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Abstract

Background: Antimalarial efficacy studies in patients with uncomplicated Plasmodium falciparum are confounded
by a new infection (a competing risk event) since this event can potentially preclude a recrudescent event (primary
endpoint of interest). The current WHO guidelines recommend censoring competing risk events when deriving
antimalarial efficacy. We investigated the impact of considering a new infection as a competing risk event on the
estimation of antimalarial efficacy in single-armed and comparative drug trials using two simulation studies.

Methods: The first simulation study explored differences in the estimates of treatment failure for areas of varying
transmission intensities using the complement of the Kaplan-Meier (K-M) estimate and the Cumulative Incidence
Function (CIF). The second simulation study extended this to a comparative drug efficacy trial for comparing the K-
M curves using the log-rank test, and Gray’s k-sample test for comparing the equality of CIFs.

Results: The complement of the K-M approach produced larger estimates of cumulative treatment failure
compared to the CIF method; the magnitude of which was correlated with the observed proportion of new
infection and recrudescence. When the drug efficacy was 90%, the absolute overestimation in failure was 0.3% in
areas of low transmission rising to 3.1% in the high transmission settings. In a scenario which is most likely to be
observed in a comparative trial of antimalarials, where a new drug regimen is associated with an increased (or
decreased) rate of recrudescences and new infections compared to an existing drug, the log-rank test was found to
be more powerful to detect treatment differences compared to the Gray’s k-sample test.

Conclusions: The CIF approach should be considered for deriving estimates of antimalarial efficacy, in high
transmission areas or for failing drugs. For comparative studies of antimalarial treatments, researchers need to select
the statistical test that is best suited to whether the rate or cumulative risk of recrudescence is the outcome of
interest, and consider the potential differing prophylactic periods of the antimalarials being compared.
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Background
The primary endpoint in clinical studies of uncompli-
cated Plasmodium falciparum malaria is the occurrence
of recrudescent parasitaemia, defined as recurrence due
to the same parasite which caused the original infection.
Parasite recurrence due to a heterologous parasite,
which can either be a new infection with P. falciparum
or another species of Plasmodia can potentially preclude
the occurrence of recrudescence and constitute a com-
peting risk event [1, 2]. Such scenario can occur when
the parasite load of a newly acquired infection (regard-
less of the species or strain) outnumbers and outcom-
petes the low level of parasitaemia of an existing
infection. A recrudescence can also be precluded when
the new infection is due to a more resistant parasite
strain compared to the existing susceptible parasite.
These scenarios further depend on the inoculum density
and the multiplication rates (efficiency) of the newly
emergent infection and of the existing recrudescent
parasites.
Despite advancement in statistical methods for analys-

ing time to event outcomes [1–7], competing risk events
are often ignored in the medical literature. Recent re-
views have pointed out that a vast majority of studies
published in high impact medical journal are susceptible
to competing risk biases [8–10], and malaria is no ex-

ception. The Kaplan-Meier (K-M) survival analysis (ŜKM
ðtÞ ) is currently recommended by the World Health
Organization (WHO) for deriving antimalarial efficacy
[11, 12]. Commonly the complement of the K-M esti-

mate ( F̂KMðtÞ ¼ 1−ŜKMðtÞ) is reported as the WHO rec-
ommends replacing a first-line treatment with an
alternative regimen if the derived estimate of cumulative
failure exceeds 10% [12].
The complement of the K-M estimate provides an esti-

mate of the marginal risk (of recrudescence), i.e. the risk
of recrudescence where new infections do not occur.
However, this is only possible when all enrolled partici-
pants are admitted to a hospital setting where it is not
possible to get another mosquito bite, and thus, new in-
fection. In practice, antimalarial trials are almost invari-
ably conducted in endemic settings where new
infections occur frequently and can be observed in as
high as 50% of the cases [13]. The Cumulative Incidence
Function (CIF) estimator proposed by Kalbfleisch and
Prentice provides an alternative approach to estimate
the cumulative failure by accounting for such competing
risk events [14]. Several studies have compared the cu-
mulative failure estimates derived by the complement of
K-M method against the CIF estimator and have re-
ported that the K-M approach leads to an overesti-
mation of cumulative failure in the presence of
competing risk events [9, 15–18].

