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Introduction

Sub-basal corneal nerves penetrate the peripheral

Purpose: The purpose of this study was to establish a deep learning model for
automated sub-basal corneal nerve fiber (CNF) segmentation and evaluation with in
vivo confocal microscopy (IVCM).

Methods: A corneal nerve segmentation network (CNS-Net) was established with
convolutional neural networks based on a deep learning algorithm for sub-basal corneal
nerve segmentation and evaluation. CNS-Net was trained with 552 and tested on 139
labeled IVCM images as supervision information collected from July 2017 to Decem-
ber 2018 in Peking University Third Hospital. These images were labeled by three
senior ophthalmologists with ImageJ software and then considered ground truth. The
areas under the receiver operating characteristic curves (AUCs), mean average precision
(mAP), sensitivity, and specificity were applied to evaluate the efficiency of corneal nerve
segmentation. The relative deviation ratio (RDR) was leveraged to evaluate the accuracy
of the corneal nerve fiber length (CNFL) evaluation task.

Results: The model achieved an AUC of 0.96 (95% confidence interval [Cl] = 0.935-
0.983) and an mAP of 94% with minimum dice coefficient loss at 0.12. For our dataset,
the sensitivity was 96% and specificity was 75% in the CNF segmentation task, and an
RDR of 16% was reported in the CNFL evaluation task. Moreover, the model was able
to segment and evaluate as many as 32 images per second, much faster than skilled
ophthalmologists.

Conclusions: We established a deep learning model, CNS-Net, which demonstrated a
high accuracy and fast speed in sub-basal corneal nerve segmentation with IVCM. The
results highlight the potential of the system in assisting clinical practice for corneal
nerves segmentation and evaluation.

Translational Relevance: The deep learning model for IVCM images may enable rapid
segmentation and evaluation of the corneal nerve and may provide the basis for the
diagnosis and treatment of ocular surface diseases associated with corneal nerves.

temperature'-> and mediating wound healing, blink
reflex, and tear film stability.’

In vivo confocal microscopy (IVCM) is a nonin-
vasive imaging modality that enables corneal visual-

cornea radially and form the nerve plexus between
Bowman’s layer and the basal epithelium, playing an
important role in the sensation of touch, pain, and
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ization and evaluation in vivo. Conditions such as
diabetic peripheral neuropathy (DPN),*® dry eye
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disease (DED),”® inflammation keratitis,'® contact
lens wearing,!! and refractive surgery'?!> have demon-
strated corneal nerve abnormities by IVCM. The
corneal nerve fiber length (CNFL) is significantly
reduced in individuals with diabetic mellitus (DM),
and studies have suggested IVCM to be a more sensi-
tive detection method for DPN than other estab-
lished tests.>® Studies have also revealed significantly
reduced CNFL in patients with DED.'"* Moreover,
IVCM research has documented a lower nerve density
of the central cornea after laser-assisted in situ in
keratomileusis (LASIK) and photorefractive keratec-
tomy (PRK)."> Thus, IVCM is a critical method in
ocular surface disease evaluation. Rapid segmentation
and evaluation of sub-basal corneal nerves are essential
in diagnosis and assessments of various diseases that
may have an impact on clinical decision making and
prediction.

Traditional corneal nerve fiber (CNF) segmenta-
tion and evaluation rely on time-consuming manual or
semi-automated methods that require further improve-
ments in speed and accuracy.'® To solve this problem,
software for automatic CNF segmentation and evalu-
ation has been developed. Scarpa et al. identified
CNFs in IVCM based on seed points, and a track-
ing module detected the nerve direction and point
movement through some successive segments perpen-
dicular to the nerve.!” Another software package was
used to detect CNFs based on ridge map calcula-
tion.'® Dabbah et al. first used a 2D Gabor filter to
detect CNFs and then extended this filter to a dual-
model detector.'®2* Nevertheless, software associated
with CNFs, as examined by IVCM, was determined to
be impractical in the clinic.

