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ABSTRACT
An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-
dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two
regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good
yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was
achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania
major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reduc-
tase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics
simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity
stability in a biological environment. The studied complex remained in good equilibrium with a structure
deviation of �1–3Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The
studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.
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1. Introduction

Cutaneous leishmaniasis (CL) is an extremely polymorphic and
heterogeneous group of diseases. A prevalent feature is that they
are caused by parasites of the genus Leishmania transmitted by
the bite of midges belonging to the subfamily Phebotomidae and
commonly known as sand flies1. This disease is associated with
high morbidity and mortality rates and currently affects more
than 12 million people worldwide in 88 countries, mostly in equa-
torial and subtropical areas2,3. In the Old World (Europe, Africa,
Central Asia, and Middle East), the ulcerated skin lesions typical
for CL are mainly triggered by Leishmania major and Leishmania
tropica. Meanwhile, in the New World (Latin America), they are
induced by Leishmania braziliensis, Leishmania guyanensis, and
Leishmania mexicana species complexes, of which the former two
species complexes can disseminate to the nasopharyngeal tissues
and cause eradicated mucosal forms (mucocutaneous leishmania-
sis)4. Besides CL, visceral leishmaniasis (VL), also termed as kala-
azar is severe Leishmaniasis and is associated with high mortality
if left untreated5. VL is cause by L. infantum and often prevalent

in Mediterranean and Latin America6. The pathogen is an unusual
cause of CL7. The pathways and the mechanisms that lead to
inhibition or induction of apoptosis in Leishmania spp. are of par-
ticular interest as they will be possible targets for the develop-
ment of antileishmania drugs5.

The study of heterocycles is a branch of organic chemistry that
attracts much attention from chemists working not only in the
area of natural products but also in synthetic chemistry6–33.
Moreover, many useful drugs have emerged from the successful
investigation carried out in this area. The indazole nucleus is a
very important heterocyclic framework in medicinal chemistry.
This scaffold is present in a large number of compounds with a
wide range of pharmacological activities which include anti-
cancer6, antimalarial7, anti-tubercular8, antimicrobial9, and antidia-
betic function10.

Indazoles correspond to isomeric chemical compounds with
molecular formula C7H6N2, having a pyrazole ring condensed with
a benzene ring (benzo[c]pyrazole, 1,2-benzodiazole). The indazole
heterocycle is normally referred to as 1H-indazole, although it has
two other potential tautomers 2H-indazole and 3H-indazole34.
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Isoxazolines are an important class of nitrogen and oxygen-con-
taining heterocycles that belong to the azoles family which have
much importance in the field of medicinal chemistry. Isoxazoles
are considered privileged scaffolds in drug discovery and have a
broad spectrum of activities, such as antiviral14, antibacterial15,
antimycobacterial16, anti-inflammatory17, and more recently, they
have also demonstrated antitrypanosomal activity18.

1,2,3-triazole, obtained by highly versatile, efficacious, and
selective “Click Reaction” has become a synthetic/medicinal chem-
ist’s favourite not only because of its ability to mimic different
functional groups but also due to enhancement in the targeted
biological activities. Triazole ring has also been shown to play a
critical role in biomolecular mimetics, fragment-based drug design,
and bio-orthogonal methodologies. 1,2,3-triazole derivatives pos-
sess significant biological and pharmacological properties, inclu-
sive of anti-Alzheimer’s disease19,20, anticancer21,22,
antimalarial23,24, antitubercular25,26, antiviral27,28, and antibacterial
activity29. Therefore, 1,2,3-triazole derivatives are privileged scaf-
folds for the development of novel drugs35–38.

As part of our research on the synthesis of recent heterocycles
capable of exhibiting biological and pharmacological activities, the
use of 1,3-dipolar cycloaddition reactions in the synthesis of the
new heterocyclic systems containing two heterocycles separated
by a methylene group comprising 6-nitroindazole and either iso-
xazoline, 1,2,3-triazole or isoxazole have been investigated. In add-
ition, synthesised compounds have been tested for antileishmanial
activity and explored by computational docking and molecular
dynamics simulation studies to predict their binding conformation
and stable binding with Leishmania trypanothione reductase
(TryR) enzyme39.