The presence of competing risk events have further
implications in comparative studies. Comparative anti-
malarial studies utilise the log-rank test for comparing
the efficacy of two drugs. The log-rank test is essen-
tially the comparison of the underlying cause-specific
hazard rate between two groups [19] (see Additional
file 1, Section 1 for definitions). In the absence of
competing risk events, there is a one-to-one corres-
pondence between the cause-specific hazard rate and
the cumulative risk. This means that any inference
drawn upon the hazard function holds equivalently
true for the survival function and the cumulative risk.
However, in the presence of competing risk events,
this one-to-one relationship no longer holds true [20].
In such a scenario, inferences drawn using the
log-rank test for comparing the equality of
cause-specific hazard rates may not be valid when the
interest is in comparing the cumulative risk of failure
at time t. An alternative approach, which compares
the difference in cumulative risks between two groups
accounting for competing risk events, is the Gray’s
k-sample test [21]. This is the usual log-rank test
where the cause-specific hazard function is replaced
by the hazard of the sub-distribution [22].
To date, there has been no comprehensive investi-

gation of how new infections impact the analysis and
interpretation of efficacy data in antimalarial trials of
uncomplicated P. falciparum malaria. This simulation
study aimed to address this gap and there were two
specific objectives:

I. To quantify the magnitude of overestimation in
cumulative risk of treatment failure derived by
the complement of the Kaplan-Meier approach
compared to the Cumulative Incidence Function
in a single-armed antimalarial trial, and

II. To quantify the influence of new infections on the
comparative efficacy between antimalarial drugs, by
comparing two statistical tests, the log-rank test
and Gray’s k-sample test

Methods
Two simulation studies were carried out to explore
the utility of competing risk survival analysis in single
armed and comparative antimalarial drug trials. The
generation of survival data is common to both of
these studies and is described first.

Generation of survival data
The time to parasitic recurrences were simulated
from baseline hazard functions reflective of under-
lying biological mechanism of recrudescence and new
infection (Fig. 1). The hazard functions were derived
from individual patient outcome data from 15 studies
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with 4122 children aged less than 5 years for the anti-
malarial regimen dihydroartemisinin-piperaquine (DP).
The existing studies analysed had an average efficacy
of 95% in a sensitive parasite population. Fractional
polynomials were used to capture non-monotonous
relationship between the log of the cumulative in-
stantaneous hazard and time to recrudescence (new
infection) in order to generate survival data (manu-
script currently under preparation). We then varied
the intercept parameters in these two functions to

explore specific scenarios outlined in the simulation
studies I and II. The following cumulative baseline
hazard (CBH) functions (on log scale) were used for
the generation of time to recrudescence (rc), and time
to new infection (ni), respectively:

ln CBH tð Þrc
� � ¼ β0−63:6284� ln tð Þ−1−0:2849� �

−0:3800� ln tð Þ2−12:3188� �

ð1Þ

Fig. 1 The instantaneous hazard, cumulative hazard and survival function used in simulation study I. Cumulative baseline hazard for
recrudescence and new infection (top panel), respective baseline hazard function (middle panel) and survival function (bottom panel)
used for generating time to recrudescence and new infection for simulation Study-I. The middle panel is the numerical derivative of the
equation used for the top panel. Note that y-axes are on different scales for each plot
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ln CBH tð Þni
� � ¼ α0 þ 9501:2150� ln tð Þ−2−0:0858� �

−31651:33� f ln tð Þ−2
� ln ln tð Þ−0:1054ð g þ 29340:83
� lnt−2 � ln lntð Þ2−0:1294� �

−12690:51
� ln tð Þ−2 � ln ln tð Þð Þ3−0:1588� �

ð2Þ

The parameters β0 and α0 represent the intercept and
were varied to achieve the desired proportion of recru-
descence and new infection.

Simulation study I: aim, design and setting
The first simulation study aimed at quantifying the mag-
nitude of overestimation in cumulative risk of treatment
failure derived by the complement of the Kaplan-Meier
method compared to the Cumulative Incidence Function
in a single-armed antimalarial trial.
The following combination of parasitic recurrences

were generated: recrudescent proportion (5, 10, and
15%) and new infection proportion (< 10%, 10–20%,
20–40% and > 40%). The base case simulation of 5%
recrudescence represents the scenario of high efficacy
currently observed with the artemisinin combination
therapies in Africa [23–25]. The scenarios of 10 and
15% recrudescence represent the situations likely to
be observed when antimalarial drug resistance
worsens, which has now been observed for some anti-
malarials in Cambodia and Vietnam [26–28]. New in-
fection proportions of < 10%, 10–20%, 20–40% and >
40% progressively represent areas of very low, low,
moderate and high malaria transmission settings.
Standard sample size calculations are not relevant for
the methodological comparisons as the aim was to
compare the derived estimates of cumulative risk of
treatment failure from the two methods. Trials of
sample size 100, 200, 500 and 1000 patients were
simulated. Sample sizes of 100 and 200 were chosen
to reflect the scenarios frequently observed in anti-
malarial studies.
The following steps describe the simulation protocol:

i. Simulate time to recrudescence (t1) using eq. (1).
The parameter β0 was varied to achieve the desired
proportion of recrudescence:

β0 = − 3.7092 for approximately 5% recrudescence by
day 63 (base case scenario for recrudescence)
β0 = − 3.0160 for approximately 10% recrudescence by
day 63