Deep learning-based approaches have been revolu-
tionized over the past few years and are widely used
in numerous fields, including image recognition, detec-
tion, and segmentation.”! In combining the ability
to extract and represent features and layer-by-layer
abstraction, the convolutional neural network (CNN)
has demonstrated amazing performance on computers
vision tasks because of its natural consistency with a
two-dimensional structure of image data. CNNs based
on deep learning models have been applied in various
fields of ophthalmology, including glaucoma, retinopa-
thy of prematurity (ROP), and age-related macular
degeneration (AMD).??> Previous research has demon-
strated the efficacy of deep learning models in the
identification of diabetic retinopathy (DR) and DPN.
Abramoff et al. showed a deep learning system that
was able to achieve an area under the receiver operat-
ing characteristic curve (AUC) of 0.980, with a sensi-
tivity of 96.8%, and a specificity of 87.0% in DR
detection,”®?* which achieved a better performance
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than ophthalmologists. The present research aimed to
train a CNN model named corneal nerve segmentation
network (CNS-Net) for CNF segmentation and evalu-
ation with IVCM images. The model was intended to
directly and rapidly provide us with information on
sub-basal corneal nerve segmentation and evaluation
that may assist the decision making process.

Dataset

A total of 5221 images from 104 patients were
collected at Peking University Third Hospital from
July 2017 to December 2018. The present study was
conducted following the Helsinki Declaration and was
approved by the local review board. Informed consent
was not obtained for each participant because it was
a retrospective study, but we pledged that the images
enrolled in the present research would not be linked to
individual patients.

The images were taken with the Heidelberg Retina
Tomograph Rostock Corneal Module (Heidelberg
Engineering GmbH, Heidelberg, Germany). The
images were captured by IVCM with a setting of 484
by 384 pixels over an area of 400 um by 400 pum and
a lateral spatial resolution of 0.5 um and a depth
resolution of 1 to 2 um. A total of 40 to 50 pictures
were captured for each eye from the corneal epithelium
to the endothelium.

The flow chart of images obtaining, screening, and
labeling is shown in Figure 1. All images were cropped
first with a valid area of 384 pixels by 384 pixels.
Then, some basic principles were followed in quality
control. Images should reveal at least one clearly visible
corneal nerve, and images with strong artifacts were
excluded. Afterward, CNFs were drawn manually by
the same three ophthalmologists independently (as
shown in Fig. 1) as ground truth applying the Java-
based software ImageJ (National Institute of Health,
Bethesda, MD) with the NeuronJ (Biomedical Imaging
Group, Lausanne, Switzerland) plugin, and the CNFL
was calculated automatically with Imagel] software
based on manual CNF annotation. The discrepancy of
the image screening and labeling results among the 3
ophthalmologists was 65 resolved by a simple majority
vote to obtain the final ground truth.

A dataset with 691 samples was proposed following
quality control processes, which had an average of 5
to 6 images for each participant. Each of the samples
consisted of an original IVCM image and its binary
CNF annotation image, as shown in Figure 2. For
building a reliable benchmark and ensuring the gener-



translational vision science & technology

Automated Segmentation and Evaluation of CNF

TVST | Special Issue | Vol.9 | No. 2 | Article 32 | 3

5221 images
Quality control by \A
3 ophthalmologists /‘
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set)

Figure 1. Data obtaining, screening and labeling.
IVCM image
Figure 2. Data example.

alization and stability of artificial intelligence models,
the dataset was divided into 3 parts in a ratio of
7:1:2, namely, a training set (483 samples, 70%), valida-
tion set (69 samples, 10%), and test set (139 samples,
20%), which are widely applied parameters in computer
vision and artificial intelligence.

CNS-Net

A CNN framework was established to output
the CNF segmentation and CNFL from IVCM

Annotated Cornea Nerve Fibers Ground Truth(without backward)

images. The CNS-Net model architecture is shown in
Figure 3. The CNN model consisted of an encoder, an
information extractor, and a decoder.

The encoder used a ResNet34 architecture®
without the last output layers, which was transferred
from the ImageNet dataset with a powerful capabil-
ity for image feature extraction. The information
extractor consisted of a series of densely connected
dilated convolution and concatenation operators with
a final adoptive pooling layer. Finally, the gener-
ated feature map was analyzed by a decoder for the
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Backbone based on Resnet34
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Figure 3. CNS-Net architecture.

CNF segmentation task and the CNFL evaluation
task.

In the CNF segmentation branch, the transposed
convolution operator with a bilinear interpolation
algorithm was used to upscale the feature map from
an encoder and information extractor. During this
process, the size of the feature map was amplified
to the same size as that of the input IVCM image.
Inspired by residual connections in the ResNet model
and U-Net architecture, skip connections from encoder
to decoder segmentation task branch were leveraged to
improve the information flow from shadow features to
high-level semantic features. This helped to restore the
feature map with more detailed information intuitively.
Finally, a softmax layer was introduced to classify every
pixel of the feature map as the CNF or background
along the channel axis.

