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Visual acuity is better for vertical and horizontal
compared to other orientations. This cross-species
phenomenon is often explained by “efficient coding,”
whereby more neurons show sharper tuning for the
orientations most common in natural vision. However, it
is unclear if experience alone can account for such
biases. Here, we measured orientation representations
in a convolutional neural network, VGG-16, trained on
modified versions of ImageNet (rotated by 0°, 22.5°, or
45° counterclockwise of upright). Discriminability for
each model was highest near the orientations that were
most common in the network’s training set.
Furthermore, there was an overrepresentation of
narrowly tuned units selective for the most common
orientations. These effects emerged in middle layers and
increased with depth in the network, though this
layer-wise pattern may depend on properties of the
evaluation stimuli used. Biases emerged early in
training, consistent with the possibility that nonuniform
representations may play a functional role in the
network’s task performance. Together, our results
suggest that biased orientation representations can
emerge through experience with a nonuniform
distribution of orientations, supporting the efficient
coding hypothesis.

Introduction

Contrary to common intuition, visual perception
is not perfectly uniform across orientation space. One
example of this principle is the “oblique effect,” which

has been demonstrated in humans and a wide range
of animal species, including cats, octopi, and goldfish,
among others. This effect describes the finding that
observers’ ability to discriminate small changes in
orientation, as well as other forms of acuity, tend to be
worst for stimuli that have edges oriented diagonally
(oblique orientations) and better for stimuli with
edges oriented vertically or horizontally (cardinal
orientations) (Appelle, 1972; Bauer, Owens, Thomas,
& Held, 1979). In the visual cortex, this finding has
been linked to a larger number of orientation tuned
neurons with a preference for cardinal orientations, as
has been shown in cats (Li, Peterson, & Freeman, 2003)
and macaques (Mansfield, 1974; Shen et al., 2014),
among other species. Some evidence also suggests that
cardinally tuned neurons may have narrower tuning
than other orientations, which may also contribute to
higher acuity (Kreile, Bonhoeffer, & Hübener, 2011; Li
et al., 2003).

One compelling explanation for the origin of the
oblique effect is the efficient coding hypothesis, which
suggests that because the brain operates with limited
resources, coding resources should be preferentially
allocated to stimuli that are highly probable during
natural vision (Barlow, 1961; Girshick, Landy, &
Simoncelli, 2011). On this view, biased orientation
perception may reflect an adaptation to the statistics
of natural images, in which vertical and horizontal
orientations are most common (Coppola, Purves,
McCoy, & Purves, 1998; Girshick et al., 2011).
Support for an experience-driven account of the
oblique effect includes evidence that in primates the
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overrepresentation of cardinal orientations in the
visual cortex increases with age (Shen et al., 2014).
Additionally, exposing developing kittens or mice to
an environment with contours of only one orientation
can induce changes in the distribution of cortical
orientation tuning, suggesting some degree of plasticity
(Blakemore & Cooper, 1970; Hirsch & Spinelli, 1970;
Kreile et al., 2011; Leventhal & Hirsch, 1975). Finally,
past computational work demonstrates that various
models of optimal information coding, along with
measurements of environmental statistics, can be used
to predict both the neural and behavioral correlates
of the oblique effect (Ganguli & Simoncelli, 2010;
Girshick et al., 2011; Wainwright, 1999).

In addition, innate factors may also contribute
to the efficient coding of cardinal orientation. For
instance, while it is possible to significantly modify
the distribution of orientation tuning preferences in
visual cortex through experience, exposing an animal
to only diagonal lines during development does not
entirely obliterate tuning for cardinal orientations
(Kreile et al., 2011; Leventhal & Hirsch, 1975).
Similarly, rearing animals in complete darkness
can result in a more extreme overrepresentation of
cardinal-tuned units (Leventhal & Hirsch, 1980).
In both mice and ferrets, it has been suggested that
innate factors result in a strong oblique effect early in
development, while visual experience tends to make
orientation tuning more uniform over time (Coppola &
White, 2004; Hoy & Niell, 2015). These observations
are consistent with the efficient coding account
if we assume that the visual system can adapt to
environmental regularities over the course of evolution,
resulting in feature biases that are encoded in the
genome.

However, factors that are independent of visual input
statistics may also separately contribute to the presence
of cardinal orientation biases in animals. For example,
some anatomical properties of the visual system
naturally give a privileged status to the cardinal axes,
such as the horizontal raphe of the retina, the role of
the horizontal axis in vestibular and oculomotor system
organization, and the distinction between processing of
vertical and horizontal disparity (Westheimer, 2003).
Such properties need not be related to the orientation
content of natural images but may instead reflect
general physical and/or developmental constraints. It is
plausible that the presence of these architectural factors
leads to cardinal biases, independent from the statistics
of natural images. Thus, while past computational
work suggests a strong correlational link between the
statistics of the environment and the representation of
orientation, the causal link between these observations
has not yet been established. Here, we use a causal
manipulation to evaluate whether the efficient coding
mechanism alone can account for the emergence of the
oblique effect.

Specifically, we achieved this by measuring
orientation representations in a convolutional neural
network (CNN). We focus on the popular VGG-16
model, a standard feedforward network that achieves
high performance at classifying objects in natural
images (Simonyan & Zisserman, 2014). We first test
whether a pretrained VGG-16 model exhibits the
classical oblique effect, assessed using the Fisher
information measured at entire layers of the network,
and the distribution of single-unit tuning properties.
Assuming a definition of efficient coding in which
mutual information between the stimulus and the
network’s responses is maximized, we predict that
Fisher information will be proportional to the square
of the prior distribution (Figure 1D; Ganguli &
Simoncelli, 2010; Wei & Stocker, 2015). In addition
to a test of the efficient coding hypothesis, measuring
orientation bias in this pretrained model will provide an
assessment of whether existing CNNs, often used as
models of the primate visual system (Cichy & Kaiser,
2019; Kell & McDermott, 2019), exhibit this defining
characteristic of biological vision.

We next trained VGG-16 models on modified
versions of the ImageNet database (Deng et al., 2009)
that had been rotated by 0°, 22.5°, or 45° relative to
upright. This allowed us to determine whether a bias
centered around other axes can be induced equally as
well as a cardinal bias, and whether the biases observed
in the pretrained network were simply artifacts of some
intrinsic property of the CNN (e.g., a square pixel
grid that results in a cardinal reference frame). We
demonstrate that, contrary to this alternative, networks
trained on rotated images exhibited rotated biases that
were consistent with the networks’ training set statistics.
These results suggest that general visual experience
with a nonuniform orientation distribution is sufficient
to promote the formation of biased orientation
representations. Further, our findings highlight how
biased training data can fundamentally impact visual
information processing in neural network models.

Materials and methods

Training stimuli

During training, each model was presented with a
modified version of the ILSVRC-2012-CLS training
image set, a set of ∼1.3 million colored images with
substantial variability in layout and background, each
including an object in one of 1,000 categories (Deng
et al., 2009; Russakovsky et al., 2015). Three modified
versions of this image set were generated, corresponding
to rotations of 0°, 22.5°, and 45° counterclockwise
relative to vertical. The purpose of generating a 0° (no
rotation) version of the image set was to provide a
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Figure 1. Evaluating orientation discriminability in a trained neural network model. (A) Schematic of the VGG-16 network
architecture, with layers arranged from shallowest (left) to deepest. (B) Examples of oriented images used to measure orientation
representations in the pretrained network. Images were generated by filtering ImageNet images within a narrow orientation range,
preserving their broadband spatial frequency content. Orientations varied between 0°–179°, in steps of 1° (see Methods, Evaluation
stimuli section). (C) Cartoon depiction of the approximate relationship between an example single unit tuning function and the Fisher
information (FI) measured from that unit as a function of orientation. (D) Hypothetical depiction of the relationship between the prior
distribution P over orientation θ , and the Fisher information (FI) when mutual information is maximized (Ganguli & Simoncelli, 2010;
Wei & Stocker, 2015).

control to isolate the effect of image rotation from any
other properties of our modified image set.

