophy in H9c2 cells exposed to H2O2.

In the present study, we conclude that H9c2 cardio-

myocytes exhibit the differential sensitivity to intracellular

ROS generation with regard to hypertrophic versus death

responses to exogenously added H2O2, and propose the

possibility that cell hypertrophy is developed independently

of intracellular ROS, but cell death is dependent on, in H9c2

cells. The fact that prevention of H2O2-induced cell death

led to the hypertrophy in H9c2 cells suggests a possibility

that the prevention of cardiomyocyte death induced by

oxidative stress involves a risk of hypertrophy.
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