2. Experimental and calculated methods

2.1. Chemicals

All reagents were purchased from commercial suppliers and were
employed without further purification. The reactions were moni-
tored by thin-layer chromatography (TLC) analysis using silica gel
(60 F254) plates. Flash column chromatography was performed on
silica gel 60 (230–400 mesh, 0.040–0.063mm). Melting points (in
�C) were taken on samples in open capillary tubes and are uncor-
rected. 1H NMR spectra (300MHz) and 13C NMR spectra (75MHz)
were recorded on a Varian Gemini spectrometer with tetramethyl-
silane (TMS) as the internal reference. Mass spectra were per-
formed on a Perkin-Elmer SCIEX API unit 300. The samples were
ionised by the electrospray technique (ESI). Chemical shifts are
given in parts per million from tetramethylsilane (TMS) as internal
standard. The following abbreviations are used for the proton
spectra multiplicities: s: singlet, d: doublet, t: triplet, q: quartette,
qt: quartplet, m: multiplet. Coupling constants (J) are reported in
Hertz (Hz).

2.2. Parasites culture

The in vitro antileishmanial effect of the compounds was eval-
uated on the culture of three Leishmania species: Leishmania
infantum (MHOM/MA/1998/LVTA), Leishmania tropica (MHOM/MA/
2010/LCTIOK-4), and Leishmania major (MHOM/MA/2009/LCER19-
09). The promastigote forms were isolated and identified in the
National Reference Laboratory of Leishmaniasis, National Institute
of Health, Rabat, Morocco.

2.3. Cell viability assays

Parasite cultures of each Leishmania species were washed with
phosphate-buffered saline (PBS) and centrifuged at 1500 rpm for
10min. Cells were then re-suspended in RPMI 1640 (GIBCO) sup-
plemented with 10% heat-inactivated foetal calf serum and 1% of
Penicillin-Streptomycin mixture. Cultures were maintained at
23 �C. The effect of compounds on cell viability was assessed
using the 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl-tetrazolium
bromide (MTT) assay. MTT assays are presently the preferred
method of cytotoxicity assessment in our laboratory14. The tests
were conducted on 96-well plates. Before treatment with extracts,
100 ll medium RPMI (GIBCO) containing 2.5� 106 promastigotes/
mL were placed in each well-containing RPMI (GIBCO) and cul-
tured at 23 �C for 72 h. After incubation, samples were treated
with compounds. Exactly from the stock solution (10mg/mL), each
extracted sample was applied in a series of six dilutions (final con-
centrations ranging to 200 lg/mL) in dimethyl sulfoxide (DMSO
1%). A test solution (100 lL) was added in decreasing concentra-
tions in triplicate. The microplate was then incubated for 72 h at
23 �C. After that, 10lL of MTT solution (5mg/mL) (SIGMA) were
added to the wells containing the samples and were incubated
for 3 h at 23 �C. Tetrazolium salts are cleaved to formazan dye by
cellular enzyme mitochondrial succinate dehydrogenase (only in
the viable promastigotes). A solubilisation solution (isopropanol/
hydrochloric acid) was added to dissolve the insoluble purple for-
mazan product into colouration solution. The absorbance was
measured at 570 nm, using a microplate reader (Statfax 2100).
Data are presented as means ± SD of three different assays.
Statistical analysis was performed by using “Origin 9.0” software.

