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How to describe disordered 
structures
Kengo Nishio & Takehide Miyazaki

Disordered structures such as liquids and glasses, grains and foams, galaxies, etc. are often represented 
as polyhedral tilings. Characterizing the associated polyhedral tiling is a promising strategy to 
understand the disordered structure. However, since a variety of polyhedra are arranged in complex 
ways, it is challenging to describe what polyhedra are tiled in what way. Here, to solve this problem, 
we create the theory of how the polyhedra are tiled. We first formulate an algorithm to convert 
a polyhedron into a codeword that instructs how to construct the polyhedron from its building-
block polygons. By generalizing the method to polyhedral tilings, we describe the arrangements of 
polyhedra. Our theory allows us to characterize polyhedral tilings, and thereby paves the way to study 
from short- to long-range order of disordered structures in a systematic way.

Disordered structures are often represented as polyhedral tilings1–11. For example, in studying the atomic 
structures of amorphous materials, the space can be divided into the so-called Voronoi polyhedra, where each 
polyhedron encloses its associated atom1–8. The shape of the polyhedron relates to how the associated atom is 
surrounded by its neighbouring atoms. The short-range order of a disordered structure can be thus characterized 
by what polyhedra constitute its associated polyhedral tiling, while the long-range order by how the polyhedra 
are arranged. So far, some attempts have been made to classify individual polyhedra1,11–16 and periodic tilings for 
crystals17,18. However, there have been no methods to describe what polyhedra are tiled in what way. If we could 
describe the arrangements of polyhedra, our understanding of the disordered structures would be deepened.

In this work, we create the theory of how the polyhedra are tiled. For this purpose, we use the hierarchy 
of structures of polytopes19,20: a polyhedron (3-polytope) is a tiling by polygons (2-polytopes), a polychoron 
(4-polytope) is a tiling by polyhedra, and so on. We first formulate a code for polyhedra (p3-code), and then gen-
eralize it to polychora. The code for polychora (p4-code) allows us to describe what polyhedra are tiled in what 
way.

Results
Polygon-sequence codeword. A polyhedron can be regarded as a tiling by polygons of the surface of a 
three-dimensional object that is topologically the same as a three-dimensional sphere. According to the idea 
developed by L. Euler, A. M. Legendre, F. Möbius, and P. R. Cromwell19, we assume that polygons are glued such 
that (1) any pair of polygons meet only at their sides or corners and that (2) each side of each polygon meets 
exactly one other polygon along an edge. In this picture, the vertex is a point on the polyhedron at which the cor-
ners of polygons meet (Supplementary Fig. S1a), and we say that the corners contribute to the vertex. We also say 
that a polygon (side) contributes to a vertex if one of its corners (endpoints) contributes to the vertex. Similarly, 
the edge is a line segment on the polyhedron along which the sides of polygons meet (Supplementary Fig. S1b). 
The interior area of a polygon is the face of the polyhedron.

We first deal with simple polyhedra, where every vertex is degree three. Here, the degree of a vertex is the 
number of edges connected to that vertex21. Afterwards, the method will be generalized to non-simple ones. 
We formulate the p3-code in such a way that the codeword of a polyhedron (simply, p3) instructs how to con-
struct it from its building-block polygons. For this purpose, we combine a polygon-sequence codeword (ps2) and a 
side-pairing codeword (sp) as p3 =  ps2;sp, where “;” is a separator.

The ps2-codeword is denoted as

= .ps p p p p F(1) (2) (3) ( ) (1)2 2 2 2 2
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Here, p2(i) is the number of sides on the polygon i, where i is the identification number (ID). F is the number of 
faces on the polyhedron. Generating ps2 thus reduces to assigning polygon IDs. To visually distinguish 
already-encoded polygons from to-be-encoded ones, we assume that all polygons are coloured at first, and make 
each polygon transparent when encoded. We call a side of a transparent polygon glued to a coloured one a dan-
gling side. To identify each side, we introduce the side-ID ij. Here, the side ij means the jth side of the polygon i, 
and the side-ID ij represents an integer: ij =  j +  ∑ =

− p x( )x
i

1
1

2 . We also assign corner IDs so that the endpoints of the 
side ij are the corners ij + 1 and ij for 1 ≤  j <  p2(i) (Fig. 1a). The smallest-ID dangling side (s-side) plays a key role in 
encoding. The ps2-codeword is generated as follows (Fig. 1b,c):

1.
 (a) Choose a side as the initial side, and the polygon 1 is the one having that side.
 (b)  Assign IDs (11, 12, 13, ··· , 1p (1)2

) to the sides of the polygon 1 from the initial side in a clockwise (CW) 
direction.

