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HOPS: a quantitative score reveals
pervasive horizontal pleiotropy in human
genetic variation is driven by extreme
polygenicity of human traits and diseases
Daniel M. Jordan1,2,3†, Marie Verbanck1,2,3,4† and Ron Do1,2,3*

Abstract

Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important for our
understanding of the genetic architecture of human phenotypes. We develop a method to quantify horizontal
pleiotropy using genome-wide association summary statistics and apply it to 372 heritable phenotypes measured in
361,194 UK Biobank individuals. Horizontal pleiotropy is pervasive throughout the human genome, prominent
among highly polygenic phenotypes, and enriched in active regulatory regions. Our results highlight the central
role horizontal pleiotropy plays in the genetic architecture of human phenotypes. The HOrizontal Pleiotropy Score
(HOPS) method is available on Github at https://github.com/rondolab/HOPS.
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Background
The term “pleiotropy” refers to a single genetic variant
having multiple distinct phenotypic effects. In general
terms, the existence and extent of pleiotropy has far-
reaching implications on our understanding of how
genotypes map to phenotypes [1], of the genetic archi-
tectures of traits [2, 3], of the biology underlying
common diseases [4], and of the dynamics of natural
selection [5]. However, beyond this general idea of the
importance of pleiotropy, it quickly becomes difficult to
discuss in specifics, because of the difficulty in defining
what counts as a direct causal effect and what counts as
a separate phenotypic effect.
One particularly important dividing line in these con-

flicting definitions is the distinction between vertical
pleiotropy and horizontal pleiotropy [6, 7]. When a
genetic variant has a phenotypic effect that then has its
own downstream effects in turn, that variant exhibits

“vertical” pleiotropy. For example, a variant that increases
low-density lipoprotein (LDL) cholesterol might also have
an additional corresponding effect on coronary artery
disease risk due to the causal relationship between these
two traits, thus exhibiting vertical pleiotropy. Vertical
pleiotropy has been conceptualized and measured by
explicit genetic methods like Mendelian randomization.
In contrast, a genetic cause that directly influences

multiple traits, without one trait being mediated by an-
other, would exhibit “horizontal” pleiotropy. Horizontal
pleiotropy contains some conceptual difficulties and
consequently can be difficult to measure. In principle,
we might imagine selecting a variant and counting how
many phenotypes are associated with it. Indeed, several
versions of this analysis have been performed for differ-
ent lists of traits [2, 3, 8, 9]. However, the results of these
analyses are highly dependent on the exact list of traits
used, and traits of interest to researchers previously tend
to involve only a small number of phenotypes and/or be
heavily biased towards a small set of disease-relevant
biological systems and processes. Due to these limita-
tions, it is unknown to what extent horizontal pleiotropy
affects genetic variation in the human genome at the
genome-wide level.
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The proliferation of data sources like large-scale bio-
banks and metabolomics data that include a wide array
of phenotypes in one dataset, combined with the grow-
ing public availability of genome-wide association studies
(GWASs) summary statistic data, especially for ex-
tremely large meta-analyses, has allowed the develop-
ment of methods that use these summary statistics to
gain insight into human biology and particularly into the
genetic architecture of complex traits and diseases [10].
Here, we present the HOrizontal Pleiotropy Score

(HOPS) method to measure horizontal pleiotropy using
publicly available GWAS summary statistics. We focus
on measuring horizontal pleiotropy of SNVs on ob-
servable traits, meaning a scenario where a single SNV
affects multiple phenotypes without relying on a detect-
able causal relationship between those phenotypes.
Using this framework, we are able to score each SNV in
the human genome for horizontal pleiotropy, giving us
broad insight into the genetic architecture of pleiotropy.
Because our framework explicitly removes correlations
between the input phenotypes and because these pheno-
types represent a diverse array of traits and diseases,
these insights are largely robust to the specific list of
traits studied and pertain to human biology overall
rather than relationships between specific traits.

Results
Defining pleiotropy
We narrowly define the scope of pleiotropy as applying
only to genetic variants and particularly variants investi-
gated as part of GWASs. As effects, we are considering
phenotypic outcomes measured by GWASs. By our def-
inition, then, pleiotropy means that one variant shows
significant associations across GWASs of multiple traits.
We additionally restrict the scope of pleiotropy we are
considering to include only horizontal pleiotropy and to
exclude vertical pleiotropy (Fig. 1). To elaborate on this
distinction, suppose we have identified a variant that in-
fluences two different traits, trait A and trait B. In verti-
cal pleiotropy, the traits themselves are biologically

related, so that the variant’s effect on trait A actually
causes the effect on trait B. A key feature of vertical plei-
otropy is that two traits that are biologically related
should be related regardless of which specific gene or
variant is causing the effect. This induces correlation
between GWAS effect sizes on the two traits across an
entire set of variants. For example, we expect that any
variant that increases LDL cholesterol also increases risk
of coronary artery disease, because we suspect that it is
the increase in LDL cholesterol itself that causes
increased disease risk. This results in a correlation
between variant effect sizes for LDL cholesterol and
coronary artery disease, which has been detected in mul-
tiple studies [11–13]. The methodology of Mendelian
randomization uses this predicted correlation within a
given set of variants to formulate a statistical test for
causal relationships among traits, which is now widely
used for biological discovery [14, 15]. We extend this
methodology to use the entire set of SNVs evaluated by
GWAS, treating a GWAS-wide correlation between two
traits as evidence of a vertical pleiotropic relationship
between these traits.
In the case of horizontal pleiotropy, an individual variant

acts on traits A and B without mirroring any trait-level re-
lationship between them. Unlike vertical pleiotropy, since
we are not considering the variant-level effect as evidence
of a relationship between the two traits, we cannot detect
horizontal pleiotropy by detecting correlations between
traits. Instead, each horizontally pleiotropic variant acts by
its own unique mechanism. These particular pleiotropic
variants, therefore, should show a relationship between
the two traits that deviates from the relationship we would
infer from the genome-wide correlation of effect sizes be-
tween them. This deviation from the correlation between
traits is not a prediction of any kind of model of plei-
otropy, but simply follows from our definition of the term
“horizontal pleiotropy”: any pair of traits whose effect sizes
are correlated across all variants is by definition related by
vertical pleiotropy, while any variant whose effects on two
traits substantially deviate from the trait-level relationship
between those traits is by definition exhibiting horizontal
pleiotropy.