2.4. Molecular docking details

The binding modes of the active 3-chloro-6-nitro-1H-indazole
derivatives (4, 5, 11, and 13) as potent antileishmanial agents
against Leishmania infantum trypanothione reductase (TryR) were
predicted using the Autodock 4.0 packages40. TryR was selected
as a receptor in docking studies based on the literature reported
works where this enzyme was targeted by indazole deriva-
tives31–33. X-ray coordinates of TryR (PDB codes 2JK6) and its cor-
responding co-crystallized docked ligand flavin adenine
dinucleotide were retrieved from RCSB Protein Data Bank (PDB).
As a starting step, water molecules were removed, polar hydrogen
atoms and Kollman charges were added to the extracted receptor
structure using AutoDock Tools. The active site information was
extracted from the enzyme crystal structure. Re-docking of the ori-
ginal ligand flavin adenine dinucleotide into the active site of try-
panothione reductase was conducted to validate docking protocol
and is well reproduced with RMSD values of 1.16 Å. 3D molecular
structures geometries of 3-chloro-6-nitro-1H-indazole derivatives
(4, 5, 11, and 13) were minimised via the Merck molecular force
field 94 (MMFF94). The optimised geometries were saved as pdb
files. Non-polar hydrogens were merged and rotatable bonds
were defined for each docked ligand. The docking study was per-
formed following the same steps used in our previous
methodology41.

2.5. Molecular dynamics details

The top-ranked receptor-ligand complex was generated and sub-
jected to molecular simulation protocol using Desmond. The pro-
tein system was built involving periodic boundary conditions with
a 10 Å3 orthorhombic box from the centre of mass of the protein.

152 M. M. MOHAMED ABDELAHI ET AL.



TIP3P water solvation system was used as a buffer system with
charged ions placed isotropically to neutralise the Ewald charge
summation of the solvated protein entity. The system was mini-
mised with maximum iterations of 5000 steps with a gradient con-
vergence threshold of 1.0 kcal mol�1Å�1. Once the system is
minimised, the system was subjected to Newtonian dynamics of
the model system to evaluate the energy of the system. Two ps
steps were integrated to record the simulation. A six-stage NPT
ensemble default relaxation process was carried out before per-
forming molecular dynamics simulations. Initially, at the first stage,
solute restrained Brownian dynamics of the ensemble was carried
out by keeping the energy constant using the NVT condition. In
the second stage using a Berendsen thermostat the NVT (canon-
ical) ensemble was allowed to relax with respect to temperature
with velocity resampling of every 1 ps applied to the non-hydro-
gen solute sample. Subsequently, the NVT ensemble was changed
to an NPT ensemble with a Berendsen barostat with the system
was kept at 1 atm pressure followed by a system equilibration of
1 ns. Then the ensemble was subjected to 50 ns molecular dynam-
ics run. The different post-simulation investigation was performed
on the simulated trajectories to test stable binding and binding
conformation of the compounds to the receptor TryR. These
assessments include root mean square deviation (RMSD), root
mean square fluctuations (RMSF), and hydrogen bonds analysis.
The MM/GBSA binding free energies of compound 13-TryR com-
plex were carried out using MMPBSA.py module of AMBER20
exploiting 100 frames collected at equal intervals from the simula-
tion trajectories.

2.6. Density functional theory computational details

The structures in the gas phase of compounds 4–15 were opti-
mised employing density functional theory (DFT). The DFT calcula-
tion was performed by the hybrid B3LYP method which is based
on the idea of Becke and considers a mixture of the exact
Hartree-Fock (HF) and DFT exchange utilising the B3 functional,
together with the LYP correlation functional42,43. In conjunction
with the def2-SVP basis set, the B3LYP calculation was carried
out44. After obtaining the converged geometry, the harmonic
vibrational frequencies were calculated at the same theoretical
level to confirm that the number of imaginary frequencies is zero
for the stationary point. All the calculations in this study were
done by the Gaussian 16 program45.

3. Results and discussion

3.1. Synthesis of dipolarophiles

Dipolarophiles 2 and 3 have been prepared in good yields
(88–92%) via alkylation reactions of 1 with allyl bromide or prop-
argyl bromide under phase transfer catalysis conditions using
tetra-n-butylammonium bromide (TBAB) as catalyst and potassium
carbonate as a base in dimethylformamide at room temperature
(Scheme 1).

The structures of compounds isolated have been identified by
1H NMR and 13C NMR spectral data. The 1H NMR spectrum
(DMSO-d6) of 2 shows an allylic proton signal at 5.23 ppm and a
multiplet centred at 6.04 (6.14, 6.03, and 6.01) ppm attributable to
vinyl protons CH¼CH2. The

13C NMR spectra of 2 show the pres-
ence of a characteristic signal of the allyl group at 133.92 and one
at 115.45 ppm corresponding to the vinylic CH and the methylene
vinyl group. Two signals correlating to the methylene group adja-
cent to the nitrogen atoms appear at 51.63 ppm.