 (c) Make the polygon 1 transparent except for the corners and sides.

2.
 (a) The next polygon i ( 2 ≤  i ≤  F ) is the coloured one glued to the s-side.
 (b)  Assign IDs (i1, i 2, i 3, ··· , i p i( )2

) to the sides of the polygon i from the side glued to the s-side in a CW 
direction.

 (c) Make the polygon i transparent except for the corners and sides.

3.
 (a) Repeat the procedure 2 until all polygons get transparent.

For latter convenience in formulating the p4-code, we assign edge IDs as follows. First we tentatively assign 
the smaller side ID to the edge, and then relabel the IDs so that the edge i is the one with the ith smallest tentative 
ID as illustrated in Fig. 1d. We also assign vertex IDs in a similar manner. First we tentatively assign the smallest 
corner ID to the vertex, and then relabel the IDs. Since the properties of simple polyhedra are not assumed, the 
algorithm for generating ps2 can be used to assign face, edge and vertex IDs not only to simple polyhedra, but also 
to non-simple ones.

We note that p2(F −  1) and p2(F) can be deduced from p2(1) p2(2) p2(3) ··· p2(F − 2) (see Supplementary Note 
and Supplementary Fig. S2). However, we purposely admit the small redundancy in ps2 to explicitly express all 
information about the polygons of the polyhedron.

Tentative side-pairing codeword. To formulate sp and the decoding algorithm, we first introduce the 
zeroth tentative side-pairing codeword (tsp(0)). We then formulate an algorithm to recover the original polyhedron 
from ps2;tsp(0). Finally, we remove redundancy in tsp(0) step-by-step to obtain sp.

We first introduce a plot as follows. A plot consists of a single dangling side or a chain of dangling sides. Here, 
two dangling sides are considered to be chained when they contribute to the same vertex contributed by two 
transparent polygons. Let x be the smallest side ID of a plot. We define the ID of that plot as x (Fig. 2a). We call the 
smallest-ID plot the s-plot. Note that all the sides of each plot are glued to the same coloured polygon.

If we encode a polyhedron twice, we know all the IDs of the polygons and sides from the beginning in the 
second time of encoding. When the polygon (i −  1) gets transparent, the coloured polygon i is glued to the s-side, 
so that the s-plot is glued to the polygon i. For example, in encoding the polyhedron shown in Fig. 2b, the polygon 
2 in P1 is glued to the s-plot 11 (Fig. 2c). Here, Pi is the object obtained when the polygon i gets transparent. In P7 
(Fig. 2d), the polygon 8 is glued to the plot 56 in addition to the s-plot 34. We call such an additional plot an a-plot. 
The smallest-ID side of the a-plot 56, which is the side 56, is glued to the side 85. We call such a pair an a-pair 8556. 
The sides 104 and 54 also form the a-pair 10454 (Fig. 2e).

By collecting the a-pairs, we define tsp(0) as

= .tsp y x y N x N(1) (1) ( ) ( ) (2)
(0)

a a a a a a

Here, the sides ya(i) and xa(i) form the a-pair ya(i)xa(i), where ya(i) >  xa(i), and ya(i) <  ya(i +  1). Na is the number 
of a-pairs. For example, tsp(0) of the polyhedron shown in Fig. 2b is 855610454.

Decoding algorithm. To formulate a decoding algorithm, we consider the sequence D1 D2 D3 ···  DF, where 
Di is the partial polyhedron obtained when the polygon i is decoded. For the encoding process, we also consider 
the sequence E1 E2 E3 ···  EF. Here, Ei is the partial polyhedron obtained by removing the coloured polygons from 
Pi (Fig. 3a,b). For Di and Ei, if a side is not glued to the other polygon, we call it a dangling side. To define the plot, 
we consider a pair of two dangling sides to be chained if they contribute to the same vertex contributed by two 
polygons.