In the CNFL evaluation branch, two convolution
layers with a pooling operator and two fully connected
layers were used to act on the feature map from the
information extractor, and the CNFL was obtained.

Loss Function

Traditional loss functions are designed for a single
image segmentation task or numerical calculation task,
but our CNS-Net model combined two types of
computer vision calculation tasks. For faster and better
convergence of the end-to-end training process for the
present CNS-Net, a novel loss function was introduced

| Adoptive Pooling ‘

by a combination of different loss forms to optimize
our model.
The dice coefficient (DC), a statistic used to gauge

the similarity of two sets X and Y, is defined as
DC(X,Y)= Z‘I)iflﬂ}lfll Thus, the loss of CNF segmen-
tation task can be calculated when the ground truth is

available, as in Equation 1:

L1 i 20, Y plk, Dk, i)
o ¥ Pk i)+ YN gk, i)
k 1 ’ i 9

(1)

where N is the number of pixels in one image and K
is the class number. Here, p(k, i) € [0, 1] and g(k, i)
€ {0, 1}, respectively, denote the predicted probabil-
ity and the ground truth for the labeled class & for the
ith pixel. For the CNFL evaluation task, the common
mean square error (MSE) is used, as in Equation 2:

Ly ke — yy
Leval = 2 - ;’l ) (2)

where 7 is the number of samples. In addition, y; and
yhe | respectively, denoted the predicted CNFL and its
actual value. Moreover, a weight decay (also called the
regularization loss) L., was added to avoid overfitting
because of our small dataset size.

The final loss function was formuled as Equation 3:

Lloss = Lseg + Leval + Lreg- (3)
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Experiment

Data Augmentation

To reduce the risk of overfitting in the model train-
ing phase, some data augmentation methods were used.
First, image normalization of the red, green, and blue
(RGB) channels, horizontal flip, vertical flip, and diago-
nal flip were applied. With these direct and effective
methods, each image in the training set was augmented
to eight different copies. Subsequently, random data
augmentation methods were used in the model train-
ing procedure, including image shifting randomly in the
range [—30°, 30°] and color jittering in the hue, satura-
tion, and value (HSV) color space, image scaling from
1.1to 1.2. We then cropped the input size randomly and
added principal component analysis (PCA) noise with
a coeflicient sampled from a normal distribution with
parameters N'(0, 0.1).

Experiment Details

The training process was implemented in Python
version 3.7.6 based on the open-source deep learn-
ing platform MxNet. A fixed ResNet34 model with
pretrained parameters on ImageNet was applied on the
encoder, whereas other parameters of CNS-Net were
initialized with the Xavier algorithm.?® Nesterov accel-
erated gradient (NAG) descent was used for training
with batch size 32, momentum 0.9, and weight decay
0.0001. Learning rate warmup®’ and cosine learning
rate decay policy”> were also used. The maximum
epoch was 300 with an automatic stop mechanism.
In artificial intelligence research, iteration refers to the
process of updating model parameters with mini-batch
data, whereas epoch refers to the process of making use
of the entire training data set by many iterations. We
can formulate the relation of the two terms as:

the number of iteration

_the size of entire training data set (for one epoch)

the size of mini_batch data
In our paper, one epoch is 16 iterations.

Evaluation Metrics

All of the metrics were calculated against the ground
truth. For the accuracy of CNF segmentation, the
AUCs, mean average precision (mAP), sensitivity, and
specificity were reported. The mAP was calculated
when the model was trained on the training set with the
supervision of the validation set. The mAP was defined
as:

N 0
map = NEaNCNEy L5 (78 )
CNF;egUCNFét N “ y? ’

TVST | Special Issue | Vol.9 | No. 2 | Article32 | 5

1.0
(M e ——
0.8
0.6 .
—— Train loss
—— mAP
—— Validation loss
0.4
”? L——\
e e LN
0.0
0 20 40 60 80 100 120 140
epochs

Figure 4. Training and validation loss curve.

where CNF,, is the segmentation result of our model
for IVCM images and CNF,, is the manual ground
truth by ophthalmologists. N is the size of the dataset,
¢ 1s the overlapped area between the model segmented
result and manual ground truth for the ith IVCM
image, and y¥ is the union area between them. The
accuracy of CNFL task was evaluated by the relative
deviation ratio, which was defined as the ratio of the
absolute value of the difference between the output
CNFL value and the input CNFL value to the input
CNFL value, as

|CNFLpyeq — CNF Ly|
CNFLy

Relative Deviation Ratio =

)

As shown in Figure 4, the training loss and the
validation loss quickly dropped to approximately 0.2
after the first 5 epochs of training and ultimately
decreased to 0.12 and 0.13 as the training process
continued. When the train loss did not decrease with
20 consecutive epochs, the procedure of model train-
ing stopped automatically, and we obtained a 92%
validation mAP. The synchronous decline of train loss
and validation loss verified the stability of the training
process and ensured the generalization ability of the
model.