For 3, the 1H NMR spectrum in DMSO-d6 illustrates signals for
the propargyl group as a doublet at 4.74, 4.90, and 4.86 ppm,
respectively, and a triplet centred at 2.20 (2.21) and 3.31 ppm cor-
responding to methylene groups bonded to the nitrogen atom
and acetylenic HC�C-proton, respectively. The 13C NMR spectra
show the signal of the terminal acetylenic carbon at 75.0, 75.5,
and 75.47 ppm, respectively.

3.2. Synthesis of bi-heterocycles containing isoxazoline

In Scheme 2, the reaction of the dipolarophile 2 with the dipoles
(C, D, E, F, M, and P) in a biphasic medium (bleach/chloroform) at
temperatures between �5 and 0 �C, for 4 h with the arylnitrilox-
ides generated in situ, leads to the cycloadducts 4–9 with a
good yield.

The reaction appears to be region-specific since the heteroa-
tom of the dipole attacks the least hydrogenated carbon of the
allyl group in agreement with those already described in the lit-
erature46. The structures of the heterocyclic products were deter-
mined by the 1H NMR and 13C NMR spectral data. The 1H NMR
spectra reveal, in particular, the presence of two quartettes repre-
senting the AB part of an ABX system due to the CH2 protons of
the oxazoline rings which appear in the range 3.30–3.71 ppm, and
multiplets at 5.16–6.00 ppm, each of which contains one proton,
assignable to the isoxazoline CH group (part X), as well as signals
at 4.83–5.22 ppm attributable to the aliphatic proton CH2N. In the
13C NMR spectra, especially the Dept 135 NMR, the signals of the
isoxazoline CH-carbon which appear at about 80 ppm are noted;

 
Scheme 1. Synthesis of dipolarophiles 2 and 3.
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this confirms the region specificity of the reaction. This last result
is in agreement with the literature47,48.

3.3. Synthesis of new molecules containing 1,2,3-triazole linked
to 6-nitroindazole derivatives

Given the importance that 1,2,3-triazoles bring to the biological
and therapeutic domains47, and to broaden this class of com-
pounds, it seemed interesting to combine the 1,2,3-triazole motif
with 6-nitroindazoles via a 1,3-dipolar cyclo-addition reaction. The
action of azides K and L on 3 was first examined, according to
the Huisgen method (refluxing ethanol for 3 days). Two regioisom-
ers were isolated (Scheme 3) with a yield of 19% for the
regioisomer triazole-1,5 (10 and 10a) and a yield of 57% for the
regioisomer triazole-1,4 (11 and 11a). The two 1,4 and 1,5

disubstituted 1,2,3-triazole isomers have been separated by chro-
matography on silica gel column [eluent: ethyl acetate/hexane
(1/9)].

The structures of the two products 10a and 11a were identi-
fied based on the 1H NMR spectral data where the H5 protons res-
onate at about 8.4 ppm. The reverse sense of the cycloaddition
would give triazolic H4 protons which would resonate at about
7.5 ppm as previously described in the literature and as we have
even found a compound whose proton H4 resonates at 7.25 ppm.
Despite the successful separation noted above, the pair of
regioisomers, i.e. triazole-1,4 and triazole-1,5 was often difficult to
separate by chromatography on silica gel. In a search for a more
regiospecific route to the desired compounds, click chemistry
[Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)] was uti-
lised, as described in the literature49–52. Reacting the dipolarophile
3, with azides O, M, N, and P, in the presence of a Cu(I) catalyst

Scheme 2. Synthesis of new isoxazoline-6-nitro-1H-indazole derivatives.
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allowed the selective synthesis of the regioisomer triazole-1,4 with
yields ranging from 82 to 90%(Scheme 4).