To generate each version of the image set, we loaded
each image from the original ILSVRC image set,
rotated it by the specified amount, and cropped the
image centrally by a specified amount that was the same
for all rotations. Images were then scaled to a size of
224 × 224 pixels and multiplied by a smoothed circular
mask. The smoothed mask set to background all pixels
at a radius of more than 100 pixels from the center,
retained all pixels at a radius of less than 50 pixels from
the center, and applied a cosine function to fade out the
intermediate pixels. Finally, the background pixels were
adjusted to a gray color that closely matches the mean
RGB value of the training ImageNet images (Simonyan
& Zisserman, 2014). All image processing for training
set images was done in Python 3.6 (Python Software
Foundation, Wilmington, DE) using the Python
Imaging Library. For each training set, a corresponding
validation set was generated using the same procedure,
and this validation set was used to evaluate performance

during training. When preprocessing the images for
training and validation, we modified the procedure
from Simonyan and Zisserman’s paper by skipping the
random rescaling and random left-right flipping steps.
The purpose of this was to preserve the original spatial
frequency and orientation content of the images as
closely as possible.

Evaluation stimuli

Networks were evaluated using sets of images that
had known orientation content but were variable
in their spatial phase and frequency (Figure 1B).
These images consisted of randomly sampled images
from the ILSRVC-2012-CLS image set which were
filtered to have a particular orientation content. Before
filtering each image, we first rotated it by a randomly
chosen value in the range of 0°–179°, then cropped it
centrally to a square and scaled to a size of 224 × 224
pixels as described above. This was done to prevent
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Figure 2. Pretrained VGG-16 shows maximum orientation information just off cardinal orientations, and nonuniformity in the
distribution of single unit tuning properties. (A) FI is plotted as a function of orientation for several example layers of the pretrained
model (navy blue) and a randomly initialized model (gray). See Methods, Computing Fisher information section for details. (B)
Distribution of the tuning centers of pretrained network units that were well-fit by a Von Mises function. See Figure S1 for the
proportion of well-fit units per layer, and the distribution of centers for the randomly initialized model. (C) Concentration parameter
(k) versus center for individual units in the pretrained model (data in the top three panels of C have been downsampled to a
maximum of 10,000 points for visualization purposes).

any dependencies between orientation and other
low-level image properties, such as spatial frequency
content and luminance contrast, in the final filtered
images. After this step, we converted to grayscale,
z-scored the resulting luminance values, and masked
the image with the smoothed circular mask described
above. The image was then padded with zeros to a
size of 1012 × 1012 pixels and transformed into the
frequency domain (using fft2.m). We then multiplied
the frequency-domain representation by an orientation
filter and a spatial frequency filter. The orientation filter
consisted of a circular Gaussian (Von Mises) function

centered at the desired orientation, with concentration
parameter (k) of 35 (full-width at half-max = 11.5°).
The spatial frequency filter was a bandpass filter from
0.02 to 0.25 cycles/pixels, with Gaussian smoothed
edges (smoothing SD = 0.005 cycles/pixel). After
multiplying by these filters, we then replaced the
image’s phase with random values uniformly sampled
between –pi to +pi (to randomize the spatial phase
of oriented elements in the image) and transformed
back into the spatial domain (using ifft2.m). Next, we
cropped the image back to its original size of 224 ×
224 pixels, multiplied again by the smoothed circular
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Figure 3. Cardinal bias in a pretrained VGG-16 model increases
with depth. FIB-0, a measure of cardinal information bias (see
Methods, Fisher information bias section), plotted for a
pretrained model (navy blue) and a randomly initialized control
model (gray), with asterisks indicating layers for which the
pretrained model had significantly higher FIB-0 than the
random model (one-tailed nonparametric t-test, FDR corrected
q = 0.01). Error bars reflect standard deviation across four
evaluation image sets.

mask, and converted the image into a 3-channel RGB
format. Finally, the luminance in each color channel
was normalized to have a mean equal to the mean of
that color channel in the training ImageNet images and
a standard deviation of 12 units. All image processing
for the evaluation image sets was done using MATLAB
R2018b (MathWorks, Natick, MA).

Using the above procedures, we generated four
evaluation image sets, each starting with a different
random set of ImageNet images. Images in each
evaluation set had orientations that varied between
0° and 179°, in steps of 1°, resulting in 180 discrete
orientation values. Throughout this paper, we use the
convention of 0° for vertical and 90° for horizontal
orientations, with positive rotations referring to the
clockwise direction, and negative rotations referring
to the counterclockwise direction. Each evaluation set
included 48 examples of each orientation, for a total of
8,640 images per set.

Measuring image set statistics

To verify that the modified versions of the ImageNet
images had the anisotropic orientation statistics that
we expected, we measured the orientation content of
each training image using a Gabor filter bank. The
filter bank included filters at orientations from 0°
to 175° in 5° steps, at spatial frequencies of 0.0200,

0.0431, 0.0928, and 0.200 cycles per pixel (orientation
bandwidth of filters was 19°). The filter bank was
generated using the gabor.m function in MATLAB
R2018b (MathWorks). Since all filtering was performed
in the Fourier domain, we also used a custom modified
version of the gabor.m function which allowed us to
directly generate a frequency-domain representation of
each filter (Jain & Farrokhnia, 1991). Before filtering
each image, we converted it to grayscale, subtracted
its background color so that the background was
equal to zero, and padded each image with zeros to a
size of 1012 × 1012 pixels (this was the size needed
to accommodate the lowest frequency filter). Images
were then converted into the frequency domain for
filtering (using fft2.m) and multiplied by the filter bank.
Next, we converted back to the spatial domain and
unpadded the image back to its original size (224 ×
224 pixels). Finally, we took the magnitude of the
filtered image, and averaged the magnitude across
all pixel positions to obtain a single value for each
filter orientation and spatial frequency. Next, for each
image, within each spatial frequency, we converted
the orientation magnitude values into an estimated
probability distribution by dividing by the sum of the
magnitude across all orientations. Since this was done
for all orientations of one spatial frequency at a time,
this corrects for differences in power across spatial
frequency and facilitates combining results across
spatial frequency. Results were similar within each
spatial frequency individually; we averaged over spatial
frequency to produce the final plots (Figure 6B). This
analysis was done on the training set images only, which
included ∼1,300 images in each of 1,000 categories, for
a total of ∼1.3 million images.

Network training and evaluation

We trained VGG-16 networks (Simonyan &
Zisserman, 2014) on three different modified versions
of the ImageNet dataset (see Training stimuli section for
details). For each of the three image sets, we initialized
and trained four VGG-16 networks (replicates), giving
a total of 12 models. All models were trained using
Tensorflow 1.12.0 (Abadi et al., 2016), using the
TF-slim model library (Silberman & Guadarrama,
2016) and Python 3.6 (Python). All models were trained
using the RMSProp algorithm with momentum of 0.80
and decay of 0.90. The learning rate was 0.005 with
an exponential decay factor of 0.94, and the weight
decay parameter was 0.0005. Networks were trained
until performance on the validation set (categorization
accuracy and top-5 recall) began to plateau, which
generally occurred after around 350K–400K steps. The
validation images used to evaluate performance were
always rotated in an identical manner to the training
set images. Training was performed on an NVIDIA
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Quadro P6000 GPU (NVIDIA, Santa Clara, CA). All
evaluation was performed using the first checkpoint
saved after reaching 400K steps. As noted above,
we did not perform data augmentation steps during
image preprocessing for training. Removing these
procedures may have contributed to the relatively low
final classification performance that we observed (top-5
recall accuracy ∼60%).