We formulate an algorithm to recover the original polyhedron from ps2;tsp(0) so as to satisfy Di =  Ei at any i. If 
we assign side IDs (11, 12, 13, ··· , 1p (1)2

) to a p2(1)-gon, then the resultant object D1 is identical with E1. Assume 
Di − 1 =  Ei − 1 for 2 ≤  i ≤  F. To construct Di (= Ei) from Di − 1 and ps2;tsp(0), we introduce a rectification mechanism 
as follows. Since Di is the partial polyhedron of a simple polyhedron, Di must not have any degree-four vertex 
contributed by three polygons. We call such a vertex an illegal vertex (i-vertex). However, we allow intermediate 
products to transiently have i-vertices. When an i-vertex is generated, we rectify it by gluing together the two 
dangling sides contributing to it (Fig. 3c). Using the rectification mechanism, Di can be constructed as follows. We 
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Figure 1. Encoding and decoding a polyhedron. Schlegel diagrams are used to illustrate polyhedra20,22. POV-
Ray software23 is used to generate pictures. (a) Corner IDs (red) and side IDs (blue). (b) A Schlegel diagram is 
a projection of a polyhedron onto a plane. Note that the interior of the face abc on the polyhedron is mapped 
to the exterior of the outside face abc on the diagram. A counter CW direction around an inside polygon on 
the diagram, for example z→x→a→c, corresponds to a CW direction around its corresponding polygon on 
the polyhedron. (c) Encoding procedures. The red lines indicate the s-sides. (d) How to assign edge IDs. (e) 
Decoding procedures. Open circles indicate i-vertices, while filled circles indicate degree-one vertices.
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first glue the side i1 of the polygon i to the s-side of Di − 1 (Fig. 3d,e). This is because Ei consists of the polygon i and 
Ei − 1 in such a way that the side i1 of the polygon i is glued to the s-side of Ei − 1. In addition, if ya(n) (1 ≤  n ≤  Na) is 
the side ID of the polygon i, then we glue the side ya(n) to the side xa(n) of Di − 1 (Fig. 3f) –for the polygon i in Ei is 
glued to not only the s-plot, but also the a-plot xa(n) of Ei − 1 (Fig. 3b). If the product has i-vertices, we rectify them 
so that all the sides of the s-plot and a-plots get glued to the polygon i properly to satisfy Di =  Ei (Fig. 3g,h).

To summarize, the original polyhedron can be recovered from ps2;tsp(0) as follows (Fig. 1e):

1. 
 (a) The polygon 1 is a p2(1)-gon.
 (b) Assign IDs (11, 12, 13, ··· , 1p (1)2

) to its sides in a CW direction. The resultant object is D1.

2. 
 (a) The next polygon i (2 ≤  i ≤  F) is a p2(i)-gon.
 (b) Assign IDs (i1, i 2, i 3, ··· , i p i( )2

) to its sides in a CW direction.
 (c) Glue the side i1 of the polygon i to the s-side of Di − 1.
 (d) If ya(n) (1 ≤  n ≤  Na) is the side ID of the polygon i, then glue the side ya(n) to the side xa(n) of Di − 1.
 (e)  If i-vertices are generated, then rectify them, and repeat this procedure until no i-vertices remain. The 

resultant object is Di.

3. 
 (a) Repeat the procedure 2 until all polygons are placed.

Figure 2. Illustration of plots, a-plots, and a-pairs. (a) How to form plots from dangling sides. The circled 
dotes are vertices contributed by two transparent polygons. (b) Polygon IDs. The polyhedron is encoded by 
choosing the side indicated by the arrow as the initial one, (c) P1. (d) P7. (e) P9.
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Figure 3. Procedures to recover a polyhedron. D8 (= E8) of the polyhedron shown in Fig. 2b can be constructed 
from D7 (= E7) and ps2;tsp(0) =  458585574755433;855610454. (a) How to construct E7 from P7. If we ignore colour, 
the coloured E7 is considered to be identical with E7. (b) E8 consists of the polygon 8 and E7. (c) How to rectify 
i-vertices (open circles). (d) Since p2(8) =  7, the polygon 8 is a 7-gon. (e) The side 81 of the 7-gon is glued to the 
s-side 34 of D7. An i-vertex is generated (blue circle). (f) We glue together the sides 85 and 56 as tsp(0) instructs. 
Another i-vertex is generated (red circle). (g) We glue the sides 82 and 74 together to rectify the blue i-vertex.  
(h) We also glue the sides 84 and 63 together to rectify the red i-vertex. D8 thus obtained is identical with E8.
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Side-pairing codeword. In decoding ps2;tsp(0), Di =  Ei at any i. However, what we need is just DF =  EF. By 
allowing Di ≠  Ei for 1 ≤  i ≤  F −  1, we can make the more compact sp as described below.