All these products were fully characterised by 1H and 13C NMR
(see experimental and calculated methods). The 1H NMR spectra
in DMSO-d6 of 10–13 show singlet resonances at 4.33 (10), 4.49
(11), 4.55 (12), 4.34 (12), and 4.37 (13) ppm which are assigned to
the two protons of the methylene group linked to the nitrogen
atom of the 6-nitroindazole moiety and additional singlets at 7.93
(10), 8.01 (11), 7.99 (12), and 8.39 (13) ppm corresponding to the
proton in position 5 of the 1,2,3-triazole ring. The 13C NMR spec-
tra of 10–13 show signals of the two methylene groups linked to
the nitrogen atom in position 3 of the bicyclic system at 40.78
(10), 41.57 (11), 41.42 (12), and 40.99 (13) ppm. These results are
in good agreement with those reported in the literature53–55.

3.4. Synthesis of isoxazoles bound to 6-nitroindazole derivatives

The reaction of the propargyl compound 3 with the aryloxides
generated in situ from the aldoximes (R, and S) and the corre-
sponding isoxazoles (14 and 15) in each case has led to a single
oxazole-structured regioisomer (Scheme 5).

The 1H NMR spectra of 14 and 15 have a signal at 6.8 ppm
attributable to the isoxazole proton at position 455. The 13C NMR
spectra show, in particular, signals at 105 ppm due to isoxazolic
carbons at position 4.

3.5. Antileishmanial activity

The present study was carried out to determine the in vitro anti-
leishmanial activity of the 3-chloro-6-nitro-1H-indazole derivatives
(4–15) against three Leishmania species (L. infantum (MHOM/MA/
1998/LVTA), L. tropica (MHOM/MA/2010/LCTIOK-4), and L. major
(MHOM/MA/2009/LCER19-09), following the established experi-
mental and theoretical procedures. Promastigote strains were
exposed to increasing concentrations of compounds (4–15)
(Figure 1) (analyzed by the MTT assay as described below) and dif-
ferent inhibitory activities towards the three promastigote species
were observed. The inhibitory concentration (IC50) was measured
in mg/ml and compared with that of Glucantime as a reference

standard. Glucantime is considered as first-line therapy for cutane-
ous leishmaniasis. The above-mentioned three Leishmania species
are the causative agent of Leishmania species that why
Glucantime was used as a control. The moderate activity of
Glucantime compared to the synthesised drugs maybe because of
resistance emergence against the control drug.

The antileishmanial activities of all the compounds are sum-
marised in Table 1.

The most effective against L. major for a compound embody-
ing a triazole obtained by cycloaddition with azide P is 13 at con-
centration IC50 ¼ 38mM (Table 1). Against L. tropica, only 11 and
13 containing a triazole obtained by cycloaddition with azide M
and P had significant efficacy at IC50 ¼ 76 and 186mM (Table 1).
All the products particularly those obtained by cycloaddition with
dipoles C, D, F, G, O, M, N, and P, i.e. 4, 5, 7, 8, 10, 11, 12, and
13, possess a strong inhibitory activity against L. infantum: IC50 ¼
5.53, 4, 117, 100, 62, 6, 36.33, and 110 mM, respectively (Table 1).
Finally, 14 and 15, obtained by cycloaddition with azide R and S,
displayed no growth inhibition towards the three species of
Leishmania. Further, increasing concentration of the compounds
vs. of viability percentage of the organisms is presented in Figures
2–4. Briefly, compound 12 is revealed to show a promising inhib-
ition effect on the viability of L. major and L. infantum whereas L.
tropica is most lethal to L. tropica at a concentration of mg/ml.

Generally, some molecular characteristics of the 1,2,3-triazoles
or oxazolidines can also be used as linkers and show bio-esoteric
effects on peptide linkages, aromatic rings, and double bonds.
Some unique features like hydrogen bond formation, dipole-
dipole, and p stacking interactions of triazole compounds have
increased their importance in the field of medicinal chemistry as
they bind with the biological targets with high affinity due to
their improved solubility.