To measure activations from each trained network,
we split the evaluation image sets (consisting of 8,640
images each) into 96 batches of 90 each. We then passed
each batch through each trained network and measured
the resulting activations of each unit as the output of
the activation function (a rectified linear operation).
We saved the activations for each unit in each layer
for all images, which were then submitted to further
analysis. We performed this evaluation procedure on a
total of 17 networks: the 12 models trained on modified
ImageNet images, a pretrained VGG-16 network from
the TF-slim model library (Silberman & Guadarrama,
2016), and four randomly initialized VGG-16 models
that served as a control. All subsequent analyses were
performed using Python 3.6 (Python).

Computing Fisher information (FI)

To measure the ability of each network layer to
discriminate small changes in orientation, we estimated
Fisher information (FI) as a function of orientation. To
estimate FI for each network layer, we first computed FI
for each unit in that layer, then combined information
across units. FI for each unit was computed based on
the slope and variance of that unit’s activation at each
point in orientation space, according to the following
relation:

FIi (θ ) =
(

∂ fi (θ )
dθ

)2

vi (θ )

In the above relation, fi(θ ) is the unit’s measured
orientation tuning curve, and vi(θ ) is the variance of
the unit’s responses to the specified orientation. We
estimated the slope of the unit’s tuning curve at θ based
on the difference in its mean response (μi) to sets of
images that were � = 4° apart (using different values of
� did not substantially change the results).

(
∂ fi (θ )
dθ

)
∼= μi (θ1) − μi (θ2)

�

Where

θ1 = θ − �

2

θ2 = θ + �

2

We presented an equal number of images (48) at each
orientation, so the pooled variance was calculated as:

vi (θ ) = vi (θ1) + vi (θ2)
2

Finally, we summed this measure across units of each
layer to obtain a population level estimate of FI. Note
that this measure does not account for the covariance
among units, see Multivariate analyses section for
complementary approaches.

FIpop (θ ) =
nUnits∑
i=0

FIi (θ )

Where nUnits is the number of units in the layer. We
computed FIpop(θ ) for theta values between 0° and 179°,
in steps of 1°. When plotting FI, to aid comparison of
this measure across layers with different numbers of
units, we divided FIpop by the total number of units in
the layer, to capture the average FI per unit. We note
that this analysis was performed across all units at each
layer, not excluding any units whose spatial receptive
field was outside the circular stimulus region. These
nonresponsive units contributed zero to the Fisher
information sum at early layers. We note also that due
to the different numbers of units per layer, the absolute
values of FI are not directly comparable across layers.

Multivariate analyses

In addition to calculating the sum of univariate
Fisher information across all individual units at each
network layer (see previous section, Computing Fisher
information), we were also interested in evaluating
the information content of multivariate patterns of
activation across entire layers of the network. To this
end, we computed a multivariate version of Fisher
information, using the following expression (Abbott &
Dayan, 1999):

FImult (θ ) = f ′(θ )T Q (θ ) f ′ (θ ) + 1
2 Tr

[
Q′ (θ ) Q−1 (θ ) Q′ (θ ) Q−1 (θ )

]

Where Q(θ ) is the pooled covariance matrix, computed
as:

Q (θ ) = Q (θ1) + Q (θ2)
2
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Figure 4. Multivariate FI shows similar pattern of results as summed univariate FI. (A) Multivariate Fisher information, calculated after
performing PCA, shown for four example layers in the pretrained model. See Methods, Multivariate analyses section for details. This
figure reflects the calculation with first 10 PCs retained; similar results were found with different numbers of PCs retained.
(B) Multivariate version of FIB-0 is plotted for each layer, comparing results with five, 10, or 20 principal components retained. Error
bars reflect +1 standard deviation of the measure across four evaluation image sets.

And Q′(θ ) was the estimated derivative of the
covariance matrix, obtained as:

(
∂Q (θ )
dθ

)
∼= Q (θ1) − Q (θ2)

�

Where θ1and θ2 are as defined in the previous section.
Tr denotes the trace operation, andQ−1(θ ) is the inverse
of the covariance matrix. Values of θ and f ′(θ ) were as
defined in the previous section.

To make computing the covariance matrix
computationally feasible, we first performed principal
components analysis on the activation matrix from
each network layer (for each image set, a matrix of

size [8640 x nUnits]), implemented using Scikit-learn
in Python 3.6 (Python). We then computed the above
expression for Fisher information using the scores
for the top N principal components (PCs), for values
of N ranging from 2 to 47 (there were 48 images per
orientation, so covariance matrix estimates became
unstable when using more features). Values were similar
for different values of N (several examples of varying N
shown in Figure 4B).

In addition to computing multivariate Fisher
information in this reduced-dimensionality space,
we used the principal components to estimate the
dimensionality of the orientation representations
at each layer (Figure 5C). The purpose of this
was to facilitate qualitative comparisons of the
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Figure 5. Principal component analysis reveals a graded change in the structure of orientation representations across pretrained
model layers. (A) For two example layers (conv1_1 and fc6), scatter plot of scores corresponding to the first two principal components
of the layer’s representation (see Methods, Multivariate analyses section). Colored points indicate individual images, with color
indicating stimulus orientation. Black points indicate the mean of the 48 points corresponding to each orientation. (B). Scores for the
first four principal components are plotted as a function of orientation for several example layers. Blue lines indicate the mean value
of that principal component score as a function of orientation, gray lines indicate individual images. (C) Percent variance explained by
each principal component of the data, after averaging across trials of a common orientation. Vertical line indicates the number of
components after which additional components contribute <5% additional variance (see Methods, Multivariate analyses section).
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representational structure across layers. To isolate the
dimensions that were related to orientation, and not to
variability across images having the same orientation,
we first averaged across images of the same orientation
(e.g., collapsing over any variability not related to
orientation). This resulted in a matrix of size 180 ×
N, where N is the total number of units in the layer.
Next, we performed PCA on this averaged matrix, and
calculated the cumulative variance explained by each
principal component. Our estimate of dimensionality
was the PC number after which additional components
contributed less than 5% additional variance. This
threshold is somewhat arbitrary but captures the
approximate point at which an “elbow”appears in a plot
of cumulative variance versus PC number (Figure 5C).
We note that this estimate of dimensionality is not
exact and is not cross-validated but should provide a
reasonable index of how dimensionality changes across
model layers.

Finally, we computed an additional measure of
multivariate orientation separability in the reduced-
dimensionality PC space. The rationale for this was
to provide a complementary measure to the Fisher
information and ensure that the results we obtained
with FI were not specific to that method. For this
measure, as with FI, we computed a statistic for each
point θ in orientation space, using the responses to
two orientations � = 4◦ apart (as before, changing
� did not substantially change the results). This
resulted in two “clouds” of points in N-dimensional
PC space, corresponding to the two orientations
(see Supplementary Figure S2). We first exhaustively
computed the Euclidean distances between all pairs of
points in different clouds (48ˆ2 = 2,304 total distances).
Next, we computed a t-statistic for these distances: the
mean of all distance values divided by the standard
deviation of all distance values. This measure reflects
the reliability of the separation between point clouds
corresponding to different orientations. We computed
this measure for several different values of N.