β0 = − 2.6105 for approximately 15% recrudescence by
day 63

ii. Simulate time to new infections (t2) using eq. (2).
The parameter α0 was varied in order to achieve
the desired proportion of new infections:

α0 = − 5.6004 for approximately < 10% new infection by
day 63
α0 = − 3.9909 for approximately 10–20% new infection
by day 63
α0 = − 3.2978 for approximately 20–40% new infection
by day 63
α0 = − 2.8924 for approximately > 40% new infection by
day 63

iii. Since early recurrences are very unlikely in patients
with adequate drug exposure [25, 29], the minimum
time was set to day 14 and administrative censoring
was applied on the last scheduled follow-up visit
(day 63). For simplicity, no losses to follow-up were
assumed.

iv. For each individual, the observed time (t) was
defined as the minimum of the simulated time to
recrudescence (t1) and new infection (t2).

t ¼ min t1; t2ð Þ

v. The final observed time was rounded to the nearest
weekly visit day (7, 14, 21 and so on), reflective of
the antimalarial follow-up design. The observed
event corresponded to the event with minimum
time, t, else administrative censoring was applied on
day 63.

vi. For each simulated dataset, the cumulative
probability of failure was estimated on days 28, 42
and 63 using the 1 minus K-M method and the
CIF. New infections were censored on the day of
occurrence in the 1-K-M analysis and were kept as
a separate category of competing risk event when
estimating the CIF.

vii. The absolute and relative differences in the two
estimators derived in step (vi) were calculated.

viii.For each scenario, steps (i)-(vii) were repeated 1000
times using an acceptance sampling procedure
where only datasets fulfilling the study criteria were
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kept (e.g. 5% recrudescence, < 10% new infection).
Studies where 4–6%, 9–11% and 14–16% of
recrudescences were observed were defined to have
5, 10 and 15% recrudescence, respectively. In order
to achieve the desired proportion of recrudescences
(approximately 5, 10 and 15%), this required a large
number of simulation runs, and the first 1000
datasets fulfilling the criteria were kept for analysis.

Simulation study II: aim, design and setting
The second simulation study aimed to quantify the influ-
ence of new infections on the comparative efficacy be-
tween antimalarial drugs, by comparing two statistical
tests, the log-rank test and Gray’s k-sample test.
Let drug A be the current first line treatment and drug

B be a new antimalarial drug under investigation. The
interest is in establishing whether drug A and B are dif-
ferent in terms of their effect on recrudescence. The aim
of the simulation was to present the results from the
log-rank test for comparing the equality of the K-M
curves of drug efficacies and Gray’s k-sample test for
comparing the cumulative risks of recrudescence for
drug A and drug B at day 63. For the log-rank test, new
infections were censored on the time of recurrence.
Let λA1 ðtÞ be the cause-specific hazard function of re-

crudescence for drug A and λB2 ðtÞ be the cause-specific
hazard function for drug B at time t. The null hypothesis
under consideration for the log-rank test is H0:

H0 : λ
A
1 tð Þ ¼ λB2 tð Þ

Let FA
1 ðtÞ and FB

2 ðtÞ be the CIF of recrudescence for
drug A and drug B respectively at time t. The null hy-
pothesis under consideration for the Gray’s k-sample test
is I0:

I0 : F
A
1 tð Þ ¼ FB

2 tð Þ

The following hazard ratio ðθrc ¼ λA1 ðtÞ
λB2 ðtÞ

Þ of recrudes-

cence (RC) for drug A relative to drug B was assumed:

θrc= 1.00 drug B has the same effect on RC as drug A
θrc = 2.72 drug B is associated with increased hazard of
RC compared to drug A
θrc = 0.37 drug B is associated with decreased hazard of
RC compared to drug A

Similarly, the following hazard ratio (θni) of new infec-
tion (NI) for drug A relative to drug B was assumed:

θni= 1.00 drug B has the same effect on NI as drug A
θni= 2.72 drug B is associated with increased hazard of
NI compared to drug A

θni= 0.37 drug B is associated with decreased hazard of
NI compared to drug A

θni= 1.00 represents a null scenario, θni = 2.72 repre-
sents a scenario where the new drug has a shorter ter-
minal elimination half-life compared to the existing drug
and thus exerts a shorter prophylactic effect, while θni =
0.37 represents a scenario where the new drug is associ-
ated with a longer post-treatment prophylaxis than the
reference drug.
Nine different possible scenarios of drugs A and B