Some of the important features of the structure-activity rela-
tionship of the synthesised compounds are displayed in Figures 5,
6. Figure 5 represents compounds 4, 5, 8, and 9 that have the
same basic skeleton and differ only with the nature of the sub-
stituent group (R), while Figure 6 shows the subdivision of the
compounds to their basic skeletons, two subclasses were consid-
ered, the first group consists of compounds 4, 5, 8, and 9; the

 
Scheme 3. Synthesis of new 1,2,3-triazolyl methyl-6-nitro-1H-indazole derivatives.
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second group consists of compounds 14 and 15. It is evident
from Figure 6, the role of 4,5-dihydroisoxazole in increasing the
activity of the synthesised compounds. However, Figure 5 indi-
cates that this increase is also dependent on the nature of the
substituent group (Figure 5).

3.6. Molecular docking results

3-chloro-6-nitro-1H-indazole derivatives were tested in vitro for
antileishmanial activity against three Leishmania species L. infan-
tum, L. tropica, and L. major (Table 1). Antileishmanial tests

illustrated that the inhibitory potency of 3-chloro-6-nitro-1H-inda-
zole derivatives depends on the Leishmania species. For instance,
L. tropica and L. major show no activity towards the compounds
(except 13 for L. major; and 11 and 13 for L. tropica). However,
for L. Infantum, seven derivatives (4, 5, 7, and 10–13) exhibit
strong to moderate activity. To understand the observed activities
and the higher activity of 4, 5, 11, and 13, molecular docking
studies have been carried out to shed light on the binding modes
between the docked compounds (4, 5, 11, and 13) and the active
residues of the targeted TryR from L. infantum. The binding ener-
gies of the stable complexes ligand-TryR, the number of estab-
lished intermolecular hydrogen bonds between the docked
ligands (4, 5, 11, and 13), and the active site residues of trypano-
thione reductase are determined (Table 2).

All complexes formed between the docked compounds (4, 5,
11, and 13) and the active site of TryR showed negative binding
energies which indicates that the docking of 4, 5, 11, and 13 is
thermodynamically favourable. The inhibition studies showed that
5 is more active than 4 and this is in accordance with the docking
results which showed that the docked 5-TryR complex is more sta-
ble than the 4-TryR complex (Table 2). 4 and 5 differ only by the
chlorine at the para-position of the phenyl group of the isoxazole
(Figure 1). Both complexes 5-TryR and 4-TryR show similar interac-
tions with the active amino acids of TryR (Figures 7, 8). The higher
activity of 5 compared to 4 is mainly due to the presence of the
chlorine at the para-position of the phenyl group of the isoxazole
which interacts with the CO group of ALA159 at a distance of
3.16 Å thereby providing an additional stabilisation to the

Figure 1. The molecules tested against leishmanias.

Table 1. Inhibitory concentration (IC50) values in lM of twelve synthetic com-
pounds (4–15) against promastigotes.

Molecules L. major L. tropica L. infantum

4 >500 >500 15.53
5 >500 >500 11.23
6 >500 >500 >500
7 >500 >500 328.59
8 >500 >500 280.84
9 >500 >500 >500
10 >500 >500 174.12
11 >500 213.44 16.85
12 >500 >500 102.03
13 106.72 >500 308.93
14 >500 >500 >500
15 >500 >500 >500
Control GlucantimeVR >500 >500 >500

Lower IC50 indicates concentration of the compounds required to kill the organ-
ism by 50%.
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complex. This may also explain the higher activity of 5 contrasted
with 11 and 13 since the latter lacks the 4-chlorophenyl substitu-
ent. Indeed, the highest binding energy is obtained with 5.

3.7. Molecular dynamics studies

The molecular dynamics simulations were performed to under-
stand the stability of the small molecules in the protein com-
plex56–61. After the docking studies, the best binding pose was
subjected to molecular dynamics simulations to analyse the stabil-
ity of 13 in the TryR complex system. The RMSD and RMSF were
measured initially to explore the protein-ligand conformation and
structural fluctuation during the 50 ns simulation. All protein
frames are first adjusted on the reference frame backbone and
after that, the RMSD is determined dependent on the molecule
selected. Monitoring the RMSD of the protein can give insight
into its basic adaptation all through the simulation. The RMSD