Fisher information bias (FIB)

To quantify the amount of bias (nonuniformity) in
Fisher information at each layer of the network, we
computed a measure which we refer to as the Fisher
information bias (FIB). For the pretrained model and
the networks trained on upright images, we expected the
network to overrepresent cardinal orientations, showing
peaks in FI around vertical and horizontal. However,
the models trained on rotated images were expected to
show peaks rotated by a specified amount relative to
the cardinal orientations. To account for these different
types of bias, we computed three versions of the FIB:
one that measures the height of peaks in FI around the
cardinal orientations (FIB-0), one that measures the

height of peaks in FI that are 22.5° counterclockwise
of the cardinals (FIB-22), and one that measures the
height of peaks in FI that are 45° counterclockwise
of the cardinals (FIB-45), relative to a baseline. The
equation for each FIB measure is as follows:

FIB = FIpeaks − FIbaseline
F Ipeaks + FIbaseline

Where FIpeaks is the sum of the FI values in a range ±
10° around the orientations of interest (0° and 90° for
FIB-0, 67.5° and 157.5° for FIB-22, and 45° and 135°
for FIB-45), and FIbaseline is the sum of the FI values in a
range ± 10° around the orientation chosen as a baseline
(22.5° and 112.5°). Since FI is necessarily positive, each
of these FIB measures can take a value between +1 and
–1, with positive values indicating more information
near the orientations of interest relative to the baseline
(peaks in FI), and negative values indicating less
information near the orientations of interest relative to
baseline (dips in FI). An analogous method was used to
compute the bias in multivariate FI (Figure 4) as well as
the multivariate t-statistic (Supplementary Figure S2;
see previous section, Multivariate analyses).

To test whether FIB differed significantly between
trained models and the randomly initialized (not
trained) models, we performed nonparametric t-tests
between FIB values corresponding to each training
set and the random models. Specifically, we tested the
hypothesis that the primary form of bias measured in
models corresponding to each training set (e.g., FIB-0
for the models trained on upright images, FIB-22 for
the models trained on 22.5° rotated images, FIB-45
for the models trained on 45° rotated images) was
significantly higher for the models trained on that image
set than for the random (not trained) models. Since
we generated four replicate models for each training
image set, and evaluated each model on four evaluation
image sets, there were 16 total FIB values at each layer
corresponding to each training set. To compare the FIB
values corresponding to each training set against the
random models, we first calculated the “real” difference
in FIB between the groups, based on comparing the
mean of the 16 values for the trained models versus
the mean of the 16 values for the random models.
Next, we concatenated the values for the trained and
random models (32 values total) and randomly shuffled
the group labels across all values 10,000 times. For
each of these 10,000 shuffles, we then computed the
difference between groups based on the shuffled labels
(“shuffled” differences). The final p-value was generated
by calculating the number of iterations on which the
shuffled difference exceeded the real difference and
dividing by the number of total iterations. The p-values
were FDR corrected across model layers at q = 0.01
using SciPy (Benjamini & Yekutieli, 2001). The same
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procedure was used to test for differences in FIB-0
between the pretrained model and the control model
(note that there was only one replicate for the pretrained
model, so this test included only four data points per
condition).

Single-unit tuning analysis

To measure the extent to which training set statistics
impacted the orientation tuning of individual units in
each network, we measured tuning functions based on
each unit’s responses to the evaluation image set, and we
performed curve fitting to quantify tuning properties.
First, we measured an orientation tuning function for
each unit at each layer of the model by averaging its
responses to all evaluation set images that had the same
orientation (in each image set, there were 48 images at
each of 180 orientations). Any units that had a constant
response across all images or a zero response to all
images were removed at this stage (this included mainly
units whose spatial selectivity was outside the range
stimulated by the circular image aperture, around 35%
of units per layer at the earliest layers). We computed
and saved an orientation tuning curve for each unit in
response to each of the four evaluation image sets. We
then averaged over these four evaluation sets before
fitting.

To characterize the tuning curves, we fit each with
a circular Gaussian (Von Mises) function, having the
basic form:

v (θ ) = e(k∗cos(θ−u)−1)

Where u is a parameter that describes the center of
the unit’s tuning function, and k is a concentration
parameter that is inversely related to the width of the
tuning function. In this formulation, the k parameter
modifies both the height and the width of the tuning
function. To make it possible to modify the curve’s
height and width independently, we normalized the Von
Mises function to have a height of 1 and a baseline of
0, and then added parameters for the amplitude and
baseline, as follows:

f (θ ) = b+ a ∗ vn (θ )

Where vn(θ ) denotes the Von Mises function after
normalization. This resulted in a curve with four total
parameters: center (u), concentration parameter (k),
amplitude, and baseline.

We fit a curve of this form to each unit’s average
tuning function using linear least-squares regression,
implemented with the optimization library in SciPy
(version 1.1.0). To initialize the fitting procedure, we
used the argmax of the tuning function as an estimate

of its mean, the minimum value as an estimate of its
baseline, and the range as an estimate of its amplitude.
The concentration parameter k was always initialized at
1. Values for the center were constrained to lie within
the range of [–0.0001, 180.0001], k was constrained to
positive values >10–15, and amplitude and baseline were
allowed to vary freely. To prevent any bias in the center
estimates due to the edges of the allowed parameter
range, we circularly shifted each curve by a random
amount before fitting.

After fitting was complete, we assessed the goodness
of the fit using R2. To assess the consistency of tuning
across different versions of the evaluation image set, we
used R2 to assess the fit between the single best-fit Von
Mises function (computed using the tuning function
averaged over all evaluation image sets) and each
individual tuning curve (there were four individual
tuning curves, each from one version of the evaluation
image set). We then averaged these four R2 values to
get a single value. We used a threshold of average R2 >
0.40 to determine which units were sufficiently well-fit
by the Von Mises function, and retained the parameters
of those fits for further analysis.

Sinusoidal grating analysis

As a supplementary analysis to assess whether
different stimuli resulted in a different pattern of
orientation bias across network layers, we also
evaluated the network’s response to sinusoidal grating
stimuli (Supplementary Figure S3). These stimuli
were sinusoidal gratings having a spatial frequency of
0.25 cycles/pixel, with a smoothed circular window
identical to that used for our main experimental stimuli
(see Figure 1B and Methods, Training stimuli section)
and a small amount of superimposed Gaussian white
noise (standard deviation of noise was 1% of the
grating’s contrast). The entire set included 180 discrete
orientations between 0°–179°, 24 distinct spatial phases
per orientation, evenly spaced between 0°–345°, and
two images per orientation/phase combination (having
different random noise instantiations), for a total of
8,640 images.

To assess orientation tuning with these images, we
first measured responses of the network to each image
and computed the average response of each unit to
gratings of each orientation (averaging over spatial
phase). We then estimated each layer’s distribution
of orientation tuning preferences in two ways. First,
we looked at each unit in the layer individually, and
computed the orientation at which the unit’s maximum
response occurred (Supplementary Figure S3A; for
simplicity, we bypassed the more precise curve-fitting
routine for this supplemental analysis). Next, to provide
a measure of spatially global orientation tuning, we
averaged the responses across all units within a given
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feature map at each layer (i.e., averaging over the
horizontal and vertical spatial dimensions), resulting
in one tuning profile for each feature map (i.e., each
output channel) at each layer. For each of these
spatially averaged tuning profiles, we then computed
the orientation at which the maximum response
occurred and plotted the distribution for each layer
(Supplementary Figure S3B).

Code availability

All code is available on the author’s Github page
(https://github.com/mmhenderson/biasCNN).