A quantitative score for pleiotropy
We have developed a method to measure horizontal
pleiotropy using summary statistics data from GWASs
on multiple traits. Our method relies on applying a stat-
istical whitening procedure to a set of input variant-trait
associations, which removes correlations between traits
caused by vertical pleiotropy and normalizes effect sizes
across all traits. Using the decorrelated association Z-
scores, we measure two related but distinct components
of pleiotropy: the total magnitude of effect on whitened
traits (“magnitude” score, denoted Pm) and the total

Fig. 1 Schematic of different types of pleiotropy. Previous studies
distinguish between vertical pleiotropy, where effects on one trait
are mediated through effects on another trait, and horizontal
pleiotropy, where effects on multiple traits are independent
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number of whitened traits affected by a variant (“number
of traits” score, denoted Pn). Both scores are then scaled
by the number of traits and multiplied by 100, so that
the final score represents the value as it would be mea-
sured in a dataset of 100 traits. This two-component
quantitative pleiotropy score allows us to measure both
the magnitude (pleiotropy magnitude score Pm) and
quantity (pleiotropy number of traits score Pn) of hori-
zontal pleiotropy for all SNVs in the human genome. In
principle, these are distinct quantities: the magnitude
score Pm measures the total pleiotropic effect size of a
variant across all traits, while the number of traits score
Pn measures the number of distinct pleiotropic effects a
variant has. A variant with a high Pm score and a low Pn
score has a large effect spread over a small number of
traits; a variant with a low Pm score and a high Pn score
has only a minor effect overall, but that effect is spread
out across a large number of traits; and a variant with
high scores on both components has a large effect that
is spread across a large number of traits. Since we expect
these scores to be heavily influenced by linkage dis-
equilibrium (LD), we regress Pm and Pn against LD
scores to produce an LD-corrected score (PLD

m and PLD
m )

(Figs. 2 and 3; Methods).

Calculating significance of pleiotropy
We compute P values for the two components of our
pleiotropy score using two different procedures,
corresponding to two different null expectations.

1. Theoretical P values (Raw pleiotropy score
[Pm and Pn] or LD-corrected pleiotropy score
[PLD

m and PLD
n ]), calculated analogously to P values

for genetic association studies including GWAS,
based on a null scenario where variants do not
exhibit pleiotropic effects on observed traits.

2. Empirical P values (polygenicity/LD-corrected
pleiotropy score [PP

m and PP
n]), calculated by

permutation of the observed distributions of
whitened traits. These P values are based on a null
scenario where variants may have significant effects
on one or more traits, but the effects of each
variant on each trait are independent and the
number of variants with effects on multiple traits is
no more than would be expected by chance.

This empirical correction for polygenicity is required
because polygenicity is a major factor that can produce
pleiotropy. For example, it has been estimated that
approximately 100,000 independent loci are causal for
height in humans [16]. If the total number of independent
loci in the human genome is approximately 1 million, this
corresponds to about 10% of the human genome having
an effect on height. If we imagine multiple phenotypes
with this same highly polygenic genetic architecture, we
should expect substantial overlap between causal loci for
multiple different traits, even in the absence of any true
causal relationship between the traits, resulting in
horizontal pleiotropy (Fig. 2).

Power to detect pleiotropy in simulations
We conducted a simulation study to evaluate the per-
formance of our two-component pleiotropy score. We
simulated 800,000 variants controlling 100 traits, varying
the per-trait liability scale heritability of all traits h2 and
the proportion of pleiotropic and non-pleiotropic causal
variants. To introduce LD in the simulations, we used
real LD architecture from 800,000 SNVs from 1000
Genomes European population. We simulated Z-scores
independently for each SNV and then propagate LD for
a given SNV by “contaminating” its Z-score according to
the Z-scores of the SNVs in LD with it. Under the null
model, all trait-variant associations were independent,
and no horizontal pleiotropy was added. Under the

Fig. 2 Contributions of linkage disequilibrium (LD) and polygenicity to horizontal pleiotropy. In addition to the normal sense of horizontal
pleiotropy, both linkage disequilibrium (LD) and polygenicity are expected to contribute to horizontal pleiotropy. In the case of LD-induced
horizontal pleiotropy, two linked SNVs have independent effects on different traits which appear pleiotropic because of the linkage between the
SNVs. In the case of polygenicity-induced horizontal pleiotropy, two highly polygenic traits have an overlap in their polygenic footprint
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Fig. 3 Two-component pleiotropy score method. We (i) collect association statistics from the UK Biobank, (ii) process them using Mahalanobis
whitening, (iii) compute the two components of our pleiotropy score (Pm and Pn) based on the whitened association statistics, (iv) use LD scores
to correct for LD-induced pleiotropy (PLDm and PLDn ), and (v) use permutation-based P values to correct for polygenic architecture (PPm and PPn)
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added-pleiotropy models, we randomly chose a fraction
of causal variants and forced them to have simultaneous
associations with multiple traits. The simulation study
showed that both components of the pleiotropy score
were well-powered to detect horizontal pleiotropy (Fig. 4)
and that the LD correction dramatically reduces the de-
pendence of the pleiotropy score on LD (Additional file 1:
Figure S1). Under the null hypothesis of no added hori-
zontal pleiotropy, the false positive rate was well con-
trolled for both scores when there was low heritability or
few causal variants. However, when there are many
causal variants and high per-variant heritability, the LD-
corrected pleiotropy score (PLD

m and PLD
n ) detects a large

excess of pleiotropic variants, due to serendipitous over-
lap between causal variants without explicitly induced
pleiotropy. The LD/polygenicity-corrected empirical
P value (PP

m and PP
n ) does not detect this serendipitous

pleiotropy at the same high rate.
In the presence of added horizontal pleiotropy, our

approach was powered to detect pleiotropy with per-
variant heritability h2 as small as 0.002 if there are no
non-pleiotropic causal variants. In the presence of both
pleiotropic and non-pleiotropic causal variants, detecting
pleiotropy was more difficult, but our approach still had
appreciable power to detect pleiotropic variants, which
increased with increasing per-variant heritability and
decreased with increasing numbers of non-pleiotropic

causal variants. Adding the correction for polygenic
architecture ( PP

m and PP
n ) reduced this power only

slightly. The power of our method was not substantially
reduced by increasing the number of traits affected by
pleiotropic variants (Additional file 1: Figure S2) or by
adding a realistic correlation structure between the traits
(Additional file 1: Figure S3).