We remove redundancy in tsp(0) step-by-step. To examine ya(Na)xa(Na) for necessity, we consider the first test 
codeword denoted as

= − −test y x y N x N(1) (1) ( 1) ( 1), (3)
(1)

a a a a a a

which is obtained by stripping ya(Na)xa(Na) off from tsp(0). Then we attempt to decode ps2;test(1). When the poly-
gon having the side ya(Na) is decoded, we will fail to glue the sides ya(Na) and xa(Na) together, because the a-pair 
ya(Na)xa(Na) is missing in test(1). However, we can proceed decoding. If the missing a-pair is cured and the original 
polyhedron is successfully reproduced in the subsequent decoding process, then we call the a-pair the curable 
a-pair. Otherwise, we call it the non-curable a-pair. If the a-pair is curable, then we can remove ya(Na)xa(Na) from 
tsp(0). We therefore set the first tentative side-pairing codeword as tsp(1) =  test(1). On the other hand, if the a-pair 
is non-curable, then tsp(1) =  tsp(0).

To examine ya(Na+ 1 −  i)xa(Na +  1 −  i) (2 ≤  i ≤  Na) for curability, we consider the ith test codeword test(i), 
which is obtained by stripping ya(Na +  1 −  i)xa(Na +  1 −  i) off from tsp(i − 1). Then we attempt to decode ps2;test(i). 
If the a-pair is curable, then tsp(i) =  test(i), otherwise, tsp(i) =  tsp(i − 1).

We repeat the above-mentioned procedure, and tsp N( )a  is what we call sp. For example, tsp(0) of the polyhedron 
shown in Fig. 2b is 855610454. The a-pair 10454 is non-curable (Supplementary Fig. S3a), while the a-pair 8556 is 
curable (Supplementary Fig. S3b). As a result, sp =  10454. Since the polyhedron is encoded as 458585574755433: 
10454, we call it a 458585574755433;10454-polyhedron, or a 4(58)25274752432;10454-polyhedron for short.

Representative codeword. Our encoding starts with choosing an initial side. A different initial side for the 
same polyhedron may give a different p3-codeword. There are 2E possible initial sides for a polyhedron. Here, E is 
the number of edges on the polyhedron. We also examine the mirror-image polyhedron, which gives additional 
2E possibilities. A maximum of 4E different codewords can be obtained from a polyhedron and its mirror image. 
To determine the representative one, we introduce the lexicographical number Lex(p3). Given that ps2 and sp can 
be read as positive F-  and 2Nna-digit integers, we define Lex(p3) as the concatenation of the two numbers. Here, 
Nna is the number of non-curable a-pairs. We use the codeword with the smallest Lex(p3) as the representative one.

Non-simple polyhedron. On the analogy of the n-regular graph21, we call the polyhedron whose vertices 
are all degree n the n-regular polyhedron. 3-regular polyhedra are simple, while, for n >  3, n-regular polyhedra 
are non-simple. In encoding [decoding], if we regard that two dangling sides are chained when they contribute to 
the same vertex contributed by (n −  1) transparent polygons [polygons] and modify an i-vertex to be a vertex con-
tributed by a pair of two dangling sides and n transparent polygons [polygons], our p3-code is straightforwardly 
applicable to n-regular polyhedra. For example, the octahedron is encoded as “4-regular 38”. The icosahedron is 
“5-regular 320”. However, if a non-simple polyhedron is non-regular, this method cannot be used. To deal with 
all non-simple polyhedra, we formulate a method that uses a one-to-one correspondence between a non-simple 
polyhedron and its associated simple one as described below.