Results

We measured the activation responses of several
trained VGG-16 networks (Figure 1A) (Simonyan
& Zisserman, 2014) presented with oriented images
(Figure 1B) to evaluate whether each network showed
nonuniformities in its orientation representations across
feature space. First, we tested whether a pretrained
VGG-16 model (Silberman & Guadarrama, 2016)
exhibits the classical oblique effect. Next, we evaluated
whether this bias changed in a predictable way when
networks with the same architecture were trained
on modified versions of the ImageNet database
(Figure 6A).

Measuring cardinal biases in a pretrained
VGG-16 model

We first evaluated nonuniformity at the level of
each pretrained network layer by computing the
layer-wise Fisher information (FI), which reflects how
well each layer’s activations can distinguish small
changes in orientation (see Methods, Computing
Fisher information section). Briefly, the contribution of
each network unit to the layer-wise FI is the squared
slope of a unit’s tuning function at each orientation
normalized by the variance of the response at that
orientation. Thus, the steep part of a unit’s tuning
function will carry more information because two
similar orientations will evoke different responses
(Figure 1C). However, the flat parts of a unit’s tuning
curve (i.e., at the peak or in the tails) will not carry very
much information because the unit will respond about
the same to two similar orientations. We focused on the
Fisher information because it has been suggested to
have a predictable relationship to the prior orientation
distribution. Specifically, when mutual information
is maximized, Fisher information is predicted to be

proportional to the square of the prior distribution
(Figure 1D; Ganguli & Simoncelli, 2010; Wei & Stocker,
2015). This therefore provides a testable prediction of
the efficient coding account. To introduce the variability
necessary for calculating Fisher information, we used
orientation bandpass-filtered natural images which
create stimulus-level variability in the images for a given
orientation.

For a pretrained VGG-16 model, plotting FI as a
function of orientation reveals noticeable deviations
from uniformity, particularly at deep layers of the
network (navy blue curves in Figure 2A). While the
first layer of the model (conv1_1), gives a relatively
flat profile of FI with respect to orientation, by layer 7
(conv3_1), peaks in FI are apparent around the cardinal
orientations, 0°/180° and 90°. At later layers of the
model, the peaks in FI are more pronounced and begin
to take on a characteristic double-peaked shape, where
FI is maximal slightly (∼5°) to the left and right of the
cardinal orientations, with a dip at the exact position
of the cardinal orientations (this shape is discussed in
more detail in the next section after we report statistics
about the preferred orientation and width of single
unit tuning functions). In contrast, when the same
analysis is done on a randomly initialized VGG-16
model (no training performed), FI is flat with respect
to orientation at all layers, suggesting that a randomly
initialized model does not exhibit this same cardinal
bias (gray curves in Figure 2A).

To quantify this effect at each layer, we computed
a metric which we term the Fisher information bias
(FIB), which captures the relative height of the
peaks in FI compared to a baseline (see Methods,
Fisher information bias section). We defined three
versions of this metric, the FIB-0, FIB-22, and FIB-45,
which denote the height of peaks in FI around the
cardinal orientations, around orientations 22.5°
counterclockwise of cardinals, and around orientations
45° counterclockwise of cardinals, respectively. For
example, to get the FIB-0, we take the mean FI in
20° bins around 0° and 90°, subtract the mean FI in
a baseline orientation range, and divide by the sum
of these two means. Because the pretrained model
showed peaks in FI around cardinals only, we focus on
the FIB-0 in this section; the FIB-22 and FIB-45 are
discussed in the following section (Training networks
on rotated images). We found that for the pretrained
model, the FIB-0 increased with depth in the network,
showing values close to zero for the first four layers,
then showing positive values that increase continuously
at each layer (navy blue line in Figure 3). In contrast, we
found less evidence for a cardinal bias in the randomly
initialized model, shown by smaller values of the FIB-0
at all layers (gray line in Figure 3). The difference in
FIB-0 between the pretrained and randomly initialized
models was significant starting at the fifth layer
(conv2_2), and at all layers deeper than conv2_2

https://github.com/mmhenderson/biasCNN
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Figure 6. Rotated images used to train VGG-16 networks. (A) Separate networks were trained on either upright or rotated versions of
the ImageNet image set, with a smoothed circular mask applied to remove vertical and horizontal image edges. (B) Orientation
content from images in each of the training sets in (A) was measured using a Gabor filter bank (see Methods, Measuring image set
statistics section).

(one-tailed nonparametric t-test, FDR corrected q =
0.01). However, there was a small increase in the FIB-0
at the later layers of the randomly initialized model,
reflecting a weak cardinal bias (at the deepest layer, the
FIB-0 was still more than 5× as large for the pretrained
model as for the random model). We return to this issue
for more consideration in the Discussion section.

Having demonstrated that a pretrained CNN exhibits
an advantage for discriminating cardinal versus other
orientations, we were next interested in whether this
bias was linked to the distribution of tuning properties
across single units at each layer, as has been observed in
the brains of animals such as cats and macaques (Li et
al., 2003; Shen et al., 2014; Vogels & Orban, 1994). To
investigate this, we computed the average orientation

tuning profiles for individual units in response to stimuli
of all orientations and fit these profiles with Von Mises
functions to estimate their center and concentration
parameter (or width, denoted k). Units that were
not well-fit by a Von Mises were not considered
further (approximately 30% of all units, see Methods,
Single-unit tuning analysis section and Supplementary
Figure S1). Figure 2B shows the distribution of fit
centers for all units in four example layers of the
pretrained model that were well-fit by a Von Mises
function. These distributions show peaks at random
locations for the first layer of the network but exhibit
narrow peaks around the cardinal orientations for the
deeper conv4_3 and fc6 layers (but see Supplementary
Figure S3 and Discussion for consideration of whether
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this layer-wise increase may be stimulus set dependent).
In contrast, the randomly initialized model did not
show an overrepresentation of cardinal-tuned units
(Supplementary Figure S1). In addition, plotting the
concentration parameter for each unit versus the center
(Figure 2C) shows that for the deepest three layers
shown, the most narrowly tuned units (high k) generally
have centers close to the cardinal orientations. Together,
these findings indicate that middle and deep layers of
the pretrained network have a large proportion of units
tuned to cardinal orientations, and that many of these
units are narrowly tuned.

These findings may provide an explanation for the
double-peaked shape of the FI curves for the pretrained
model at deep layers (Figure 2A). Since FI is related
to the slope of a unit’s tuning function, it is expected
to take its maximum value on the flanks of a tuning
curve, where the slope is highest, and take a value of
zero at the tuning curve peak (Figure 1C). Thus, having
a large number of narrowly tuned units with their peaks
precisely at 0° and 90° could result in layer-wise FI
having local maxima at the orientations just off of the
cardinals. We note also that these findings indicate a
divergence from the predicted shape of FI based on
mutual information maximization (Figure 1D); we
return to this issue for further consideration in the
Discussion.