Genome-wide pleiotropy study (GWPS) reveals pervasive
pleiotropy
To apply our method to real human association data, we
used GWAS association statistics for 372 heritable med-
ical traits measured in 337,119 individuals from the UK
Biobank [17–19] . We successfully computed our two-
component pleiotropy score for 767,057 variants
genome-wide and conducted a genome-wide pleiotropy
study (GWPS), by analogy to a standard GWAS (Fig. 3;
Methods). Additional file 1: Figure S4 shows the result-
ing quantile-quantile plots (Q-Q plots). We observed
significant inflation for both the LD-corrected magnitude
score PLD

m and number of traits score PLD
n (Mann-Whitney

U test P < 10−300 for both). Furthermore, we observed
across both scores that horizontal pleiotropy was widely
distributed across the genome, rather than being localized
to a few specific loci (Additional file 1: Figure S5). Testing
an alternative strategy for computing the phenotype-
correlation matrix using all SNVs produced comparable

Fig. 4 Simulation study showing false positive rate (a,b,c,d) and power (e,f,g,h) of two-component pleiotropy score. Top row shows performance
on non-pleiotropic simulated variants (black line shows 5% false positive rate); bottom row shows performance on pleiotropic variants (black line
shows 80% power). Simulations were run for both PLDm (left) and PLDn (right), and both without correction for polygenicity (a,c,e,g) and with the
correction (b,f,d,h), with per-variant heritability ranging from 0.0002 to 0.2, proportion of non-pleiotropic causal loci ranging from 0 to 1%, and
proportion of pleiotropic causal loci ranging from 0.1 to 1%. Our method has good power to detect pleiotropy for highly heritable traits, though
its power is reduced by extreme polygenicity. Extreme polygenicity also increases the false positive rate, though this effect is corrected by our
polygenicity correction

Jordan et al. Genome Biology          (2019) 20:222 Page 5 of 18



results (Pearson r = 0.995 and 0.964 for PLD
m and PLD

n re-
spectively) to our strategy of using a pruned set of SNVs
to account for LD (r2 < 0.1) (Additional file 1: Figure S6).

Pleiotropy is driven by polygenicity
We applied the permutation-based empirical P value cal-
culation (polygenicity/LD-corrected pleiotropy score: PP

m

and PP
n) to correct for the known polygenic architecture of

traits and test whether any loci are pleiotropic to a greater
extent than would be expected due to polygenicity. Add-
itional file 1: Figures S7 and S8 show the resulting Q-Q
plots and Manhattan plots. In contrast to the results from
the LD-corrected pleiotropy score (PLD

m and PLD
n ), we do

not find pleiotropy significantly in excess of what would
be expected from the known polygenic architecture of
traits: there are dramatically fewer loci with genome-wide
significant levels of pleiotropy after correcting for poly-
genic architecture, and the genome-wide distribution of

pleiotropy score shows less pleiotropy than expected
(Mann-Whitney U test P < 10−300 for both PP

m and PP
n).

As an additional test of whether the pleiotropy we ob-
serve is driven by polygenicity, we calculated the polygeni-
city of the same 372 heritable traits from the UK Biobank.
We measured polygenicity using a version of the genomic
inflation factor corrected using LD score λcGC [20]. We
then stratified these traits by λcGC after controlling for her-
itability (Methods) and calculated the two-component
LD-corrected pleiotropy score [PLD

m and PLD
n ] and P values

for each component independently for every variant in the
genome using each of these bins of traits. We observed
that both scores are highly dependent on polygenicity,
with the lowest-polygenicity bins in each heritability class
showing very little inflation. (Fig. 5; Additional file 1:
Table S1). Taken together, these results suggest that
extreme polygenicity drives horizontal pleiotropy and
that this has an extremely large effect on the genetic
architecture of human phenotypes.

Fig. 5 Quantile-quantile (Q-Q) plots showing the inflation of the pleiotropy score as a function of polygenicity. Variants are stratified into 4
batches of about 80 traits each by heritability, and then subdivided into 5 batches of about 20 traits each by polygenicity, as measured by
corrected genomic inflation factor λcGC. Darker shades represent low polygenicity and lighter shades represent high polygenicity. All panels show
−log10 transformed P values. The black lines show the expected value under the null hypothesis
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Genome-wide distribution of pleiotropy score gives
insight into genetic architecture
In addition to observing genome-wide inflation of the
pleiotropy score, we can also gain insight from the distri-
bution of the pleiotropy score on a more granular level.
Figure 6a shows the distribution of pleiotropy score

for independent SNVs (LD pruned to a threshold of
r2 < 0.1) compared to the expectation under the null
hypothesis of no pleiotropic effect. We observe a large
excess in the number of traits score PLD

n , and a smaller but
still highly significant excess in total magnitude of
pleiotropic effect PLD

m . This excess comes in part from a
long tail of highly pleiotropic loci that pass the threshold
of genome-wide significance (dashed line in Fig. 6a), but is
primarily driven by weak pleiotropy among loci that do
not reach genome-wide significance.

Pleiotropy score is correlated with molecular and
biological function
To further investigate the properties of pleiotropic
variants, we examined the effects of various functional
and biochemical annotations on our LD-corrected plei-
otropy score (PLD

m and PLD
n ) (Table 1; Methods). Using

annotations from Ensembl Variant Effect Predictor [21],
we observed that both components of the pleiotropy
score are higher on average in transcribed regions (cod-
ing and UTR) than in intergenic noncoding regions. This
result was confirmed and expanded by annotations from
Roadmap Epigenomics [22], which showed that regions
whose chromatin configurations were associated with
actively transcribed regions, promoters, enhancers, and
transcription factor binding sites had significantly higher
levels of both components of the pleiotropy score, while
heterochromatin and quiescent chromatin states had sig-
nificantly lower levels. Investigating individual histone
marks, we found that both the repressive histone mark
H3K27me3 and the activating histone mark H3K27ac
were associated with elevated levels of pleiotropy,
although the activating mark H3K27ac had a larger
effect. This may indicate that being under active regu-
lation at all produces higher levels of pleiotropy, whether
that regulation is repressive or activating.
We also used data from the Genotype-Tissue Expression

[23] project to measure the connection between transcrip-
tional effects and our pleiotropy score (Table 1). Consistent
with the previous observation that functional regions had
higher pleiotropy scores, we found that variants that were
identified as cis eQTLs for any gene in any tissue had higher
pleiotropy scores on average. Within eQTLs, we also ob-
served significant correlations between our pleiotropy score
and the numbers of genes (PLD

m : r= 0.036, P < 2.2 × 10− 16;
PLD
n : r= 0.035, P < 2.2 × 10− 16) and tissues (PLD

m : r= 0.062,
P < 2.2 × 10− 16; PLD

n : r= 0.059, P < 2.2 × 10− 16) where the

variant was annotated as an eQTL, showing that our
pleiotropy score is related to transcriptional measures
of pleiotropy.
Finally, we found that variants that are eQTLs for

genes whose orthologs are associated with multiple
measurable phenotypes in mice or yeast have higher
pleiotropy scores, demonstrating that our pleiotropy
score is also related to pleiotropy in model organisms.
All these results are consistent when using the poly-

genicity/LD-corrected pleiotropy score (PP
m and PP

nÞ, indi-
cating that the association of pleiotropy with molecular
and biological function is not exclusively driven by highly
polygenic architecture (Additional file 2).