(Figure 9(a)) result suggests that the TryR-13 complex system is
perfectly acceptable for small, globular proteins due to the fact
that our simulation can converge (the RMSD values stabilise
around a fixed value in the order of 1–3Å). Ligand RMSD (Lig fit
Prot) indicates how stable 13 is with respect to the TryR binding
pocket. In the above plot, “Lig fit Prot” shows the RMSD (Figure
9(a)) when the TryR-13 complex is first aligned on the TryR refer-
ence backbone and then the RMSD of the heavy atoms on 13 is
measured. The values observed are significantly lower than the
RMSD of TryR which indicates that 13 could form a stable com-
plex with TryR. The RMSF is used to characterise local changes
along the protein chain. In Figure 9(b), peaks indicate which areas
of TryR fluctuate the most during the simulation. Typically, we
observe that the tails (N- and C-terminal) fluctuate more than any
other part of the TryR system. Secondary structure elements (SSE)
like alpha helices and beta strands are usually more rigid than the
unstructured part of TryR, and thus vary less than the loop

Figure 2. Antileishmanial activity of 4–15 against the main promastigotes of L. major.

Figure 3. The anti-leishmanial activity of 4–15 against L. tropica.
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Figure 4. The anti-leishmanial activity of 4–15 against L. infantum.

Figure 5. The role of the substituent functional groups on SAR of the synthesised compounds.

Figure 6. The role of the basic skeleton on SAR of the synthesised compounds.
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regions. TryR residues that interact with 13 are marked with
green-colored vertical bars. Moreover, Figure 10(a) represents SSE
distribution by residue index throughout the protein structure.
Figure 10(b) outlines the SSE composition for each trajectory
frame over the course of the simulation, and the plot at the bot-
tom monitors each residue and its SSE assignment over time. The
communications between TryR and 13 can be checked all during

the simulation. This binding interaction can be sorted by type and
summarised, as appeared in Figure 11. Protein-ligand connections
(or “contacts”) are classified into four kinds: (1) hydrogen bonds,
(2) hydrophobic, (3) ionic, and (4) water bridges. Every interaction
type contains progressively explicit subtypes, which can be

Table 2. Docking binding energies, number of hydrogen bonds and number of
closest residues to the docked ligands (4, 5, 11, and 13) within the active bind-
ing site of the targeted TryR.

Name of
synthesised
derivatives

Free
binding
energy

(kcal/mol)
H-bonds
(HBs)

Number
of closest
residues
to the
docked

ligand into
the active site IC50 (mM)

4 �9.33 0 8 15.33
5 �10.10 0 9 11.23
11 �9.26 1 8 16.85
13 �9.00 5 9 308.93

Figure 7. 3D closest interactions between active residues of TryR and the
docked synthesised derivatives 4, 5, 11, and 13.

Figure 8. 2 D closest interactions between active residues of TryR and the
docked molecules 4, 5, 11, and 13.
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Figure 9. The (a) RMSD (b) RMSF analysis plot of TryR-13 complex system.

Figure 10. (a) SSE distribution by residue index throughout the TryR structure (b) SSE composition for each trajectory frame over the course of the simulation TryR
secondary structure elements (SSE) like alpha helices and beta strands are monitored throughout the simulation.
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investigated by the simulation interactions diagram. The stacked
bar diagrams are standardised through the span of the direction:
for instance, an estimation of 0.7 proposes that the particular
interaction is kept up in 70% of the recreation time. Qualities over
1.0 are conceivable as some protein buildup may make different
contacts with the ligand by the same subtype. The overall results
suggest that 13 was stable in the TryR system during
the simulation.

3.8. MM/GBSA binding free energy estimation

The binding affinity of compound 13 for the TryR enzyme was re-
validated by a more sophisticated approach of MM/GBSA binding
free energy than the traditional docking score function. The com-
pound was revealed to show good docked stability with the
enzyme by scoring a very low net binding energy score of
�40.02 kcal/mol. The intermolecular complex interactions are
dominated by both Van der Waals and electrostatic energy as well
as non-polar solvation energy. The polar solvation energy though
found non-contributing to the system. Overall, like previous ana-
lysis, MM/GBSA also support the biological potency of compound
13 against the leishmanial parasite. The different binding energies
of the systems are presented in Figure 12.