were explored in this study (Table 1, Fig. 2). Some of
these scenarios presented might not be plausible in anti-
malarial studies and were kept for completeness as such
scenarios might be applicable for other therapeutic inter-
ventions [30]. For antimalarial studies, we consider the
scenarios where when drug B, compared to drug A ex-
erts unidirectional effect i.e. associated with increased
(or decreased) risk of both recrudescence and new infec-
tion as the most likely scenario. Similarly, a partially null
scenario can be considered likely to be observed in anti-
malarial trials. For example, when drug A with a short
half-life and drug B with a long half-life are compared,
then despite observing similar efficacy, it can be ex-
pected that more new infections will be observed with
drug A (Scenario 1B in Table 1).
Since this simulation was set-up to evaluate type I

error when comparing the two drugs, the number of pa-
tients needed per arm to detect a difference of a given
log-hazard ratio was calculated. A sample size of 500 pa-
tients per arm was found to be adequate across all the
simulation scenarios studied assuming 80% power for
three different log-hazard ratios (Additional file 1,
Section 2). However, as for simulation study I, we re-
peated the simulation for n = 100, 200, 500 and 1000
subjects/arm for completeness.
The following steps describe the simulation protocol

for each scenario:

i. For each drug arm, time to recrudescence (t1) was
simulated for 500 hypothetical patients using eq.
(1). Since drug A is the reference treatment, its
intercept parameter was held constant at − 3.7092
for all the simulation scenarios. The intercept
parameter for drug B was varied to simulate the
scenario of null effect (− 3.7092), increased effect
(− 2.7092) or decreased effect (− 4.7092) of drug B
on recrudescence relative to drug A. The
corresponding hazard functions for different
scenarios studied are presented in Fig. 2.

ii. For each drug arm, time to new infection (t2) was
simulated for 500 patients using eq. (2). Since drug
A is the reference treatment, its intercept
parameter was held constant at − 2.8924 for all the
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simulation scenarios. The intercept parameter for
drug B was varied to simulate the scenario of null
effect (− 2.8924), increased effect (− 1.8924) or
decreased effect (− 3.8924) of drug B on new
infection relative to drug A. The corresponding
hazard functions for different scenarios studied are
presented in Fig. 2.

iii. Repeat steps (iii-v) as outlined in simulation study I
iv. The difference between drugs A and B in terms

of cumulative recrudescence were tested using

the log-rank test at day 63 by censoring the new
infections. The equality of CIFs for the two regi-
mens was tested using Gray’s k-sample test where
a new infection was considered a competing risk
event. P-values and the associated chi-squared
test statistic were extracted. The hazard ratio for
drug A relative to drug B was estimated using
the Cox regression model.

v. The above simulations were repeated 1000 times
and the proportion of times the derived p-value
from log-rank test and Gray’s k-sample test was less
than 0.05 was calculated. This is equal to the rejec-
tion of the null hypothesis that there is no differ-
ence between the two treatment regimens in terms
of the risk of recrudescence.

Software
The time to recrudescence and new infection were gen-
erated using the survsim package in Stata [31] (See
Additional file 1, Section 3 for Stata codes). The
log-rank test was carried out using the survdiff function
in the survival package and Gray’s k-sample test was per-
formed using the cuminc function in the cmprsk pack-
age in R software (Version 3.2.4) [32].

Results
Simulation study I
The findings of this simulation study are presented in
Figs. 3 and 4, and Table 2. The 1 minus K-M was associ-
ated with an overestimation of cumulative failure in all

Table 1 Different scenarios for comparing two drug regimens
(drug B compared against drug A) in simulation study II

Scenario Description

1 Drug B has same effect on RC as Drug A, and

1A Drug B has same effect on NI

1B Drug B Increases NI

1C Drug B Decreases NI

2 Drug B has same effect on NI as Drug A, and

2A Drug B increases RC

2B Drug B decreases RC

3 Drug B has different effect on both RC and NI relative to
Drug A, and

3A Drug B increases RC and increases NI

3B Drug B increases RC and decreases NI

3C Drug B decreases RC and increases NI

3D Drug B decreases RC and decreases NI

RC Recrudescence, NI New infection

Fig. 2 The baseline hazard function for recrudescence and new infection used for simulation study II. Top panel (recrudescence); bottom (new
infection). Drug A (orange) is the reference arm and its hazard function for recrudescence and new infection is kept constant across all the
simulation scenarios studied. Drug B (green) is a new regimen which is being compared against drug A. Scenario 1 (1A, 1B and 1C) is the null
scenario where there is no difference in hazard function of recrudescence between these two drugs. In scenario 2, the two regimens have same
hazard function for new infection, but drug B has either increased or decreased hazard of recrudescence with respect to drug A. In scenario 3,
the two drugs differ in terms of both recrudescence and new infection
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the scenarios studied. The magnitude of the overesti-
mation increased with i) increasing proportion of new
infections, ii) increasing proportion of recrudescences,
and iii) the study follow-up duration (Fig. 3).
In the areas of low transmission (< 10% observed new

infection), the maximum overestimation in the derived

cumulative risk of recrudescence on day 63 was 0.16%
when drug exhibited 95% efficacy (base case scenario),
however as the drug efficacy fell to 85%, the difference
in estimates increased to 0.46%. In the high transmission
areas (> 40% new infections), the maximum absolute
overestimation by the 1-KM method was 1.75% for the