Genome-wide pleiotropy study identifies novel biological loci
By analogy to standard GWAS, our GWPS methodology
can identify individual variants that have a genome-wide
significant level of horizontal pleiotropy. Using the LD-
corrected magnitude score PLD

m , we identified 74,335
variants in 8093 independent loci with a genome-wide
significant level of horizontal pleiotropy, while using the
LD-corrected number of traits score PLD

n identified 18,
393 variants in 2859 independent loci with a genome-
wide significant level of horizontal pleiotropy, all of
which are also identified by the LD-corrected magnitude
score PLD

m (Methods, Additional file 1: Table S2). Apply-
ing the same analysis to the polygenicity/LD-corrected
pleiotropy score, using the polygenicity/LD-corrected
magnitude score PP

m identified no genome-wide signifi-
cant loci, but using the polygenicity/LD-corrected num-
ber of traits score PP

n identified 2674 variants in 432 loci.
Strikingly, a majority of loci significant in PLD

n (1519 of
2859) or PP

n (294 of 432), along with a sizeable minority
of loci significant in PLD

m (2934 of 8093), have no entry in
the NHGRI-EBI GWAS catalog, meaning that they have
never been reported as an associated locus in any
published GWAS. These loci represent an under-
recognized class of genetic variation that has multiple
weak to intermediate effects that are collectively signifi-
cant, but no specific strong effect on any one particular
trait. Functional enrichment analysis on genes near
these genome-wide significant loci implicates a wide
range of biological functions, including cell adhesion,
post-translational modification of proteins, cytoskel-
eton, transcription factors, and intracellular signaling
cascades (Additional file 3). Loci significant in PP

n show
a more focused subset of functions, with a greater role
for nuclear proteins regulating transcription and chro-
matin state, suggesting that these are the functions that
exhibit horizontal pleiotropy beyond the baseline level
induced by polygenicity. The role of these novel loci
and these biological processes in human genetics and
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Fig. 6 (See legend on next page.)
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biology may be a fruitful area for future study, with the
potential for biological discovery.

Pleiotropic loci replicate in independent GWAS datasets
As replication datasets, we used two additional sources
of GWAS summary statistics to calculate our LD-
corrected pleiotropy score ( PLD

m and PLD
n ): previously

published GWASs and meta-analyses for 73 human
complex traits and diseases, which we collected and
curated manually from the literature (Methods, Add-
itional file 1: Table S3) [24]; and a previously published
study of 430 blood metabolites measured in 7824
European adults [25]. For all variants covered by the UK
Biobank, we were able to compute our pleiotropy score
independently using these two datasets (Fig. 7). In the
traits and diseases dataset, we observed that 57% of PLD

m

loci and 38% of PLD
n loci replicated, while in the blood

metabolites dataset, we observed that 17% of PLD
m loci

and 12% of PLD
n loci replicated, compared to 5% of PLD

m

loci and 6% of PLD
n loci expected by chance according to

a permutation-based null model. This high level of repli-
cation using independent sets of GWAS summary statis-
tics suggests that our pleiotropy score is capturing an
underlying biological property, rather than an artifact of
the UK Biobank study.

Pleiotropy is correlated with specific complex traits and
diseases
To characterize the phenotypic associations of these loci,
we used our replication dataset of published GWAS
summary statistics for 73 human quantitative traits and
diseases, plus nine additional traits we excluded from
our replication dataset for a total of 82 (Methods). We
are not able to compute directly the degree of pleiotropy
exhibited by these traits, since our definition of horizon-
tal pleiotropy applies only to individual variants and
does not apply to traits. However, we can identify traits
whose GWAS variant associations are correlated to our
pleiotropy score, which in some sense represents the
traits that contribute most to our signal of pervasive
horizontal pleiotropy. Figure 6c shows the correlations
between our LD-corrected pleiotropy score ( PLD

m and

PLD
n ) and the association statistics for these 82 traits and

diseases. The most strongly correlated traits were
anthropometric traits like body mass index, waist and
hip circumference, and height; certain blood lipid levels,
including total cholesterol and triglycerides; and schizo-
phrenia. These are all known to be highly polygenic and
heterogeneous traits. The least correlated traits include
several measurements of insulin sensitivity and glucose
response, such as the insulin sensitivity index (ISI), cer-
tain features of brain morphology, and the inflammatory
biomarker lipoprotein (a). This may be partly due to low
sample size of the corresponding GWASs. However,
these correlations do not appear to be driven exclusively
by sample size: in cases where multiple GWASs for the
same trait have been performed on subsamples of the
population (for example, males only, females only, and
combined), the sample size only marginally affects the
correlation (Additional file 1: Table S4). Another con-
tributing factor may be heritability: height, in particular,
is among the most heritable traits we examined, while
ISI and the brain morphology features are among the
least.

Discussion
We have presented HOPS, a framework for scoring hori-
zontal pleiotropy across human genetic variation. In
contrast to previous analyses, our framework explicitly
distinguishes between horizontal pleiotropy and vertical
pleiotropy or biological causation. After applying HOPS
to 372 heritable medical traits from the UK Biobank, we
made the following observations: (1) horizontal
pleiotropy is pervasive and widely distributed across the
genome; (2) horizontal pleiotropy is driven by extreme
polygenicity of traits; (3) horizontal pleiotropy is signifi-
cantly enriched in actively transcribed regions and active
regulatory regions and is correlated with the number of
genes and tissues for which the variant is an eQTL; (4)
there are thousands of loci that exhibit extreme levels of
horizontal pleiotropy, a majority of which have no pre-
viously reported associations; and (5) pleiotropic loci are
enriched in specific complex traits including body mass
index, height, and schizophrenia. These findings are

(See figure on previous page.)
Fig. 6 Distribution of the pleiotropy score among variants (a), genes (b), and traits (c). a The global distribution of PLDm (left) and PLDn (right) for the
767,057 tested variants. The expected distribution under the null hypothesis of no pleiotropy is shown in red and the observed distribution is
shown in blue. The vertical line represents the value of the pleiotropy score corresponding to genome-wide significance (P < 5 × 10− 8). A total of
1769 (PLDm ) and 643 (PLDn ) variants are not represented for the sake of clarity, because they have extreme values for the pleiotropy score. b The

distribution of the average pleiotropy score for coding variants in each gene for PLDm (left) and PLDn (right). The top ten genes are represented on
the right side of the plots, whereas genes with a pleiotropy score of 0 are represented on the left side of the plots. c The contribution of
pleiotropic variants to 82 complex traits and diseases. Contribution of pleiotropic variants is calculated as the correlation coefficient between the
absolute value of Z-scores and the pleiotropy score among variants that are genome-wide significant for the pleiotropy score (P < 5 × 10− 8 for
PLDm and PLDn respectively)
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Table 1 Functional enrichment analysis of pleiotropy score

PLDm PLDn

Variant effect predictor UTR + 0.24 (± 0.01); P = 1.72 × 10− 234 + 0.69 (± 0.02); P = 2.16 × 10− 236

Coding synonymous + 0.24 (± 0.01); P = 2.49 × 10− 99 + 0.61 (± 0.03); P = 1.92 × 10− 76