Any non-simple polyhedron can be transformed into its associated simple polyhedron by cutting every vertex 
of degree d (> 3) and replacing it with a d-gonal cross section22. For example, a non-simple pentagonal pyramid 
can be transformed into a pentagonal prism by cutting the apex (Fig. 4a,b). By marking the cross sections, a 
one-to-one correspondence can be established between any non-simple polyhedron and its associated simple 
one. Using the one-to-one correspondence, we encode a non-simple polyhedron. Here, we modify the s-side to 
be the smallest-ID dangling side in real polygons (not cross sections) so that the face, edge, and vertex IDs of a 
non-simple polyhedron determined from its associated simple polyhedron using an algorithm described below 
conform to those determined directly from itself using the algorithm described above. The p3-codeword of a 
non-simple polyhedron is generated as follows:

1. Choose a side of a non-simple polyhedron as an initial side.
2. Construct its associated simple polyhedron by cutting every vertex of degree d (> 3) and replacing it with a 

d-gonal cross section.
3. Encode the associated simple polyhedron from the initial side corresponding to the one determined in the 

procedure 1.
4. Put a dot on p2(i) if the polygon i is the cross section; for example, a codeword for the pentagonal pyramid 

is 5444445, or 54 55  for short, indicating that the polygon 7 is a cross section.

5. The edge and face IDs can be assigned as illustrated in Fig. 4c.

Since ps2 contains dots, it is not a number. We therefore define Lex(ps2) as the concatenation of two numbers 
ps2

(1) and ps2
(2). Here, ps2

(1) is a number obtained from ps2 by replacing every number without a dot to 0 and then 
by removing all dots, while ps2

(2) is obtained by removing all dots from ps2. For example, Lex (5444445) is the con-
catenation of 0000005 and 5444445, namely, 00000055444445.

Note that, if a vertex is concave, cutting the vertex may not be well defined. However, by assuming that a pol-
yhedron is flexible, we can inflate it so that a concave vertex becomes a convex one. Then we can cut the vertex.

Decoding is achieved easily. We first construct the associated simple polyhedron, and then shrink the cutting 
sections to the vertices.
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The duality of polyhedra can be used to make a codeword more compact. Every polyhedron has its associated 
dual, which is constructed as follows21:

1. Draw a vertex vi
* of the dual polyhedron on each face fi of the original polyhedron.

2. Draw an edge eij
* of the dual, if the faces fi and fj share an edge e, to connect the vertices vi

* and vj
* such that 

eij
* crosses e, but does not cross the other edges.

Figure 4. Non-simple polyhedron. (a) A pentagonal pyramid. (b) The simple polyhedron obtained by cutting 
the degree-five vertex of the pentagonal pyramid shown in (a). The cross section is coloured blue. (c) How 
to assign edge and face IDs, being expressed with Schlegel diagrams. We first assign edge and face IDs to the 
associated simple polyhedron. If we shrink the cross sections to the vertices, some edges and faces disappear. We 
therefore relabel the edge and face IDs. The red and blue numbers are edge and face IDs, respectively.

Figure 5. Duality. (a) Dual of an octahedron (blue) is a hexahedron (red). (b) Duality illustrated in (a) is 
expressed with Schlegel diagrams.
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There is a one-to-one correspondence between the original polyhedron and its dual. For example, the dual of 
an octahedron is a hexahedron (Fig. 5a,b). Reversely, the dual of a hexahedron is an octahedron (Fig. 5b). A 
p3-codeword for the octahedron is 66(46)6, while a p3-codeword for the hexahedron is 46. Using the duality, we 
encode the octahedron as ★46. Here, “★” indicates that the octahedron is the dual of the 46-polyhedron. We define 
Lex (★46) as the concatenation of Lex (★), which we define as 1, and Lex(46). Therefore, Lex (★46) is 1444444. On 
the other hand, Lex(66(46)6) is 0040404040404066464646464646. Since Lex (★46) is the smallest, the representa-
tive p3 for the octahedron is ★46, which is more compact than 66(46)6. We also note that the hexahedron can be 
encoded as ★66(46)6, but it is not the representative codeword. For reference, the representative p3-codewords for 
the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron are 34, 46, ★46, 512, and ★512, 
respectively.

Consider that we calculate p3 for a polyhedron by encoding its dual for a given initial side of the original 
polyhedron. To determine the initial side for encoding the dual, we use the one-to-one correspondence between 
the original polyhedron and its dual. For example, in encoding an octahedron shown in Fig. 5, when we choose 
the side cb of the polygon cbf as the initial side, the edge cb is the edge 1 and the vertex c is the vertex 1. The edge 
and vertex are mapped to the edge hl and face hlmi of the dual. Using this relation, we choose the initial side for 
encoding the dual so that 1s are assigned to the edge hl and face hlmi. Thus, the initial side is determined to be the 
side hl of the polygon hlmi.