Fig. 3 Overestimation of failure using K-M method compared to the CIF in simulation study I (n = 500 subjects). The overestimation ð F̂KMðtÞ− F̂CIFðtÞÞ
of cumulative recrudescence by the K-M method. Each panel represents different underlying status of drug efficacy on average (~ 5, 10 and 15%
recrudescence observed) in a study with a sample size of 500 subjects/trial. The results are presented from 1000 independent simulation runs. The
variation in absolute overestimation within each boxplot is due to varying proportion of new infection observed within the simulation scenario. Within
each panel, the colours indicate different simulated scenarios of proportions of new infections: < 10% new infections (grey), 10–20% new infections
(blue), 20–40% new infections (green) and > 40% new infections (orange), representing areas of progressively increasing malaria transmission from very
low to very high

Fig. 4 Cumulative failure estimates by study follow-up using extreme examples from simulation study I (n = 500 subjects). The figure shows the
derived cumulative estimate of recrudescence in three cases from simulation study I where the maximum difference was observed between
1-(K-M) and CIF for 5, 10 and 15% respectively in the areas of very high transmission (> 40% new infections). The absolute difference between the
two estimators was 1.8, 3.1 and 4.3% on day 63 respectively for 5, 10 and 15% recrudescence. These three cases are the extreme cases presented
in Fig. 3 for the scenarios where > 40% new infections were observed
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base case simulation and this rose to 3.13 and 4.30%
when the drug efficacy declined to 90 and 85% respect-
ively (Table 2, Fig. 4).
The results when expressed on relative scale exhibited

the same trend and conclusion as observed on the abso-
lute scale (Additional file 1, Section 4). The results
remained unaffected when the simulation was repeated
with sample sizes of n = 100, 200, and 1000 patients
(Additional file 1, Section 4).

Simulation study II
For each simulated dataset, the hazard ratio of recrudes-
cence and new infection (for drug B relative to drug A)
was estimated using the Cox model with treatment
group as a covariate. The distribution of hazard ratios
from 1000 simulations is presented in Fig. 5. Table 3
presents the results for the different scenarios consid-
ered with sample size of 500 patients per arm, which

had at least 80% power to detect the desired hazard ratio
for recrudescence between the two drugs across all the
scenarios studied.

No difference in recrudescence
In the null situation (Scenario 1A), where it was postu-
lated there was no difference in the risk of recrudes-
cence and risk of new infection between the two drug
regimens, both tests achieved their correct size (α) i.e.
rejection rate was close to nominal 5%, as expected. Des-
pite there being no difference between the two drugs for
both events (as the respective hazard functions for re-
crudescence and new infections were identical for both
drugs), stochastic variations will lead to a rejection of
the null hypothesis approximately 5% of the time when
the converse is true. In the partially null scenario of 1C
i.e. drug B had the same effect on recrudescence as drug
A but was associated with decreased hazard of new

Fig. 5 Distribution of simulated hazard ratio (n = 500 subjects) in simulation study II. The scatterplot of estimated hazards ratio for recrudescence
and new infection for drug B relative to drug A from 1000 simulation runs. The median and interquartile range is shown. The centre green dot
depicts the true hazard ratio which was used to simulate the respective datasets (1, 2.72 or 0.37). RC = recrudescence, NI = New infection. The
description of each of the individual scenario is provided in Table 1
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infection, both tests achieved their correct α. In partially
null Scenario 1B, where drug B was associated with in-
creased risk of new infection by a hazard ratio of 2.72,
the log-rank test correctly achieved its nominal size (5%
rejection), but the Gray’s k-sample test led to a slightly
higher rejection rate (11.9%).

Drug A and B have the same post-treatment prophylaxis
When there was no difference between the drug A and
drug B in terms of their post-treatment prophylaxis, but
drug B was associated with increased recrudescence with
a hazard ratio of 2.72 (Scenario 2A), both tests had simi-
lar rejection probability. The median proportion of re-
crudescence observed in this scenario was 6.5% in drug
B compared to 2.5% for drug A. In scenario 2B, where
the drug B decreased recrudescence relative to drug A
(hazard ratio = 0.37), both tests led to rejection of the
null hypothesis 80% of the time.
The most relevant and biologically plausible sce-

nario in an antimalarial trial occurs when a new
treatment exerts unidirectional effect on recrudes-
cence and new infection (compared to the reference
drug), corresponding to scenarios 3A and 3D. In sce-
nario 3A, where drug B was associated with approxi-
mately 2-fold increase in both recrudescence and new
infection compared to drug A, the log-rank test ap-
peared to be the more powerful of the two ap-
proaches with rejection probability of 99% compared
to 90% with Gray’s k-sample test. In situation 3D,
where drug B was associated with a median reduction
in recrudescence and new infection by approximately
60%, the log-rank test again proved to be superior by