Non-synonymous + 0.19 (± 0.01); P = 3.82 × 10− 82 + 0.48 (± 0.03); P = 3.62 × 10− 62

Roadmap Epigenomics H327ac + 0.20 (± 0.01); P < 10− 308 + 0.54 (± 0.01); P < 10− 308

H3K27me3 + 0.02 (± 0.01); P = 1.40 × 10− 18 + 0.01 (± 0.01); P = 0.4

Active TSS + 0.20 (± 0.02); P = 1.42 × 10− 36 + 0.54 (± 0.04); P = 8.56 × 10− 34

Promoter Promoter Upstream TSS + 0.16 (± 0.01); P = 4.44 × 10− 130 + 0.43 (± 0.02); P = 4.33 × 10− 103

Promoter Downstream
TSS 1

+ 0.35 (± 0.01); P = 1.87 × 10− 220 + 0.92 (± 0.03); P = 3.59 × 10− 197

Promoter Downstream
TSS 2

+ 0.30 (± 0.01); P = 2.70 × 10− 203 + 0.86 (± 0.03); P = 3.44 × 10− 210

Transcription Transcribed - 5′ preferential + 0.29 (± 0.01); P < 10− 308 + 0.88 (± 0.01); P < 10− 308

Strong transcription + 0.38 (± 0.01); P < 10− 308 + 1.10 (± 0.01); P < 10− 308

Transcribed - 3′ preferential + 0.29 (± 0.01); P < 10− 308 + 0.82 (± 0.01); P < 10− 308

Weak transcription + 0.21 (± 0.01); P < 10− 308 + 0.60 (± 0.01); P < 10− 308

Transcription and
regulation

Transcribed and regulatory
(Prom/Enh)

+ 0.36 (± 0.01); P < 10− 308 + 1.00 (± 0.02); P < 10− 308

Transcribed 5′ preferential
and Enh

+ 0.35 (± 0.01); P < 10− 308 + 1.00 (± 0.01); P < 10− 308

Transcribed 3′ preferential
and Enh

+ 0.33 (± 0.01); P < 10− 308 + 0.92 (± 0.02); P < 10− 308

Transcribed and Weak
Enhancer

+ 0.32 (± 0.01); P < 10− 308 + 0.97 (± 0.01); P < 10− 308

Active enhancer Active Enhancer 1 + 0.13 (± 0.01); P = 4.54 × 10− 295 + 0.32 (± 0.01); P = 5.1 × 10− 216

Active Enhancer 2 + 0.11 (± 0.01); P = 2.64 × 10− 294 + 0.28 (± 0.01); P = 5.63 × 10− 238

Active Enhancer Flank + 0.11 (± 0.01); P < 10− 308 + 0.29 (± 0.01); P = 6.06 × 10− 270

Weak enhancer Weak Enhancer 1 + 0.07 (± 0.01); P = 2.79 × 10− 89 + 0.16 (± 0.01); P = 6.89 × 10− 60

Weak Enhancer 2 + 0.08 (± 0.01); P < 10− 308 + 0.23 (± 0.01); P = 6.52 × 10− 291

Primary H3K27ac possible
Enhancer

+ 0.09 (± 0.01); P = 2.72 × 10− 259 + 0.24 (± 0.01); P = 1.53 × 10− 187

Primary DNase + 0.03 (± 0.01); P = 3.83 × 10− 21 + 0.05 (± 0.01); P = 1.11 × 10− 7

ZNF genes & repeats + 0.08 (± 0.01); P = 1.29 × 10− 7 + 0.20 (± 0.04); P = 6.9 × 10− 7

Heterochromatin − 0. 20 (± 0.01); P < 10− 308 − 0.61 (± 0.01); P < 10− 308

Poised Promoter + 0.05 (± 0.01); P = 1.03 × 10− 35 + 0.09 (± 0.01); P = 2.27 × 10− 16

Bivalent Promoter + 0.17 (± 0.01); P = 1.28 × 10− 93 + 0.51 (± 0.03); P = 6.29 × 10− 88

Repressed Polycomb + 0.04 (± 0.01); P = 5.77 × 10− 42 + 0.06 (± 0.01); P = 1.48 × 10− 11

Quiescent/Low −0.41 (± 0.01); P < 10− 308 −1.20 (± 0.01); P < 10− 308

GTEx - number of genes
the variant is an eQTL for

eGenes< 10 + 0.11 (± 0.01); P = 6.78 × 10− 186 + 0.28 (± 0.01); P = 1.04 × 10− 140

eGenes> 10 & < 15 + 0.19 (± 0.01); P = 4.72 × 10− 114 + 0.52 (± 0.02); P = 6.84 × 10− 99

eGenes> 15 & < 20 + 0.31 (± 0.02); P = 7.98 × 10− 52 + 0.88 (± 0.06); P = 5.38 × 10− 47

eGenes> 20 + 0.66 (± 0.06); P = 3.40 × 10− 27 + 2.07 (± 0.18); P = 1.35 × 10− 30

GTEx - number of tissues
the variant is an eQTL for

eTissue< 30 + 0.10 (± 0.01); P = 1.84 × 10− 151 + 0.26 (± 0.01); P = 1.26 × 10− 114

eTissue> 30 & < 35 + 0.21 (± 0.01); P = 3.70 × 10− 187 + 0.54 (± 0.02); P = 6.80 × 10− 147

eTissue> 35 & < 40 + 0.36 (± 0.02); P = 1.11 × 10− 82 + 1.13 (± 0.06); P = 4.24 × 10− 92

eTissue> 40 + 0.35 (± 0.05); P = 2,42 × 10− 13 + 0.97 (± 0.14); P = 7.08 × 10− 12
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largely consistent between the magnitude of pleiotropy
score Pm and the number of traits score Pn, although we
note some differences where some variants are primarily
associated with PLD

m but not PLD
n . This indicates that

these signals are driven by loci that both influence a
large number of traits and have relatively large combined
effects, and secondarily by loci that have large combined
effects but only influence a handful of traits each, with
minimal contribution from loci that influence a large
number of traits but have small combined effects. Con-
versely, after applying the correction for polygenicity, we
only observe variants that are significant for PP

n , but not
for PP

m . This indicates that, while there do exist horizon-
tal pleiotropic master control loci that affect more traits
than we would expect from the random overlap of mul-
tiple highly polygenic traits, the overall effect of these
loci is not noticeably larger than we would expect.