In addition to the above analyses, we were also
interested in determining whether biases were present
in activation patterns across all units in each layer.
To achieve this, we computed the multivariate Fisher
information (see Methods, Multivariate analyses
section). Note that this is distinct from the version of
FI described earlier in this section (Figure 2, Figure 3),
which combines information linearly across units but
does not take advantage of the covariance structure of
the data. Before calculating multivariate FI, we first
reduced the dimensionality of the data using principal
components analysis (PCA; see Methods, Multivariate
analyses section). As shown in Figure 4, multivariate
FI revealed a similar pattern of results as the summed
univariate FI discussed previously. FI was generally
flat across orientation space for the earliest layers, and
peaks around the cardinal orientations began to emerge
at the middle layers (around conv3_1, for this analysis).
As with the univariate version of FI, multivariate FI at
the deeper layers of the model exhibited a pronounced
double-peaked shape with highest values a few degrees
clockwise and counterclockwise of the cardinal
orientations. Furthermore, when we utilized another
measure of orientation discriminability in PC space,
based on the reliability of distances between points
corresponding to nearby orientations (Supplementary
Figure S2, see Methods, Multivariate analyses section),
we again found biases that were similar in form and
emerged at middle layers of the model. In contrast
to FIB, the cardinal bias in this measure did not

exhibit a continual increase with depth in the model,
however, it was above zero for all middle and late layers.
Together, these results suggest that the presence of
pattern-level orientation biases in VGG-16, and the fact
that these biases persist until the deepest model layers,
is not dependent on the specific information metric
used.

The above univariate and multivariate analyses
suggest that the structure of orientation representations
differs at early, middle, and deep layers of VGG-16.
To further explore this difference and visualize
the representations at each layer, we plotted the
representations of images in the space spanned by
the first two principal components (Figure 5A). We
also plotted the orientation tuning profiles of the first
four principal components of several example layers
(Figure 5B). This revealed that at the earliest layer of
the model (conv1_1), the representation of orientation
appeared to be well-described by two principal
components resembling a sine and cosine function,
resulting in an approximately circular representation in
PC space. The third and fourth principal components
for this layer showed little response change as a function
of orientation. In contrast, the middle and deeper layers
of the model exhibited more complex response profiles.
At conv3_1 and conv4_3, PCs 1 and 2 were similar
to those of the first layer, but the third and fourth
principal components tended to be higher frequency or
include sharp points near the cardinal orientations. At
a deep fully connected layer (fc6), the tuning profiles
were no longer sinusoidal, and instead exhibited steep
points and/or dips near the cardinal axes. The steepest
regions of these principal component tuning profiles
appear to coincide with the peaks we measured in FI
(Figure 2A, Figure 4), suggesting these response profiles
may underly the strong biases we observed at deep
layers.

Additionally, these more complex response profiles
may imply an increase in the dimensionality of the
space spanned by all distinct orientations. To estimate
the dimensionality of this subspace, we averaged over
different images at each orientation, and performed
PCA on the resulting matrix (see Methods, Multivariate
analyses section). When we plot the cumulative
percent variance explained by each component in this
representation (Figure 5C), we find distinct patterns
between early and late layers. While early layers exhibit
a clear plateau where components after PC1 and PC2
contribute little additional variance, later layers exhibit
a smoother function where more components are
required to reach a plateau. Together, these observations
support the idea that the dimensionality of orientation
representations increases from shallow to deeper layers
of VGG-16, with representations morphing from a
veridical representation of the circular feature space
spanned by orientation to a more complex and biased
format.
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At the same time, these differences in orientation
representations across the layers of VGG-16 may
be dependent on the stimuli we used here, which
were bandpass-filtered natural images (Figure 1B).
Supporting this idea, when the preferred orientation
of units at each network layer was measured using
high-frequency sinusoidal gratings, we found a relatively
large proportion of units at the first layer that preferred
0° and 90°, with no substantial change across layers
(Supplementary Figure S3). This difference may be
related to the low spatial frequency content of the
images we used in our main analyses; see Discussion for
more consideration of this point.

Training networks on rotated images

Having demonstrated that a pretrained VGG-16
network exhibits a much stronger cardinal orientation
bias compared to a randomly initialized network, we
next tested whether training a model on rotated images
would result in rotated biases. This test is needed to
demonstrate that the frequently observed cardinal
bias is not the only possible orientation bias that
can be induced in a visual system through exposure
to a set of images with nonuniform statistics. We
trained networks on three modified versions of the
ImageNet dataset (Deng et al., 2009), consisting of
images that were rotated by either 0°, 22.5°, or 45° in
a clockwise direction relative to the upright position
(Figure 6A). Separately, we also verified that the image
statistics of each of the modified sets exhibited the
expected distribution, such that vertical and horizontal
orientations were most common in the upright training
set, orientations 22.5° counterclockwise of cardinals
were most common in the –22.5° rotated set, and
orientations 45° counterclockwise of cardinals were
most common in the –45° rotated set (Figure 6B).
Given the hypothesized relationship between FI and the
prior probability distribution (Figure 1D), we predicted
that the FI curves for each of these models would have
peaks closely aligned with the peaks of its respective
prior distribution.

Our results indicate that training on rotated images
shifted the orientation bias by a predictable amount.
FI for the models that were trained on upright images
shows a relatively similar shape to the pretrained
model, with peaks appearing at a few degrees to the
left and right of the cardinal orientations (Figure 7A).
This demonstrates that though our training procedure
and image set were not identical to those used for
the pretrained model, they resulted in the formation
of similar orientation biases. In contrast, the models
trained on rotated images each showed a FI curve that
was similar in shape but shifted relative to the curve
from the model trained on upright images, such that the
peaks in FI were always near the orientations that were

most common in the training set images (Figures 7D,
7G).

The distribution of single-unit tuning properties also
shifted with training set statistics. In the upright-trained
model, the highest proportion of units had their
tuning near the cardinals, while the networks trained
on 22.5° and 45° rotated images had more units
with tuning at either 22.5° or 45° counterclockwise
relative to the cardinal orientations, respectively
(Figures 7B, 7E, 7H). Additionally, for all models, the
most narrowly tuned units tended to be those that were
tuned to the orientations most common in the training
set (Figures 7C, 7F, 7I). As described above, the high
number of narrowly tuned units with their centers close
to these most common orientations may underly the
double-peaked shape seen in FI.

Calculating the FIB for each of these models further
demonstrated how these effects emerged across the
processing hierarchy. Like the pretrained model, the
models trained on upright images showed high values
of the FIB-0 at middle and deep layers: models showed
significantly higher FIB-0 than the randomly initialized
models for pool1, conv3_1, and all layers deeper
than conv3_1 (one-tailed nonparametric t-test, FDR
corrected q = 0.01) (Figure 8A). In contrast, the models
trained on images rotated by 22.5° and 45° showed
higher values for the FIB-22 and FIB-45, respectively
(Figures 8B, 8C). In models trained on images rotated
by 22.5°, the FIB-22 significantly exceeded that of
the random models at pool2 and all layers deeper
than pool2, with the exception of conv3_3 (one-tailed
nonparametric t-test, FDR corrected q = 0.01). For
the models trained on 45° rotated images, the FIB-45
significantly exceeded that of the random models for
conv3_1 and all layers deeper than conv3_1 (one-tailed
nonparametric t-test, FDR corrected q = 0.01).