rejecting the null hypothesis of no difference (between
drug A and drug B) 82.8% of the time compared to 71.3%
by the Gray’s k-sample test (Fig. 6, Panel D). The most in-
teresting difference was observed when drug B exerted a
differential effect on recrudescence and new infection, i.e.
reduced recrudescence but increased new infection com-
pared to drug A (Scenario 3C). In this situation, the Gray’s
k-sample test appeared to be the more powerful of the
two tests (Fig. 6, Panel C). In Scenario 3B, where drug B
was associated with increased recrudescence but reduced
new infection, the results of the two tests were again very
similar.

Assumption of proportional hazards
In the simulation scenarios studied, the assumption of
proportional hazards was violated in 5.4% (490/9000) of
the simulated datasets for the comparison of recrudes-
cence, and 4.5% (407/9000) for new infection. The vio-
lation of this assumption didn’t seem to affect the
results of the tests as the proportion of times this assump-
tion was violated were similar across different scenarios
(Additional file 1, Section 5). Increasing the number of
simulation runs to 10,000 from 1000 didn’t change the re-
sult (Table 3, results from 10,000 simulation runs shown
in parenthesis). However, there were small variations in
the results when the simulation was repeated with differ-
ent sample sizes (Table 4).

Impact of sample size
In studies with n = 100, and 200 (which were known
to be under-powered from the sample size calcula-
tions), both tests achieved their nominal 5% level i.e.

Table 3 Probability of rejecting the null hypothesis at two sided 0.05 level (n = 500 subjects per arm) in simulation study II

Scenario True effect size from which
data was simulated a

Median observed
proportions of RC
and NI in drug A b

Median observed
proportions of RC
and NI in drug B b

Rejection probability from 1000
simulation runs (10,000 simulation
runs)

1. Drug B has same effect on RC as Drug A Log-rank test Gray’s k-sample test

A. Drug B has same effect on NI HRrc = 1.00, HRni = 1.00 2.5% RC; 21.4% NI 2.5% RC; 21.4% NI 0.047 (0.045) 0.0470 (0.045)

B. Drug B Increases NI HRrc = 1.00, HRni = 2.72 2.5% RC; 21.4% NI 1.9% RC; 38.6% NI 0.052 (0.048) 0.119 (0.125)

C. Drug B Decreases NI HRrc = 1.00, HRni = 0.37 2.5% RC; 21.4% NI 2.8% RC; 9.4% NI 0.045 (0.047) 0.062 (0.062)

2.Drug B has same effect on NI as Drug A

A. Drug B increases RC HRrc = 2.72, HRni = 1.00 2.5% RC; 21.4% NI 6.5% RC; 20.0% NI 0.991 (0.996) 0.995 (0.996)

B. Drug B decreases RC HRrc = 0.37, HRni = 1.00 2.5% RC; 21.4% NI 0.9% RC; 22.0% NI 0.801 (0.797) 0.804 (0.797)

3. Drug B has different effect on both RC and NI relative to Drug A

A. Drug B increases RC and increases NI HRrc = 2.72, HRni = 2.72 2.5% RC; 21.4% NI 5.1% RC; 36.3% NI 0.991 (0.990) 0.897 (0.896)

B. Drug B increases RC and decreases NI HRrc = 2.72, HRni = 0.37 2.5% RC; 21.4% NI 7.2% RC; 8.7% NI 0.996 (0.723) 0.999 (1.000)

C. Drug B decreases RC and increases NI HRrc = 0.37, HRni = 2.72 2.5% RC; 21.4% NI 0.7% RC; 39.5% NI 0.714 (0.723) 0.903 (0.910)

D. Drug B decreases RC and decreases NI HRrc = 0.37, HRni = 0.37 2.5% RC; 21.4% NI 1.0% RC; 9.6% NI 0.828 (0.820) 0.713 (0.718)
aHazard ratio for recrudescence and new infections derived as the ratio of the respective cause-specific hazard function (Fig. 5.6)
HRrc Hazard ratio for recrudescence for drug B relative to drug A
HRni Hazard ratio for new infection for drug B relative to drug A
bmedian observed proportion from 1000 simulation runs
RC Recrudescence, NI New infection
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rejection probability close to 5% for scenario 1 (Table 4).
In scenarios 2 and 3, where the hazards ratio for re-
crudescence between the two drugs was 2.72 and
0.37, the rejection probability did not reach the re-
quired level of 0.8.
As expected, when the sample size was increased to

1000 patients per arm, both tests achieved their nom-
inal size in the null scenario with the exception of

Gray’s k-sample test for scenario 1B, which rejected
the null hypothesis 21.7% despite there being no dif-
ference between the two drugs. In this scenario, the
influence of sample size was apparent as the rejection
probability using Gray’s k-sample test progressively in-
creased with an increase in study sample size. Both
tests rejected the null hypothesis in nearly all simula-
tions for scenarios 2 and 3.