Our p3-code is more robust and efficient than the previous methods for polyhedra1,11–16 (see Supplementary 
Note). However, what is really stupendous is that only our theory can be generalized to polyhedral tilings as 
described below.

Code for polychora. We regard a polychoron as a tiling by polyhedra of the surface of a four-dimensional 
object that is topologically the same as a four-dimensional sphere. We assume that polyhedra are glued together 
such that (1) any pair of polyhedra meet only at their faces, edges, or vertices and that (2) each face of each poly-
hedron meets exactly one other polyhedron along a ridge. The 0-face, peak, and ridge are a point, line segment, 
and area on the polychoron, where the vertices, edges, and faces of polyhedra meet, respectively (Supplementary 
Fig. S1c–e). The interior space of a polyhedron is the cell of the polychoron.

We first deal with polychora whose peaks are all contributed by three polyhedra. Afterwards, the method will 
be generalized to polychora in general. The p4-codeword consists of a polyhedron-sequence codeword (ps3) and a 
face-pairing codeword (fp), and is denoted as p4 =  ps3;fp.

The ps3-codeword is denoted as

= ps p p p p C(1) (2) (3) ( ), (4)3 3 3 3 3

where C is the number of cells on the polychoron, and p3(i) is the p3-codeword for the polyhedron i. To assign 
IDs to the polyhedra, we use edge (face) IDs ij. Here, the edge (face) ij is the jth edge (face) of the polyhedron i. In 
encoding, each polyhedron is coloured at first, but gets transparent when encoded. We call a face of a transparent 
polyhedron glued to a coloured one a dangling face. The smallest-ID dangling face (s-face) plays a key role in 
encoding. The ps3-codeword is generated as follows (Fig. 6 and Supplementary Fig. S4):

1. 
 (a)  Choose a face of a polyhedron and an edge of that face as the initial face and edge, respectively; the 

polyhedron 1 is the one having the initial face.
 (b)  Determine p3(1) by encoding the polyhedron 1 in such a way that the face 11 (edge 11) becomes the 

initial face (edge).
 (c) Make the polyhedron 1 transparent except for the vertices and edges.

2. 
 (a) The next polyhedron i (2 ≤  i ≤  C) is the coloured one glued to the s-face.
 (b)  Determine p3(i) by encoding the polyhedron i in such a way that the face i1 (edge i1) is glued to the 

s-face (the smallest-ID edge of the s-face).
 (c) Make the polyhedron i transparent except for the vertices and edges.

3. 
 (a) Repeat the procedure 2 until all polyhedra get transparent.

As with the case of polyhedra, this method can be used to assign cell, ridge, peak, and 0-face IDs to polychora 
in general.

To define zeroth tentative face-pairing codeword tfp(0), we explain plots for polychora. If a pair of two dangling 
faces contribute to a peak contributed by two transparent polyhedra, the dangling faces are considered to be 
chained. A single dangling face or chained dangling faces form a plot; the plot here is a two-dimensional object. 
We assign plot IDs so that the smallest-ID face of the plot x is the face x. If the polyhedron i in Pi − 1 is glued to 
plots other than the s-plot, we call them a-plots. By the a-pair wzv, we mean that the face w (of the polyhedron i) 
is glued to the face v of the a-plot v in such a way that the edge z (of the face w) is glued to the smallest-ID edge of 
the face v. By collecting the a-pairs, tfp(0) is denoted as
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= .tfp w z v w N z N v N(1) (1) (1) ( ) ( ) ( ) (5)(0)
a a a a a a a a a

Here, wa(i) >  va(i) and wa(i) <  wa(i +  1).
In decoding, by a dangling face, we mean a face that is not glued to the other polyhedron. If a pair of dangling 

faces contribute to a peak that is also contributed by three polyhedra, we call that peak an illegal peak (i-peak). The 
i-peak can be rectified by gluing together the two dangling faces contributing to it. The original polychoron can 
be recovered from its ps3;tfp(0) as follows (Supplementary Figs S5 to S7):

1.
 (a) Decode p3(1) to obtain the polyhedron 1, assigning face and edge IDs.