3.9. DFT-based structure-activity analysis

According to the aforementioned comparison of the anti-leishma-
nial activities of the title compounds, we can expect that a com-
pound’s anti-leishmanial activity has some relationship with its
molecular properties. Indeed, recently, Nascimento et al. per-
formed a DFT-B3LYP study on nineteen neolignan derivatives
which could be categorised into two groups active and inactive

Figure 11. (a) TryR-13 contacts during 50 ns simulation (b) a schematic representation of the interaction between 13 and the TryR residues.

Figure 12. Different MM/GBSA binding free energies of compound 13-
TryR complex.
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according to their anti-leishmanial efficiencies. An assessment of
the molecular electrostatic potentials (MEPs) of the nineteen com-
pounds showed the active compounds have much more intense
regions of negative electrostatic potentials than the inactive
ones62. Similarly, Pinheiro and co-workers synthesised eleven 5-
(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine

derivatives as new anti-leishmanial compounds. Their theoretical
analyses also suggested that the anti-leishmanial activities
detected in the eleven compounds correlate with their MEPs63.
Therefore, in this study, we also investigate the MEPs of 4–15
(Figure 12) to rationalise their differences in their anti-leishmanial
activity. Exploiting the full-density matrix, the total densities of

Figure 13. MEPs of the tested compounds in this study (isovalue ¼ 0.0004; the atomic colour: carbon in grey, chlorine in green, hydrogen in white, nitrogen in blue,
and oxygen in red).
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4–15 were generated and the respective MEP was mapped on
their surfaces (Figure 13)58,59. MEPs are fundamental measures of
the strength of the nearby charges, nuclei, and electrons at a par-
ticular position and thus enable us to visualise the charge distribu-
tions and charge-related properties of molecules. To make the
electrostatic potential data easy to interpret, visual representation
with a colour spectrum is used with red representing the lowest
electrostatic potential value and blue the highest. Beneath the
molecular designation is its B3LYP-optimised geometry57–59. Not
as expected, 13 did not have the most negative electrostatic
potentials among the group. However, we see from Figure 10 that
10, 11, 12, and 13 are more bent in geometry than the other
compounds. Hence, we propose that there may be some interac-
tions between the core, 3-chloro-6-nitro-1H-indazole, and the side
chain of the triazolic derivatives in 10, 11, 12, and 13. These inter-
actions should influence their anti-leishmanial activities. So we are
doing further research in two directions: (1) the correctness of the

theoretical level, and (2) the interactions between the core, 3-
chloro-6-nitro-1H-indazole, and the side chain of the triazolic
derivatives in 10, 11, 12, and 1364.

4. Conclusions

In the present work, synthesis of new heterocyclic systems origi-
nated from 3-chloro-6-nitro-1H-indazole was carried out in satis-
factory yields by cycloaddition reactions under thermal and
catalytic conditions (CuI). The results showed a periselectivity and
regioselectivity as a function of the dipole (azides F, G, and H)
employed. Additionally, it was shown that indazole derivatives
have biological potency against three species of Leishmania and
can be utilised as an excellent inhibitor for the parasite of leish-
mania. Moreover, in comparison of the findings of all the deriva-
tives with the Glucantime as a reference standard, it was observed
that indazole could be exploited as a useful source in the

Figure 13. Continued.
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discovery of new antileishmania drugs. The inhibitory efficacy of
indazole derivatives was changed significantly when the rings
associated with indazole were changed. Thus compounds contain-
ing triazole, proved more efficient in inhibition than compounds
containing oxazoline while those containing oxazole had the low-
est effectiveness. This may be due to the interactions between the
core, 3-chloro-6-nitro-1H-indazole, and the side chain of the tria-
zolic derivatives. The molecular docking, molecular dynamics, and
MM/GBSA binding free energy results were in good agreement
with the experimental studies. Triazoles are reported as a potent
inhibitor of cytochrome P450 particularly CYP3A4, which often
leads to toxic effects and drug interactions when used in combin-
ation with drugs that are dependent for metabolism on cyto-
chrome P450 enzymes. Therefore care should be taken while
using it in combination with other drugs to avoid
this phenomenon.
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