Fig. 6 Ratio of recrudescence and new infection in simulation study II (n = 500 subjects/arm). The ratio of recrudescence for drug B relative to
drug A plotted against the ratio of new infection for drug B relative to drug A for 1000 simulated dataset

Table 4 Probability of rejecting the null hypothesis at two sided 0.05 level for different sample sizes in simulation study II

n = 100 subjects per arm n = 200 subjects per arm n = 500 subjects per arm n = 1000 subjects per arm

Scenario LR G LR G LR G LR G

1A 0.043 0.042 0.055 0.045 0.047 0.047 0.042 0.040

1B 0.043 0.055 0.052 0.082 0.052 0.119 0.051 0.217

1C 0.041 0.052 0.047 0.052 0.045 0.062 0.044 0.080

2A 0.554 0.548 0.846 0.838 0.997 0.995 1.000 1.000

2B 0.198 0.187 0.391 0.395 0.801 0.804 0.982 0.983

3A 0.501 0.312 0.787 0.543 0.991 0.897 1.000 0.997

3B 0.570 0.653 0.854 0.911 0.996 1.000 1.000 1.000

3C 0.151 0.251 0.328 0.501 0.714 0.903 0.964 0.996

3D 0.231 0.168 0.422 0.353 0.828 0.713 0.988 0.959

LR Log-rank test, G Gray’s k-sample test
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Discussion
Competing risk survival analysis is increasingly being
used in the medical and statistical literature [8, 33].
However, this approach remains novel in the context of
antimalarial research [34]. The K-M method is the cur-
rently recommended approach for deriving antimalarial
drug efficacy of uncomplicated P. falciparum malaria.
Theoretically, the K-M method overestimates the cumu-
lative incidence of recrudescence in the presence of new
infection [17]. The magnitude of this overestimation is
currently not documented and the implications for com-
parative efficacy studies is unknown. In order to fill this
research gap, we carried out two simulation studies
using biologically plausible survival functions consistent
with the underlying pharmacokinetics profile of the anti-
malarial drugs.
The first simulation study quantified the degree of

overestimation in cumulative incidence of recrudes-
cence using the naïve 1 minus K-M method com-
pared to the CIF in a single-armed antimalarial trial.
The magnitude of the overestimation was found to
increase with the increasing proportion of recrudes-
cence, new infection and study follow-up duration; a
finding consistent with the statistical and medical lit-
erature [16, 17]. The simulation study suggested that
the estimates from the two approaches differed by
less than 0.1% for most of the scenarios presented in
Table 2; such differences are unlikely to have clinical
consequences. In a scenario which reflected the
current observations of drug efficacy with artemisinin
combination therapies (> 95%), the overestimation was
negligible in the areas of low transmission intensities,
i.e. new infections lower than 10% (Table 2). For high
transmission areas, this reached a maximum of 1.75%.
However, we have also clearly identified several sce-
narios where the two methods will lead to a substan-
tially different estimate. The magnitude of the
overestimation was greatly increased when antimalar-
ial drug efficacy began to decline. At 90% drug effi-
cacy, the absolute deviation in derived estimates
reached a maximum of 0.27% in the areas of low
transmission and 3.13% for high transmission areas.
When the efficacy fell to the low level of 85%, the
overestimation reached 4.30% in the areas of high
transmission. Similarly, in antimalarial studies, add-
itional treatment is administered on detecting a recur-
rent parasitaemia. In such a scenario where the
recurrence is due to a new infection, which has
masked an existing low-density parasitaemia of the
original infection (recrudescence), this would prevent
the potential recrudescence from being observed due
to additional antimalarial drugs. This will lead to an
underestimation of failure. Taken together, our results
highlight that estimation of drug failure in areas of

high transmission requires careful attention and the
CIF provides an alternative approach for deriving the
failure estimates.
The second simulation study explored the results

from the log-rank test for comparing the
cause-specific hazard rates and Gray’s k-sample test
for comparing the cumulative incidences in compara-
tive drug trials. A total of nine different hypothetical
scenarios on how a new drug B might affect the re-
crudescence and new infection compared to an exist-
ing drug A were explored (Table 1). There were
contrasting differences in two out of the nine scenar-
ios. When drug B, compared to drug A, was associ-
ated with increased (or decreased) risk of both
recrudescence and new infection, we found that
log-rank test was more powerful compared to Gray’s
k-sample test for detecting differences between the
two treatments. However, when drug B had higher
risk of recrudescence and lower risk of new infection
(or vice versa) compared to drug A, then Gray’s
k-sample test was more powerful in detecting the dif-
ferences between the two drugs in terms of primary
endpoint (Table 3). This finding is consistent with the
results reported by two previous simulation studies in
statistical literature [18, 30]. However, it must be
stressed that the latter scenario is less likely to be ob-
served within the context of comparing antimalarial
regimens in a real-life situation.
Our simulation study has a number of methodo-