Emergence of biases during training

Though we have demonstrated that biases were
measurable in each fully trained model, this leaves open
the question of whether and how these biases relate
to the model’s performance at its primary task (i.e.,
categorizing object images). One way to address this
is by examining how biases emerged over time during
the training process. We hypothesized that if biases
contribute to the model’s ability to learn the object
classification task, then we should observe strong
biases early in training, before task performance has
plateaued. On the other hand, if cardinal biases are
only detectable after the model has reached asymptotic
performance, this would argue against the idea that they
critically contribute to task performance. As shown
in Figure 9, our results support the first possibility. For a
network trained on upright images, Fisher information
profiles measured as early as 50,000 steps into the
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Figure 7. When networks are trained on rotated images, both population-level information and single unit tuning distributions reflect
modified training set statistics. (A–C) show data from one example layer (fc6) of four separately initialized networks trained on upright
images, (D–F) show data for fc6 of networks trained on images rotated 22.5° counterclockwise of upright, (G–I) show data for fc6 of
networks trained on images rotated 45° counterclockwise of upright. For each group of networks, panels (A,D,G) show FI plotted as a
function of orientation, with error bars reflecting standard deviation across four networks with the same training image set. Panels
(B,E,H) show distribution of fc6 unit tuning centers, combining data across networks. Panels (C,F,I) show concentration parameter (k)
versus center for individual units.

training process already demonstrated pronounced
peaks near the cardinal orientations (Figure 9A; for
reference, our main analyses were performed at 400,000
steps). These peaks were not present in the model prior
to any training (compare Figure 9A to Figure 2A, gray
lines). Interestingly, these peaks in FI were larger in
magnitude and shifted further away from the cardinal
orientations than those measured at later timesteps
(as far as 15° shifted). To investigate why this was the
case, we also analyzed the tuning properties of single
units at several steps during training. This revealed that,
as in the fully trained model, network layers analyzed
early in training had many narrowly tuned (high k)
units with tuning centers at the cardinal orientations
(Figure 9B). However, in addition, there were many
units with narrow tuning whose centers lay a few
degrees off the cardinal orientations (additional “peaks”
in the scatter plot in Figure 9B). The presence of these
additional, off-cardinal-preferring, units is likely related

to the shape of the FI measured at early timesteps. We
speculate on this issue further in the Discussion.

As a quantitative measure of how cardinal bias
evolved over time, we computed the FIB-0 as described
in previous sections (Figures 9C, 9D). At all timesteps,
FIB-0 tended to increase with depth in the network,
as in the fully trained model. Comparing values across
training time, FIB-0 was generally maximal at 100,000
steps into the training process. We note, however,
that this measure was computed by averaging the
FI within 20° bins near the cardinals (see Methods,
Fisher information bias section), and the very shifted
peaks we saw at 50,000 steps were outside this window.
Thus, this measure does not capture the high degree
of nonuniformity we see at 50,000 steps. With this in
mind, the overall amount of bias generally appeared to
be highest early in training, before performance began
to plateau, and decreased with additional training.
At the same time, more training resulted in peaks in
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Figure 8. Networks shows biases in orientation discriminability that are consistent with training set statistics. FIB-0, FIB-22, and FIB-45
represent the relative value of FI at cardinal orientations, 22.5° counterclockwise of cardinals, and 45° counterclockwise of cardinals,
respectively, relative to a baseline (see Methods, Fisher information bias section). Panels show (A) FIB-0, (B) FIB-22, and (C) FIB-45 for
models trained on each rotated version of ImageNet (colored), and randomly initialized models (gray). Colored asterisks indicate
layers for which the models corresponding to that color had significantly higher FIB than the random models (one-tailed
nonparametric t-test, FDR corrected q = 0.01). Error bars represent the standard deviation of the FIB over four initializations of each
model and four evaluation image sets.

FI that were closer to the exact cardinal orientations,
reflecting a better match to the prior distribution of
orientations in the training set. It is possible that
training this model for longer durations or modifying its
hyperparameters to reach better plateau performance
would result in further shifts in the FI peaks. However,
we note that the pretrained VGG-16 model discussed
earlier (Silberman & Guadarrama, 2016) showed a
similarly shaped FI curve that had peaks around the
same orientations as the latest timestep of our model.
Thus, it is not likely that the shape we observed is solely
dependent on our choice of hyperparameters or training
duration.

Discussion

We investigated whether CNNs trained to perform
object classification exhibit biased orientation
representations that reflect nonuniformities in the
statistics of the training set images. We found that
middle and deep layers of a pretrained VGG-16
network (Silberman & Guadarrama, 2016; Simonyan
& Zisserman, 2014) represented orientation with
higher discriminability near the cardinal (vertical
and horizontal) orientations, with relatively lower
discriminability around oblique (diagonal) orientations.
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Figure 9. Biases in Fisher information and unit tuning properties over the course of training on upright images. (A) Fisher information
for three example layers, at several timepoints during training (shades of blue; legend in C). For comparison, analyses in Figures 2
and 3 were performed at step 400,000 (darkest blue line). (B) Concentration parameter (k) versus tuning center, for individual units at
conv4_3, plotted for several timepoints during training. Data have been downsampled to a maximum of 20,000 points for
visualization purposes. (C) FIB-0 across layers plotted for several timepoints (shades of blue). Error bars reflect +1 standard deviation
of the measure across four evaluation image sets. (D) FIB-0 is plotted as a function of time, for several example layers (purple lines).
Light gray line indicates model performance (top-5 recall accuracy), after smoothing with a Gaussian kernel. Error bars reflect +1
standard deviation of the measure across four evaluation image sets.
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Bias was also seen in the tuning properties of single
units in the network: there was an overrepresentation
of units that preferred the cardinal orientations, and
units tuned to the cardinal orientations had narrower
tuning profiles. Furthermore, when we trained models
with the same architecture on rotated versions of
ImageNet, each of these effects shifted by a predictable
amount, such that discriminability was highest near
whichever orientations were most common in the
network’s training set. These results demonstrate
that general visual experience with nonuniform
image statistics is sufficient to produce, in a neural
network, the same kind of biases that are observed for
low-level feature representations in a range of animal
species.

In general, the strength of the biases we measured
tended to increase with depth in each network,
showing little or no bias in the first four to six layers
(Figure 3, Figure 4B, Figure 8). It is important to
note, however, that this layer-wise progression may
be dependent on the specific stimuli and measures of
bias we used here. For instance, probing the network’s
orientation selectivity with high frequency sinusoidal
gratings (Figure S3) did reveal a large proportion of
units at the first layer which preferred 0° and 90°.
This difference may be explained by the small spatial
receptive fields of the units at the first few layers of
VGG-16, which may make these layers less sensitive
to low spatial frequency content. Since the stimuli
used in our main experiments were bandpass-filtered
natural images, which are dominated by lower spatial
frequencies, these stimuli may have impaired our ability
to detect biases at the first few layers. Additionally,
measures of bias other than Fisher information might
reveal different patterns across layers. Indeed, using
another metric of orientation separability, in which
we computed a t-statistic of distances in principal
component space (Figure S2), we found similar values
of bias at middle and late model layers. Thus, the extent
to which biases are magnified versus merely reproduced
at later model layers is not entirely clear. Future work
is needed to resolve these issues and determine how
low-level biases change with depth in the VGG-16
network.

With these considerations in mind, our results
suggest that for at least some measures, the VGG-16
model exhibits a cardinal bias that increases with
layer depth. Such an effect may have some basis in
the primate brain. Neural correlates of the oblique
effect in primates, reflected by an overrepresentation
of cardinal-tuned neurons, have been shown in V1
(Celebrini, Thorpe, Trotter, & Imbert, 1993; De Valois,
William Yund, & Hepler, 1982; Mansfield, 1974), V2
(Shen et al., 2014), and IT cortex (Vogels & Orban,
1994). At the same time, recent work suggests that
for VGG-19, a network closely related to VGG-16,
the ability of network activations to explain data

from primate V1 is relatively high for a range of early
and middle layers, with highest explained variance
in an intermediate layer, conv3_1 (Cadena et al.,
2019). This observation suggests that rather than a
straightforward mapping from V1 to the first layer
of VGG-16, there may be V1-like computations
occurring at multiple layers of VGG-16. Therefore, our
observation that bias did not emerge until the middle
layers of the VGG-16 model is broadly consistent
with a cortical origin for the oblique effect. Beyond
the middle layers, we found that Fisher information
bias (Figure 3, Figure 4B), continued to increase with
depth in the network. As noted above, this effect may
be partially dependent on stimulus and/or analysis
choices. Nevertheless, this finding is consistent with
some behavioral and physiological results suggesting
that the primate oblique effect may be dependent on
higher-order processing beyond V1 (Shen et al., 2014;
Westheimer, 2003).