The receiver operating characteristic (ROC) curve
of the model’s segmentation result on the test set is
illustrated in Figure 5. The model achieved an AUC
of 0.96 (95% confidence interval [CI] = 0.935-0.983)
and an mAP of 94% with minimum dice coefficient loss
0.12, sensitivity 96%, and specificity 75%. The model
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Figure 5. Receiver operating characteristic (ROC) curve.

also achieved a speed of 32 fps (32 images per second),
an efficiency much higher than that of ophthalmolo-
gists.

An example of CNF segmentation with manual
ground truth by an ophthalmologist is shown in
Figure 6. Despite the fact that some tiny nerve endings
were missed, the model was able to identify most of the
CNPFs.

On the CNFL evaluation task, a 0.91 (95% CI =
0.892-0.923) Pearson correlation coefficient and a 16%
relative deviation ratio were reported by our method.
We performed a Bland-Altman analysis to determine
the consistency between manual work and CNS-Net,
and the results are shown in Figure 7 (all 139 images
used here were all from a fixed test set). The 95% limits
of agreement between the ground truth and CNS-Net
analysis were between -749.0 and 650.7 (concordance
correlation coefficient [CCC] = 0.912).

IVCM imaging has become an important method
for the diagnosis of many ocular surfaces diseases,
both in clinical practice and in scientific studies. There-
fore, a concrete quantitative evaluation of CNF loss
in IVCM remains to be explored. One ophthalmol-
ogist may exhibit different performances in different
situations, and it is unlikely that manual operation can
conduct favorable repeatability corneal nerve tracing.
They can analyze these images several times to assure
a relatively accurate result for scientific research. In
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clinical practice, however, this repetition is unlikely to
happen due to limited time and other manual factors.
In comparison, once informed of the identification
processes, a mathematical model can perform nerve
tracing and evaluation repeatedly, achieving relatively
stable and consistent results.

Therefore, after obtaining the dataset as accurately
as possible, we addressed these problems by propos-
ing a fully automated model to identify and segment
corneal nerve fibers from IVCM images. Unlike so-
called feature engineering methods, CNNs can extract
features automatically through a large quantity of
data. Following the construction of the CNF segmen-
tation dataset, feed-forward and back-propagation
approaches were applied to train the CNS-Net model.
Then, the model can segment and evaluate CNFs from
IVCM images accurately, efficiently, and automatically.
We collected a widely and sufficiently representative
dataset, then the dataset was randomly divided into
a training set, validation set, and test set. The trainer
randomly obtains minibatch data from the training
set and carries out data augmentation operations to
optimize model parameters in each iteration of model
training. Hence, our model can cover most of the
IVCM images with accurate results, and has excellent
generalization and stability. The results of the present
research highlight the potential for the system to be
applied in automatic CNF segmentation for ocular
surface disease evaluations in the future.

In our study, the ophthalmologist (C.Y.L.) reviewed
those results with a dice coefficient of lower than 85%.
When further comparing the predicted CNF image
with the ground truth, we found that the manual
annotation missed some of the nerves that were identi-
fied by the algorithm. Additionally, the speed of the
model identifying the image was 32 fps (32 images per
second). The results demonstrated that our algorithm
is orders of magnitude faster than manual annotation
and achieves a much better performance in segmenting
corneal nerves.