This analysis is enabled by the technique of whitening
trait associations to remove correlations between traits.
This lets us count pleiotropic effects in a more objective
and systematic way, as opposed to manually selecting
putatively independent traits to count, or manually
grouping traits into independent blocks. However, it
does come with three major limitations compared to
these approaches. First, it is somewhat more difficult to
tell which specific traits are driving a signal of pleiotropy
at a particular locus. Our whitened traits are combina-
tions of real observed traits and do not necessarily cor-
respond to any specific biological traits of interest.
However, it is relatively easy to inspect the input GWAS
summary statistics for a particular variant of interest to
see which traits it is associated with. Furthermore, since
pleiotropic loci are by definition associated with a large
cross section of traits, this kind of inspection is not likely

Table 1 Functional enrichment analysis of pleiotropy score (Continued)

PLDm PLDn

International Mouse
Phenotyping Consortium

Phenotypes > 1 + 0.06 (± 0.01); P = 1.91 × 10− 6 + 0.19 (± 0.04); P = 2.70 × 10− 7

Saccharomyces cerevisiae
Morphological Database

Phenotypes > 1 + 0.09 (± 0.01); P = 4.48 × 10− 17 + 0.26 (± 0.03); P = 1.53 × 10− 18

We grouped variants by (i) molecular function as annotated by Ensembl, (ii) predicted chromatin state as annotated by the NIH Roadmap Epigenomics Project, (iii)
transcriptional effects as annotated by the NIH Genotype-Tissue Expression (GTex) Project, and (iv) effects on model organism phenotypes as annotated by the
International Mouse Phenotyping Consortium (IMPC) and Saccharomyces Cerevisiae Morphological Database (SCMD). For each grouping, we computed the mean
LD-corrected pleiotropy score and used two-sample Student’s t test to determine whether the mean was significantly different from the baseline. We found (i)
that coding regions have higher pleiotropy scores than noncoding regions, (ii) that active promoters and enhancers have the highest pleiotropy scores and
quiescent and heterochromatin have the lowest, (iii) that variants that control expression of more genes in more tissues have higher pleiotropy scores, and (iv)
that genes associated with more than one model organism phenotype have higher pleiotropy scores

Fig. 7 Replication analysis for the genome-wide pleiotropy study. We used 372 UK Biobank heritable medical traits as our discovery dataset, and
independent datasets of 73 complex traits and diseases and 430 blood metabolites as replication datasets. In each case, expected fraction of
replication was empirically determined using a permutation analysis

Jordan et al. Genome Biology          (2019) 20:222 Page 11 of 18



to be very informative about specific traits. Second, the
whitening procedure has the counterintuitive property
that a variant that has a narrow effect on a single trait
without also affecting correlated traits can appear to be
highly pleiotropic. For example, if a variant had a strong
risk-increasing effect on coronary artery disease (CAD),
but no effect on any of the known upstream risk factors
of CAD (such as blood lipid levels or adiposity) or any
of the known downstream consequences of CAD (such
as inflammatory biomarkers or increased mortality),
such a variant would appear as highly pleiotropic in our
analysis. Our analysis would interpret the variant as
increasing the risk of CAD while suppressing these
upstream and downstream factors. We believe this treat-
ment is appropriate, however counterintuitive. Regard-
less, these kinds of isolated effects are fairly rare: in our
dataset of 372 heritable traits from the UK Biobank, only
6% of variants (42,684 of 767,057) reach genome-wide
significance for only a single trait. Indeed, it is unlikely
by definition that a variant is associated with only one
trait from a set of correlated traits, since we compute
our correlations from observed association statistics.
Third, we assume all genetic effects are additive and in-
dependent, and we do not model epistasis or other more
complex genetic architectures.
Our findings are in keeping with several recent studies

that have found abundant pleiotropy in the genome [2,
8, 9, 26, 27]. HOPS goes a step further than many of
these studies by explicitly removing vertical pleiotropy
between traits, which are indicative of fundamental bio-
logical relationships between traits [8, 24, 28]. Further-
more, the current study has evaluated horizontal
pleiotropy in human genetic variation genome-wide,
whereas previous studies have focused on only a small
subset of disease-associated variants identified from
GWAS. Our results therefore suggest that there is sub-
stantial complexity and heterogeneity in the genetic
architecture of individual traits.
Our findings have several important implications for the

field of human genetics. First, our observation of ubiqui-
tous horizontal pleiotropy is problematic for Mendelian
randomization (MR) methods, which assumes horizontal
pleiotropy to be absent. Recent developments in the field
of MR include methods that account for horizontal plei-
otropy explicitly [24, 28, 29]; our results reinforce the im-
portance of these methods. The presence of widespread
horizontal pleiotropy suggests that single-instrument
methods that independently account for every variant,
each of which presumably has pleiotropic effects on many
different distinct traits, should be considered in addition
to multi-instrument methods for MR, which collapse
many variants into a single polygenic score for analysis,
and therefore treat all variants equivalently.

Second, our results appear to support the “network
pleiotropy” hypothesis of Boyle, Li, and Pritchard [16],
which proposes widespread pleiotropy driven by small
perturbations of densely connected functional networks,
where any perturbation in a relevant cell type will have
at least a small effect on all phenotypes affected by that
cell type. A subsequent paper detailed a more specific
mechanism, where causal effects are driven by many bio-
logical components that are only indirectly related to the
phenotype itself [30]. Many of the functional enrich-
ments we observe, including transcription factors, cyto-
skeleton, and intracellular signaling cascades, represent
components that can plausibly influence a wide variety
of cell types and processes, providing evidence for this
model over one where a specific biological component is
largely responsible for pleiotropy. The fact that the mag-
nitude of pleiotropy score Pm and the number of traits
score Pn give largely consistent results also supports this
model, where a larger biological effect in a given tissue
will perturb a greater number of phenotypes relevant to
that tissue, although we note that some variants have
high magnitude of pleiotropy score Pm and low number
of traits score Pn, which may represent a small class of
variants that has large biological effects without perturb-
ing a large number of phenotypes.
While our results largely support this network

pleiotropy hypothesis, we have also demonstrated an
alternate view of horizontal pleiotropy in the context of
highly polygenic causation. In our simulations, introdu-
cing extreme polygenicity at the levels suggested by
these papers inherently results in high levels of horizon-
tal pleiotropy detectable by our score, independent of
any assumptions about the mechanism of pleiotropy or
of polygenicity. Indeed, our null hypothesis of no hori-
zontal pleiotropy, that 5% of the genome is independ-
ently causal to each trait with P < 0.05, is trivially
rejected when a single trait is influenced by an unexpect-
edly large fraction of the genome. This means that, on
some level, widespread horizontal pleiotropy in human
genetic variation is simply a logical consequence of
widespread polygenicity of human traits, regardless of
the specific mechanism of either. In simple terms, the
more loci are associated with each trait, the more
chances there are for associations with multiple traits to
overlap. Supporting this result, we find that controlling
for the polygenic architecture of the input traits signifi-
cantly attenuates our signal of pleiotropy, as does
restricting to oligogenic traits. It may be the case that
horizontal pleiotropy is only truly widespread among the
most complex and polygenic subset of human traits.