2.
 (a) Decode p3(i) to obtain the next polyhedron i (2 ≤  i ≤  C), assigning face and edge IDs.
 (b)  Glue the face i1 of the polyhedron i to the s-face of Di−1 in such a way that the edge i1 is glued to the 

smallest-ID edge of the s-face.
 (c)  If wa(n) (1 ≤  n ≤  Na) is the face ID of the polyhedron i, then glue the face wa(n) to the face va(n) of Di−1 

in such a way that the edge za(n) is glued to the smallest-ID edge of the face va(n).
 (d) If i-peaks are generated, then rectify them, and repeat this procedure until no i-peaks remain.

3.
 (a) Repeat the procedure 2 until all polyhedra are placed.

Figure 6. Encoding a polychoron. Procedures are illustrated with three-dimensional Schlegel diagrams (a 
projection from four- to three-dimensional space). The polychoron abcdefgh consists of two 3333-polyhedra 
and four 34443-polyhedra. The face abc and edge ab of the outside polyhedron abcd are chosen as the initial face 
and edge, respectively. The red lines indicate the s-face, and the dashed one indicates the smallest-ID edge of the 
s-face. See Supplementary Fig. S4 for details in the edge and face IDs. Note that a counter CW direction around 
a face of inside polyhedra on the Schlegel diagram, for example f→e→g around the face feg of the polyhedron 
fegh, corresponds to a CW direction around its corresponding face on the polychoron in four-dimensional 
space.
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By an similar argument for sp, the redundancy in tfp(0) can be removed step-by-step with generating tfp(1), 
tfp(2), tfp(3), ··· , and tfp(Na) is what we call fp.

A maximum of 12P different p4-codewords can be obtained from a polyhedron and its mirror image, where 
P is the number of peaks on the polychoron. Given that ps3 and fp can be read as C- and 3Nna -digit numbers, 
respectively, we define Lex(p4) as the concatenation of the two numbers. We use the lexicographically smallest p4 
as the representative one.

Affected polychora. We first define the degree of a peak as the number of polyhedra contributing to that 
peak. We call a peak of degree more than three an affected peak. We say a polychoron without an affected peak to 
be non-affected. Reversely, an affected polychoron has one or more affected peaks. The p4-code for non-affected 
polychora formulated above can be generalized to affected ones by using a one-to-one correspondence between 
an affected polychoron and its associated non-affected one as described below.

Any affected polychora can be transformed into a non-affected one by cutting its affected peaks. However, 
when different affected peaks are incident to the same 0-face, different non-affected polychora are obtained 
depending on the order of cutting. Therefore, we first assign peak IDs, and then cut the affected peaks in the 
ascending order of peak ID.

Suppose that we create a cross-section cell (cs-cell) by cutting an affected peak XY, connecting the 0-faces X 
and Y. We say its 0-face to be type-X (type-Y), if it is the cross section of a peak incident to X (Y). The ridges of the 
cs-cell are classified into three types: type-X ridges consisting of only type-X 0-faces, type-XY ridges consisting of 
both type-X and type-Y 0-faces, and type-Y ridges consisting of only type-Y 0-faces. In other words, by cutting a 
peak XY, it is mapped to a cs-cell in such a way that its endpoints are mapped to either type-X or type-Y ridges. 
Note that the type-X and -Y ridges do not adjoin each other because the type-XY ridges separate them, and that 
the number of the type-XY ridges is the same as the degree of the peak XY. In the example shown in Fig. 7, by 
cutting the affected peak XY of degree four, the 0-faces X and Y are mapped to the cross-section ridges a′b′c′d′ 
and e′f′g′h′, respectively. Four cross-section ridges a′d′h′e′, b′a′e′f′, c′b′f′g′, and d′c′g′h′ are type-XY.

Based on the above discussion, an affected polychoron can be encoded as follows:

1. Choose a face and an edge of an affected polychoron as an initial face and edge, and then assign peak IDs.
2. Cut the affected peaks in the ascending order of peak ID.
3. Encode the associated non-affected polychoron from the initial face and edge corresponding to the ones 

used in procedure (1).

4. To identify the cs-cell that is created when we cut an affected peak, we denote, for example, the p3-code-
word for a cs-hexahedron as 444444. Here, four double lines on 4 designate that the cs-hexahedron is 
mapped from the affected peak of degree four and that the four 4-gonal faces contribute to the type-XY 
ridges.

For example, a p4-codeword for a polychoron shown in Fig. 7a is HHHHHHHH, where H =  46 and 
=H 444444.
Decoding is achieved easily. We first reproduce the associated non-affected polychoron, and then shrink the 

cs-cells to the corresponding affected peaks.