The main difference between CNS-Net and other
automatic methods for corneal segmentation is the use
of deep learning. ACCMetrics is a software applied in
IVCM analysis, based on traditional computer vision
algorithms, and CNS-Net has a higher accuracy and
speed than ACCMetrics.?® Scarpa’s algorithm was
found to detect corneal nerves with a sensitivity of 80%
and could calculate sub-basal corneal nerve length.!'®
Traditional machine learning based on the dual-model
filter has also been applied in detecting corneal nerves
in DPN according to curvilinear features.'® However,
the features in certain kinds of corneal neuropathy
could not be generalized to other diseases using [IVCM.
Therefore, we proposed a new model based on popular
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IVCM image

Figure 6. Example of CNFL segmentation.
Bland-Altman analysis
1500 |-
1000 |-
3 - +1.96 SD
o so0l © 650.7
z
o
2
s ol FHF
E -49.2
B
3 -500-
S T _.° ? . -1.96 SD
L 0 -749.0
-1000 | '
-1500 | . 1 . 1 . I . I . I
1000 2000 3000 4000 5000 6000
Mean of Ground Truth and CNS_Net
Figure 7. Bland-Altman Plots comparing pixels between manual

work and CNS-Net. The middle dotted line represents the bias for the
comparison between manual work and CNS-Net. The upper dotted
and lower dotted lines show the upper and lower limits of agreement
between the two methods.

U-Net construction, and the model was trained with
CNF images of all kinds. The model can extract
features and classify each pixel into a corneal nerve or
background efficiently.

However, there are several limitations of this
automatic system for clinical application by ophthal-
mologists. First, the dataset in our study was based
on only a small group of patients at Peking University
Third Hospital and cannot represent the entire popula-
tion. Therefore, data from a larger patient cohort
should be applied to validate the system. Second, the
current CNS-Net model cannot account for all of
the parameters in IVCM images, such as the CNF
width and tortuosity, which limits its generalizability.

/’
P i

Manual ground truth
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/

Our method

Hence, the present model was not able to replace the
manual image annotation completely. Further studies
are required to assess the performance of the model
for CNF segmentation and quantitation in different
populations and different types of IVCM equipment.
With future research, the model is expected to further
improve the accuracy of diagnosis and can be applied
in clinics more efficiently.

Acknowledgments

The research was supported by the National
Science and Technology Major Project
2018ZX10101004003003.

Disclosure: S. Wei, None; F. Shi, None; Y. Wang,
None; Y. Chou, None; X. Li, None

* SW and FS contributed equally to this paper and
should be considered co-first authors.

References

1. Hamrah P, Cruzat A, Dastjerdi MH, et al. Corneal
sensation and subbasal nerve alterations in patients
with herpes simplex keratitis: an in vivo confocal
microscopy study. Ophthalmology.2010;117:1930—
1936.

2. Shaheen BS, Bakir M, Jain S. Corneal nerves in
health and disease. Surv Ophthalmol. 2014;59:263—
285.

3. Nishida T, Chikama T, Sawa M, Miyata K,
Matsui T, Shigeta K. Differential contributions
of impaired corneal sensitivity and reduced tear



translational vision science & technology

Automated Segmentation and Evaluation of CNF

10.

11.

12.

13.

14.

secretion to corneal epithelial disorders. Jpn J Oph-
thalmol. 2012;56:20-25.

Li Q, Zhong Y, Zhang T, et al. Quantitative
analysis of corneal nerve fibers in type 2 dia-
betics with and without diabetic peripheral neu-
ropathy: comparison of manual and automated
assessments. Diabetes Res Clin Pr. 2019;151:33—
38.

Callaghan BC, Cheng HT, Stables CL, Smith AL,
Feldman EL. Diabetic neuropathy: clinical mani-
festations and current treatments. Lancet Neurol.
2012;11:521-534.

Cruzat A, Qazi Y, Hamrah P. In vivo confocal
microscopy of corneal nerves in health and disease.
Ocul Surf. 2017;15:15-47.

Villani E, Magnani F, Viola F, et al. In vivo con-
focal evaluation of the ocular surface morpho-
functional unit in dry eye. Optom Vis Sci.
2013;90:576-586.

Giannaccare G, Pellegrini M, Sebastiani S,
Moscardelli F, Versura P, Campos EC. In vivo
confocal microscopy morphometric analysis of
corneal subbasal nerve plexus in dry eye disease
using newly developed fully automated system.
Graefe’s Arch Clin Exp Ophthalmol. 2019;257:583—
589.

Kheirkhah A, Dohlman TH, Amparo F, et al.
Effects of corneal nerve density on the response
to treatment in dry eye disease. Ophthalmology.
2015;122:662-668.

Muiiller RT, Abedi F, Cruzat A, et al. Degeneration
and regeneration of subbasal corneal nerves after
infectious keratitis: a longitudinal in vivo confocal
microscopy study. Ophthalmology.2015;122:2200—
2209.