Conclusions
In this study, we have presented HOPS, a quantitative
score for horizontal pleiotropy in human genome
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variation. Using this score, we have identified a genome-
wide trend of highly inflated levels of horizontal
pleiotropy, an underappreciated relationship of horizon-
tal pleiotropy with polygenicity and functional biology,
and a large number of specific novel loci with high levels
of horizontal pleiotropy. We expect further investiga-
tions using HOPS to yield deep insights into the genetic
architecture of human traits and to uncover important
novel biology.

Methods
We developed a statistical method to measure horizontal
pleiotropy using a two-component pleiotropy score. For
a given variant, we measured (1) the total magnitude of
pleiotropic effect the variant has and (2) the number of
whitened traits affected by the variant.

Z-score decorrelation strategy
Observable traits and diseases can be highly correlated,
which can lead to inflation of our pleiotropy score if the
correlation is not properly accounted for. Therefore, we
developed an efficient strategy to remove this correlation
and obtain decorrelated traits. Let Zraw denote the
matrix of raw Z-scores, with variants in columns and
traits in rows, and Σ denote the corresponding correl-
ation matrix between the Z-scores. Under the null hy-
pothesis of no horizontal pleiotropy, Z-scores for each
trait are assumed to follow a Gaussian distribution N(0,
1), and the columns of Zraw collectively follow a multi-
variate Gaussian distribution N(0, Σ). Our goal is to
eliminate the extra-diagonal terms of the correlation
matrix Σ. To achieve this, we use a Mahalanobis whiten-
ing transformation on the matrix Zraw to obtain a whit-
ened Z-score matrix Z. The procedure to obtain Z can
be formally expressed as:

Z ¼ Σ−1
2Zraw

Under the null hypothesis of no horizontal pleiotropy,
we expect Z to follow a multivariate Gaussian distribu-
tion N(0, Idl), where Idl is the identity matrix of size l, l
being the number of traits.
In reality, the true correlation matrix Σ is unknown,

and we must use an estimated correlation matrix ~Σ
obtained by measuring the genome-wide correlation
between actual Z-scores. We tested two approaches to
obtain ~Σ , either using all genotyped variants genome-
wide or using a subset of variants pruned to r2 < 0.1 in
the 1000 Genomes European population to account for
the effects of linkage disequilibrium (LD). Both
approaches produced similar results (see Additional file 1:
Figure S6). In all subsequent analysis, we used covariance
matrices estimated from pruned variants.

Computation of the pleiotropy score
We computed two different scores to capture both the
magnitude and number of traits of pleiotropy. First, we
quantify the total pleiotropic magnitude of effect of a
variant using the magnitude pleiotropy score Pm:

Pm ¼ 100
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l

1

zi2

v

u

u

t

where zi is the whitened Z-score for trait i for a given
variant. Second, we quantify the number of whitened
traits affected by a variant using the number of pleio-
tropic traits score Pn:

Pn ¼ 100
l

X

l

1

H zi−2ð Þ

where zi is the whitened Z-score for trait i for the tested
variant and H() is the Heaviside step function which
equals 1 if |zi| > 2 and 0 otherwise. 2 represents a stand-
ard value of the Z-score which represents the normal
threshold for nominal significance (P < 0.05).

LD-corrected pleiotropy score
Similarly to LD score regression, each component of the
pleiotropy score was regressed on the LD scores for all
variants. Then, we regressed out the effect of LD on
each component of the pleiotropy score independently
to obtain an LD-corrected pleiotropy score. The LD-
corrected pleiotropy score components PLD

m and PLD
n are

given by:

PLD
m ¼ Pm−βml

PLD
n ¼ Pn−βnl

where l is the LD score of the variant site, and βm and
βn are the regression coefficients for LD score on Pm
and Pn, respectively.

Computation of theoretical P values for the pleiotropy
score
Based on the observation that Z follows a multivariate
standard Gaussian distribution N(0, Idl) under the null
hypothesis of no pleiotropy, P values can easily be com-
puted for Pm and Pn. Under the null hypothesis, the
square of Pm (or PLD

m ) follows a chi-square distribution
χ2(l) where l is the total number of traits. Likewise, Pn
(or PLD

n ) follows a binomial distribution B(l, p) where l is
the total number of traits and p the probability to get a
Z-score greater than 2 under the standard Gaussian
distribution (P ≈ 0.045).
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Computation of empirical (polygenicity/LD-corrected) P
values for the pleiotropy score
To correct for the known polygenic architecture of traits
in addition to LD, we additionally computed empirical
permutation-based P values for both PLD

m and PLD
n . We

performed 25 random permutations of the input Z-scores
for each observable trait, producing millions of permuted
variants. We calculated Pm and Pn for each of these per-
muted variants and then rank ordered the resulting scores.
The empirical P value corresponding to a value of PLD

m or
PLD
n is given by the fraction of permuted variants with

higher scores than the given value. We converted
these P values into polygenicity/LD-corrected PP

m and
PP
n scores by converting each P value into the score it

would correspond to under the expected (theoretical)
distributions described above.

Simulation framework
We simulated a realistic matrix of Z-scores Z with 100
traits and 800,000 genotyped variants. For non-causal
variants, Z-scores for each trait were drawn from an in-
dependent Gaussian distribution N(0, 1). A subset of var-
iants was designated as causal, either pleiotropically or
non-pleiotropically. For these causal variants, Z-scores
were drawn from a different Gaussian distribution N(0,
h2), where h2 is a parameter representing the per-variant
heritability of each trait. Non-pleiotropic variants were
selected independently for each trait, while pleiotropic
variants were selected globally and each forced to be
causal for a specified number of traits ν.
Simulations were run for all combinations of the fol-

lowing parameters: (1) correlation structure: absent or
present; (2) proportion of pleiotropic causal variants:
0.1% (800/800,000 variants) or 1% (8000/800,000 vari-
ants); (3) proportion of non-pleiotropic causal variants: 0
(0/800,000 variants), 0.1% (800/800,000 variants), or 1%
(8000/800,000 variants); (4) number of traits involved in
horizontal pleiotropy ν: 10 or 20; (5) per-variant herit-
ability of traits h2: 0.0002, 0.002, 0.02, or 0.2. Each sce-
nario was replicated 10,000 times.