Figure 7. How to deal with affected peaks. (a) Three-dimensional Schlegel diagram of a polychoron 
abcdefghXY. The hexahedron abcdefgh is the outside polyhedron. The red peak XY is an affected peak 
contributed by four polyhedra abfeXY, bcgfXY, dcghXY, and adheXY. (b) Three-dimensional Schlegel diagram 
of a polychoron obtained by cutting the affected peak XY.
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To define Lex(p4), we define Lex(ps3) for a non-simple polychoron as the concatenation of Lex(ps3
(1)) and 

Lex(ps3
(2)). Here, ps3

(1) is the codeword obtained from ps3 as follows. We first replace every p3 with 0 except p3s for 
the cs-cells corresponding to the affected peaks. We then deal with the p3s for the affected peaks, and replace the 
digits without double lines with 0 and remove the double lines. The ps3

(2)-codeword is the one obtained by remov-
ing double lines from ps3. For example, Lex(HHHHHHHH) is the concatenation of 0000000X and 
HHHHHHHH, namely, 0000000XHHHHHHHH. Here, X =  044440.

As in the case of polyhedra, the duality of polychora20 can be used to make a codeword more compact. For 
example, by using the duality, the representative p4-codewords for 5-, 8-, 16-, 24-, 120-, and 600-cells12 are 
encoded as T4, H8, ★H8, O24, D12, and ★D12, respectively. Here, T, O, and D are the representative p3-codewords for 
the tetrahedron 34, octahedron ★H, and dodecahedron 512, respectively. Note that “★” in “★H8” indicates the dual 
of H8, and Lex (★p4) is defined as the concatenation of Lex (★) and Lex(p4).

Describing a polyhedral tiling. Since a complex of polyhedra can be regarded as a partial polychoron, the 
p4-code can be used to describe the arrangement of polyhedra in polyhedral tilings. The complex of polyhedra 
shown in Fig. 8, for example, is encoded as a partial p4-codeword OtHG3rd

4(HG3rd)4H. Here, by a partial p4, we 
mean that decoding it results in a partial polychoron. Ot (= 464(46)44) and H (= 46) are the representative p3s of 

Figure 8. Codeword for a complex of polyhedra. A central truncated octahedron (green) is surrounded by six 
hexahedra (blue) and eight great rhombicuboctahedra (yellow). By choosing the 4-gon having the initial edge 
indicated by the arrow as the initial face, the arrangement is encoded as OtHG3rd

4(HG3rd)4H. The numbers near 
the polyhedra are their polyhedron IDs.
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the truncated octahedron and hexahedron, respectively. G3rd (= 6(48)3(64)6(84)36) is the third smallest p3 of the 
great rhombicuboctahedron.

Discussion
In this work, we have created the theory of polyhedral tilings, which allows us to convert a local arrangement 
of polyhedra into a partial p4-codeword that represents what polyhedra are tiled in what way. Traditionally, 
the index c3c4c5∙∙∙ has been used to classify polyhedra in polyhedral tilings of liquids, glasses, grains and foams, 
where ci is the number of i-gons on the polyhedron1–6,9,11. However, the index sometimes fails to distinguish 
polyhedra with different structures, which prevents a close investigation of disordered structures. For example,  
the 35664453-polyhedron and 34566543-polyhedrdon have the same index, 2222000···. Although the  
Weinberg code may be a possible remedy and has been used recently11, its codeword is lengthy and  
therefore redundant, still hampering our understanding of disordered structures. For example, the  
Weinberg codeword of the most frequently found polyhedron in the Poisson-Voronoi tessellation is 
“ABCACDEFAFGHIBIJKDKLELMGMNHNJNMLKJIHGFEDCB”. In contrast, using our p3 code, the same pol-
yhedron is encoded as “356645445”. We also note that when the Voronoi polyhedron associated with an atom is 
encoded as 356645445, the atom is surrounded by neighbouring atoms forming a ★356645445-polyhedron. Our 
method thus allows us to describe polyhedral tilings succinctly, which is essential to understand disordered struc-
tures. In addition, although the short-range order can be studied by the previous methods, the long-range order 
cannot. Only our theory allows us to characterize what polyhedra are tiled in what way, and thereby paves the way 
to study from short- to long-range order of disordered structures in a systematic way. Moreover, our theory can 
be generalized to higher-dimensional polytopes to study disordered structures of any dimension.
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