Patel DV, Zhang J, McGhee CNJ. In vivo confo-
cal microscopy of the inflamed anterior segment:
A review of clinical and research applications. Clin
Experiment Ophthalmol. 2019;47:334-345.

Zhao J, Yu J, Yang L, Liu Y, Zhao S. Changes
in the anterior cornea during the early stages of
severe myopia prior to and following LASIK, as
detected by confocal microscopy. Exp Ther Med.
2017;14:2869-2874.

Pahuja NK, Shetty R, Deshmukh R, et al. In
vivo confocal microscopy and tear cytokine anal-
ysis in post-LASIK ectasia. Br J Ophthalmol.
2017;101:1604-1610.

Labbé A, Alalwani H, Van Went C, Brasnu
E, Georgescu D, Baudouin C. The relationship
between subbasal nerve morphology and corneal
sensation in ocular surface disease. Invest Ophthal-
mol Vis Sci. 2012;53:4926-4931.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

TVST | Special Issue | Vol.9 | No. 2 | Article 32 | 8

Benitez-del-Castillo JM, Acosta MC, Wassfi MA,
et al. Relation between corneal innervation with
confocal microscopy and corneal sensitivity with
noncontact esthesiometry in patients with dry
eye. Invest Ophthalmol Vis Sci. 2007;48:173—
181.

Chen X, Graham J, Dabbah MA, Petropoulos
IN, Tavakoli M, Malik RA. An automatic tool
for quantification of nerve fibers in corneal confo-
cal microscopy images. IEEE Trans Biomed Eng.
2016;64:786-794.

Calvillo MP, McLaren JW, Hodge DO, Bourne
WM. Corneal reinnervation after LASIK:
prospective 3-year longitudinal study. [Invest
Ophthalmol Vis Sci. 2004;45:3991-3996.

Scarpa F, Grisan E, Ruggeri A. Automatic recog-
nition of corneal nerve structures in images from
confocal microscopy. Invest Ophthalmol Vis Sci.
2008;49:4801-4807.

Holmes TJ, Pellegrini M, Miller C, et al. Auto-
mated software analysis of corneal micrographs for
peripheral neuropathy. Invest Ophthalmol Vis Sci.
2010;51:4480-4491.

Dabbah MA, Graham J, Petropoulos I, Tavakoli
M, Malik RA. Dual-model automatic detection
of nerve-fibres in corneal confocal microscopy
images. In: International Conference on Medical
Image Computing and Computer-Assisted Interven-
tion. 2010:300-307.

Chilamkurthy S, Ghosh R, Tanamala S, et al.
Deep learning algorithms for detection of critical
findings in head CT scans: a retrospective study.
Lancet. 2018;392:2388-2396.

Ting DSW, Pasquale LR, Peng L, et al. Artificial
intelligence and deep learning in ophthalmology.
Br J Ophthalmol. 2019;103:167-175.

Abramoftf MD, Lou Y, Erginay A, et al. Improved
automated detection of diabetic retinopathy on
a publicly available dataset through integration
of deep learning. Invest Ophthalmol Vis Sci.
2016;57:5200-5206.

Williams BM, Borroni D, Liu R, et al. An artifi-
cial intelligence-based deep learning algorithm for
the diagnosis of diabetic neuropathy using corneal
confocal microscopy: a development and valida-
tion study. Diabetologia. 2020;63:419-430.

He K, Zhang X, Ren S, Sun J. Deep residual learn-
ing for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. 2016:770-778.

Glorot X, Bengio Y. Understanding the difficulty
of training deep feedforward neural networks. In:
Teh YW, Titterington M, eds. Proceedings of the



translational vision science & technology

Automated Segmentation and Evaluation of CNF

27.

Thirteenth International Conference on Artificial
Intelligence and Statistics. Vol. 9. Proceedings of
Machine Learning Research. PMLR; 2010:249-
256.

Goyal P, Dollar P, Girshick R, et al. Accurate,
large minibatch sgd: training imagenet in 1 hour.
arXiv Prepr arXivli70602677 2017. Available at:
https://arxiv.org/abs/1706.02677.

TVST | Special Issue | Vol.9 | No.2 | Article32 | 9

28. Dabbah MA, Graham J, Petropoulos IN, Tavakoli
M, Malik RA. Automatic analysis of diabetic
peripheral neuropathy using multi-scale quanti-
tative morphology of nerve fibres in corneal

confocal microscopy imaging. Med Image Anal.
2011;15:738-747.


https://arxiv.org/abs/1706.02677