Another property of the biases we observed was
that the FI measured in deep layers of each network
tended to peak just a few degrees off the orientations
that were most common in the training set, with a
dip at the precise locations of the most common
orientations (Figure 2A). As discussed in the Results,
this double-peaked shape follows from the fact that FI
is highest on the flanks of tuning curves, and many
narrowly tuned units in deep layers tended to have
their centers around the most common orientations.
However, this finding is not generally reflected in
human psychophysics, in which the ability to make
small orientation discriminations tends to show a single
maximum around each of the cardinal orientations
(Appelle, 1972; Girshick et al., 2011). One potential
reason for this apparent discrepancy is that in this
experiment, we were able to present a relatively large
number of images (8,640 per image set) to the CNN,
with images finely spaced by 1° steps in orientation,
whereas psychophysics experiments typically present
fewer images at more coarsely spaced orientations
(Caelli, Brettel, Rentschler, & Hilz, 1983; Girshick
et al., 2011; Westheimer, 2003). Additionally, we
were measuring directly from every unit without any
additional sources of downstream noise or interference,
which may have made the double-peaked shape of
Fisher information more apparent than it would be
when estimating orientation thresholds from behavior
(Butts & Goldman, 2006). It is also possible that
this qualitative difference between the FI curves we
measured and the shape of human discriminability
functions represents an actual difference between visual
processing in CNNs and primates. More extensive
behavioral experiments may be needed to resolve
this.

From an efficient coding perspective, this double-
peaked shape represents a divergence of FI from
the shape predicted based on mutual information
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maximization (Figure 1D; Ganguli & Simoncelli, 2010;
Wei & Stocker, 2015). This implies that the network
is not optimizing based on mutual information but is
optimizing another criterion. One interpretation is that
rather than being optimized to precisely represent the
orientation of stimuli, the network is optimized for
simply detecting the most common stimuli, without
as much regard to their precise orientation. On this
account, the large number of units with their preferred
orientations close to the cardinals would serve as
effective detectors of cardinally oriented stimuli but
contribute less to the discrimination of these stimuli
(Regan & Beverley, 1985). This interpretation raises the
possibility that in the context of object categorization,
detecting items with a commonly encountered
orientation is more important than discriminating their
orientation.

To further investigate the functional role of these
biases, we examined the time at which biases emerged
during training. In a model we trained on upright
images, cardinal biases were detectable early in
training, before performance had begun to plateau
(Figure 9). This result is consistent with the idea that
the biases may contribute to improvements in task
performance, rather than emerging only as a late-stage
byproduct of high performance. Another implication
of this result is that the learned features that allow
the model to achieve its maximal task performance
may not be strictly required for orientation biases
to emerge. Rather, it may be the case that as soon
as the network begins to represent a feature such as
orientation, the resulting representations exhibit bias.
Indeed, the overall measure of cardinal information
bias declined from step 100,000 to step 400,000
(Figure 9D), suggesting that biases are initially quite
pronounced and become scaled back over the course of
training.

At the same time, the double-peaked shape in
FI was even more pronounced early in training,
with the peaks further offset from the cardinal axes
(Figure 9A). As described earlier in this section, this
double-peaked shape may be nonoptimal in terms of
efficient coding. Thus, it may be the case that training
has the dual effects of reducing the magnitude of
bias and making the network’s representations more
closely approximate an efficient encoding of the prior
distribution. This process apparently unfolds in parallel
to the model’s improvement in task performance,
leaving open the question of what the relationship
between these processes is. One interpretation is
that optimal orientation coding directly impacts the
model’s learning process, contributing to its ability
to accurately classify objects. Another interpretation
is that both the changes in orientation bias and the
improvement in object categorization performance are
reflections of the same underlying process, in which
the network is developing a more accurate, complete

representation of the training set distribution. Further
experiments will be needed to conclusively resolve
this.

Future work should explore which architectural
properties of the VGG-16 network are required
for cardinal biases to emerge. For instance, general
properties of the convolutional architecture, such
as the sharing of weights across units with different
spatial selectivity, may be critical features that enable
learning of orientation representations that efficiently
encode the training set statistics. The use of a nonlinear
activation function may also be key. Manipulating
these core aspects of the model is beyond the scope
of the present paper, but in future work it would
be useful to explore biases in visual representations
across a wider range of network architectures. For
instance, if it were found that the use of a convolutional
architecture, roughly analogous to the architecture
of the primate visual system, is critical for cardinal
biases to emerge, this might provide insight into the
functional relevance of this property in the primate
brain.

Finally, we also observed weak evidence for a cardinal
bias in FI measured from the deep layers of a random
network with no training (Figure 3, Figure 8A).
This may indicate that some aspect of the model’s
architecture, such as its use of a square image grid,
square convolutional kernels, and pooling operations
over square image regions, introduced an intrinsic
cardinal reference frame. However, the possible presence
of such a reference frame cannot account for the effects
we observed for several reasons. First, the magnitude
of the FIB-0 was 5× lower for the deepest layer of the
random models as compared to the trained-upright
models, and the random models did not show an
overrepresentation of cardinal-tuned units, while the
upright-trained models did (Figure 2B, Figure 7B,
Supplementary Figure S1). This suggests that the
network response properties underlying any intrinsic
cardinal FI bias were different than those underlying
the experience-driven biases we observed. Second, the
magnitude of the shifted biases we measured in models
trained on rotated images were of similar magnitude
to the cardinal biases we measured in models trained
on upright images (Figure 8), which demonstrates
that having an intrinsic reference frame that matches
the orientation distribution of training images is not
required for a substantial bias to emerge. These results
suggest that training may be able to override some
intrinsic response properties of CNNs. However, they
also highlight the general importance of examining the
biases inherent in CNNs before making analogies to the
visual system.

These findings also have general relevance for the
use of CNNs in vision research. First, our results show
that a popular CNN model exhibits a form of the
classical oblique effect, suggesting that this key aspect
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of low-level primate vision is reproduced by the model.
This adds to a growing body of work demonstrating
similarities between deep neural networks and the
brains and behavior of primates (Kubilius, Bracci, &
Op de Beeck, 2016; Pospisil, Pasupathy, & Bair, 2018;
Rideaux & Welchman, 2020; Ward, 2019; Yamins
et al., 2014). Second, we have demonstrated that
nonuniformities in the statistics of training set images
can dramatically influence the feature representations
that are learned by a CNN. Specifically, image features
that are overrepresented during training are likely
to be more discriminable by the trained network,
which may lead to a performance advantage for
processing certain stimuli over others. Accounting
for such influences is critical for avoiding unwanted
algorithmic biases, particularly in modeling high-level
visual functions such as face recognition (Buolamwini
& Gebru, 2018; Cavazos, Phillips, Castillo, & O’Toole,
2019; Klare, Burge, Klontz, Vorder Bruegge, &
Jain, 2012).

Overall, our results suggest that the classical
oblique effect is reproduced in a CNN trained
to perform object recognition on an image set
containing an overrepresentation of cardinal
orientations. Furthermore, a rotated version of
this bias can be induced by training a CNN on
rotated versions of these same images. These results
indicate that general visual experience, without the
presence of an innate bias that matches the viewed
orientation distribution, is sufficient to induce the
formation of orientation biases, providing support
for an experience-driven account of the oblique
effect.

Keywords: orientation, perceptual bias, anisotropy,
efficient coding, convolutional neural network
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