logical limitations. First, time to recrudescence and
new infection were generated assuming independence.
While this greatly simplified the simulation settings,
this is an assumption unlikely to be verified and car-
rying out simulation studies accounting for correl-
ation between recrudescence and new infections
remained beyond the scope of this work. Second, we
assumed no losses to follow-up for simplicity. A loss
to follow-up of approximately 20% is anticipated in
antimalarial studies and this can be incorporated in
the simulation studies as future work. Third, when
simulating time to recrudescence, we used rejection
sampling and kept the first 1000 observations with 4–
6%, 9–11% and 14–16% recrudescence for the scenar-
ios of 5, 10 and 15% recrudescence, respectively. This
approach might have led to less variability between
the 1000 simulated datasets. Fourth, in simulation
study II, we simulated data based on reference drug
A assuming low failure in the areas of low transmis-
sion (2.5% recrudescence and 21.4% new infections).
Hence, the generalisability of results for comparative
studies in areas of different transmission settings
might be limited. And finally, this manuscript has fo-
cused on the point estimation of the derived failure
estimates. However, we would like to emphasise that
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the uncertainty around the point estimates (associated
95% confidence interval) be given as equal importance
as the point estimate.
Our results have important clinical consequences. The

current WHO strategy for monitoring and evaluation of
antimalarial drug efficacy uses a series of
threshold-based approaches. For new drugs to be eligible
for introduction as a first line treatment, derived failure
estimates should be less than 5%, and for current first
line treatments, the failure estimates should not exceed
10% [35]. The results presented in Fig. 4 highlighted the
implications for drug policy usage when the derived esti-
mates are at the cusp of these thresholds. The derived
estimate of cumulative failure was greater than 5% (Fig.
4a) and 10% (Fig. 4b) when the K-M method was used,
but remained below 5 and 10% respectively when using
the competing risk survival analysis approach, i.e. the
CIF. This highlights that ignoring the competing risk of
new infections can result in potentially misleading con-
clusions being drawn from a clinical study, particularly
in high transmission settings where a large fraction of
patients may develop new infections during the
follow-up period, thus confounding the derived efficacy
estimates. Similarly, the effect of competing events has
implications for not only standalone trials but also com-
parative drug trials, particularly when the partner com-
ponent of the artemisinin combination therapies are
eliminated at different rates. For example, lumefantrine,
the partner drug in artemether-lumefantrine (AL), has
an elimination half-life of 4 days and hence almost all
antimalarial activity is sub-therapeutic within 16 days
[36]. Conversely the elimination half-life of piperaquine
(partner drug in dihydroatemsinin-piperaquine (DP)) is
four weeks and it exerts prolonged post treatment
prophylaxis, reducing the risk of recurrent infections for
up to 42 days [36]. Hence, the observed proportion of
competing risk events is expected to be significantly
lower following DP compared to AL, especially in the
areas of high transmission. When a large fraction of pa-
tients develop new infections, fewer patients are avail-
able from which recrudescences can be observed. Hence,
it is important that the proportion of competing risk
events be taken into consideration when comparing two
regimens with different pharmacological properties.
There is an ongoing debate in medical and statistical

literature regarding the choice of the method for com-
paring treatment regimens in the presence of competing
risk events [19, 30, 37–39]. It is increasingly being advo-
cated that if the research interest is in understanding the
biological mechanism of how a treatment affects hazard
rate, the log-rank test is considered the appropriate
method. However, when the interest is in comparison of
overall risk i.e. if individuals receiving a particular drug
are more likely to experience recrudescence, the

comparison of CIF through Gray’s k-sample test is con-
sidered appropriate [17, 40, 41]. Many authors advocate
presenting results of both these approaches to provide a
complete biological understanding of the treatment on
different endpoints [17, 42]. It is important that re-
searchers are aware that the choice of the analytical
method in the presence of competing risk events should
be guided by the research question of interest.

Conclusions
Our simulation study showed that 1 minus K-M method
led to an overestimation of cumulative antimalarial treat-
ment failure compared to the CIF and the degree of
overestimation was far greater in high transmission
areas. In the areas where a large proportion of recur-
rences are attributable to new infections, the use of CIF
should be considered as an alternative approach for the
derivation of failure estimates for antimalarial studies.
For comparative studies of antimalarial treatments, the
choice of the statistical test should be guided by whether
the rate or cumulative risk of recrudescence is the out-
come of interest.
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