Collection of genome-wide association (GWA) summary
statistics datasets
First, we retrieved GWA publicly available summary sta-
tistics from 545 continuous traits in 361,194 samples
from the UK Biobank [17], and 1403 binary traits from
the same dataset calculated using SAIGE [18, 19]. We
used LD score regression to calculate heritability for
each trait, using the liability scale for binary traits, and
restricted the sample to only traits with a significant P
value for nonzero heritability after Bonferroni correction.
For every pair of traits with correlation coefficient
between Z-scores r2 > 0.8, we additionally removed the

member of the pair with lower heritability. This left a
total of 372 traits.
Second, we retrieved publicly available genome-wide

association (GWA) summary statistics data for 82
complex traits and diseases [31–66] (Additional file 1:
Table S3). For each dataset, we retrieved the appropriate
variant annotation (build, rsid, chromosome, position,
reference, and alternate alleles) and summary statistics
(effect size, standard errors, P values, and sample size of
the study). All variant coordinates (chr, pos) were lifted
over to hg19 using the UCSC Genome Browser LiftOver
Tool and aligned to the reference and alternate alleles
retrieved from the Ensembl variation database. After
performing the same pruning of highly correlated
phenotypes, we were left with 73 traits and diseases.
Third, we retrieved GWA summary statistics datasets

from a GWAS of 453 blood metabolites in 7824 individ-
uals [25]. After performing the same pruning of highly
correlated phenotypes, we were left with 430 metabolites.

Genome-wide pleiotropy study (GWPS)
Using the two components of the pleiotropy score, we
can run a genome-wide pleiotropy study (GWPS) which
consists of computing two P values for each component
of the score (PLD

m and PLD
n ) and for all variants genome-

wide. We computed the pleiotropy score separately for
each of the three datasets described above (372 UK
Biobank phenotypes, 73 traits and diseases, and 430
blood metabolites). Additionally, we computed the
pleiotropy score on a subset of 372 traits with genome-
wide significant heritability as calculated by LD Score
Regression [20] (univariate heritability significant after
Bonferroni correction). The 372 UK Biobank heritable
traits were used for discovery, and the 73 traits and
diseases and 430 blood metabolites datasets were used
for replication. There was a total of 768,756 variants
genotyped across all three datasets.

Study of polygenicity on horizontal pleiotropy
To study the effect of polygenicity on horizontal
pleiotropy, we first estimated the liability scale heritabil-
ity of all 372 traits in our UK Biobank dataset using LD
score regression, and stratified all traits into four equally
sized classes of heritability, in order to control for the
effect of high heritability separate from the effect of high
polygenicity. Next, we estimated the polygenicity of the
372 traits using a corrected version of the genomic infla-
tion factor λcCG [20]. The intercept of LD score regres-
sion minus one is an estimator of the mean contribution
of confounding bias to the inflation in the test statistics.
Therefore, we computed a corrected version of the
genomic inflation factor by subtracting the quantity
(intercept of LD score regression − 1) from λGC. The 372
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phenotypes were then ranked according to λcCG within
each heritability class, and grouped into 5 equal-sized
bins of about 20 phenotypes each. We then recomputed
the LD-corrected pleiotropy score components (PLD

m and
PLD
n ) for the subset of phenotypes in each bin. The

inflation of the pleiotropy score was measured per bin to
represent pleiotropy score inflation as a function of
polygenicity.

Characterization of the pleiotropic variants
We performed various enrichment analyses for the plei-
otropy score to characterize the pleiotropic variants using a
variety of annotations that could be a direct consequence of
horizontal pleiotropy. Each analysis uses the principle of
assigning each variant an annotation category and selecting
one category as the reference category. Then, for each cat-
egory, we selected a set of variants from the corresponding
reference category with minor allele frequencies matched
to those in the query category, and performed Student’s t
test to test whether the average LD-corrected pleiotropy
score (PLD

m and PLD
n ) of the variants in each given category

is different from the average LD-corrected pleiotropy score
of the selected reference variants.
First, we used Ensembl Variant Effect Predictor [21] to

classify each variant as noncoding, UTR, nonsynon-
ymous, or coding synonymous, treating noncoding as
the reference class. These were complemented by anno-
tations from Roadmap Epigenomics [22]. We used the
25-state chromatin state model published by Roadmap
Epigenomics to assign each variant 25 scores from 0 to
127, where each score represents the number of epigen-
omes for which that site is assigned to the corresponding
category. We did the same for two specific chromatin
marks: the activating mark H3K27ac and the repressive
mark H3K27me3. For these annotations, we used a
combination of all other categories as a reference set. In
other words, the reference set for each category is all
variants that are not in that category.
In addition to these molecular annotations, we used

expression-related annotations from the Genotype-
Tissue Expression project [23]. For each variant, we
retrieved the number of genes for which the variant is
referenced as a cis eQTL (expression quantitative trait
loci) in any tissue (eGenes), and the number of tissues
where the variant is annotated as a cis eQTL for any
gene (eTissues). We divided variants into bins by num-
ber of eGenes (below 10, between 10 and 15, between 15
and 20, and over 20) and eTissues (below 30, between
30 and 35, between 35 and 40, and above 40). The refer-
ence sets used for these analyses were variants that are
not annotated as eQTLs in any gene or tissue.
Finally, we used model organism phenotypes measured

by the International Mouse Phenotyping Consortium

(IMPC) [67] and the Saccharomyces cerevisiae Morpho-
logical Database (SCMD) [68]. To map ortholog genes
from IMPC and SCMD to human variants, we used
orthology annotations of gene orthologs, and eQTLs
from GTEx. Thus, variants annotated as associated with
a mouse or yeast phenotype are those that are annotated
as cis eQTLs in any tissue for a gene whose ortholog in
mouse or yeast is associated with that phenotype. The
reference set for this analysis was variants annotated as
cis eQTLs for genes that are not associated with mouse
or yeast phenotypes.

Genome-wide significant pleiotropy loci
To detect loci with a genome-wide significant pleiotropy,
we used the LD-corrected two-component pleiotropy
score (PLD

m and PLD
n ) computed on the dataset of 372 herit-

able traits from the UK Biobank described above. We used
LD clumping as implemented in PLINK to cluster linked
variants, with an r2 threshold of 0.1, a distance threshold
of 100 kb, and P value thresholds of 5 × 10− 8 for genome-
wide significance and 0.05 for nominal significance. The
resulting loci were assigned to genes using (1) localization
of variants within a gene, as annotated by Ensembl Variant
Effect predictor, and (2) annotation as a cis eQTL in any
tissue, as annotated by GTEx. We submitted the resulting
list of genome-wide significant genes to DAVID for
enrichment analysis [69–71].

Permutation-based null model for replication analysis
In general, we should expect only 5% of loci to replicate
by chance in each replication dataset; however, it is pos-
sible that this number might increase because of polyge-
nicity in the underlying GWAS statistics and the
resulting inflation in our pleiotropy score, which may
cause substantially more than 5% of the genome to be
assigned P < 0.05. To correct for this, we performed ran-
dom permutations of the whitened Z-scores independ-
ently for each trait and used these permuted Z-scores to
compute our LD-corrected pleiotropy score components
(PLD

m and PLD
n ). This generates a null expectation that

preserves the polygenicity and inflation within each data-
set. For both datasets, our null model expected that 5%
of loci for PLD

m loci and 6% of loci for PLD
n should repli-

cate. The fraction that replicated in the actual data was
substantially higher (Figure 7).
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