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Virtual biopsy using MRi radiomics 
for prediction of BRAf status in 
melanoma brain metastasis
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Brain metastases are common in patients with advanced melanoma and constitute a major cause of 
morbidity and mortality. Between 40% and 60% of melanomas harbor BRAF mutations. Selective 
BRAf inhibitor therapy has yielded improvement in clinical outcome; however, genetic discordance 
between the primary lesion and the metastatic tumor has been shown to occur. currently, the only way 
to characterize the genetic landscape of a brain metastasis is by tissue sampling, which carries risks 
and potential complications. the aim of this study was to investigate the use of radiomics analysis for 
non-invasive identification of BRAF mutation in patients with melanoma brain metastases, based on 
conventional magnetic resonance imaging (MRi) data. We applied a machine-learning method, based 
on MRi radiomics features for noninvasive characterization of the BRAf status of brain metastases 
from melanoma (BMM) and applied it to BMM patients from two tertiary neuro-oncological centers. 
All patients underwent surgical resection for BMM, and their BRAf mutation status was determined 
as part of their oncological work-up. their routine preoperative MRi study was used for radiomics-
based analysis in which 195 features were extracted and classified according to their BRAF status via a 
support vector machine. The BRAF status of 53 study patients, with 54 brain metastases (25 positive, 
29 negative for BRAF mutation) was predicted with mean accuracy = 0.79 ± 0.13, mean precision = 
0.77 ± 0.14, mean sensitivity = 0.72 ± 0.20, mean specificity = 0.83 ± 0.11 and with a 0.78 area under 
the receiver operating characteristic curve for positive BRAf mutation prediction. Radiomics-based 
noninvasive genetic characterization is feasible and should be further verified using large prospective 
cohorts.

Melanoma is the third most common cutaneous tumor after basal cell carcinoma and squamous cell carcinoma. 
Melanomas account for up to 1.6% of newly diagnosed malignancies in the developed world1. The worldwide 
incidence of malignant melanoma is rising, with approximately 290,000 new cases diagnosed per year, resulting 
in up to 60,000 mortalities2. Systemic melanoma carries a high risk of central nervous system (CNS) spread3. Up 
to 75% of stage IV patients with systemic melanoma eventually develop CNS metastases, which account for up to 
50% of melanoma-related mortalities4,5. The risk of brain metastases from melanoma (BMM) rises with disease 
duration. While 20–30% of patients will develop BMM in one year, 30–40% will develop BMM in 3 years6.

Identification of BRAF activating mutation as a key oncogene in approximately half of all melanomas has dra-
matically changed the current treatment strategy for metastatic melanoma7–10. BRAF mutation has been assumed 
to be an early evolutionary event in tumor maturation, and play a central role in melanoma pathogenesis11. At the 
cellular level, BRAF mutations drive oncogenic behavior of melanoma cells, leading to unrestricted cell growth, 
increased cell survival, and local invasion through activation of the mitogen-activated protein kinase (MAPK) 
pathway11. Following identification of this mutation, combination therapy with BRAF and MEK inhibitors have 
improved patient outcomes dramatically, with the median overall survival (OS) of patients with metastatic mel-
anoma increasing from approximately 9 months before the introduction of these treatments to over 2 years in 
201912,13.
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Recent studies have shown that primary tumors and brain metastases do not always share the same mutation 
status14. Discrepancies of BRAF mutation status between the primary tumor and the distant metastases reportedly 
range from 18% to 26%, and patients with a BRAF negative primary melanoma may still manifest BRAF positive 
BMM and vice versa15. This information is crucial for appropriate management when considering non-surgical 
treatment for a brain metastasis. In addition, prolonged use of BRAF inhibitors can induce BRAF inhibitor resist-
ance and secondary skin tumors16, further emphasizing the need for mutation identification in each metastasis, 
instead of empiric treatment. Currently, the BRAF mutation status of a metastasis cannot be determined without 
invasively obtaining tissue samples during surgery, which is associated with morbidity, hospitalizations, and is 
prone to sampling errors.

Radiomics is a field of medical study that aims to achieve tissue characterization using extraction of large 
numbers of quantitative features from imaging studies. Radiomics analysis, based on magnetic resonance imaging 
(MRI) data, may be used to characterize pathologies beyond what can be observed by the radiologist’s “naked” 
eye. By means of this approach, standard imaging studies are converted into high-dimension quantitative data, 
potentially better reflecting the underlying pathology and its molecular characteristics17. We hypothesized that 
radiomics may provide a noninvasive means of improving decision-making in melanoma neuro-oncologic ther-
apeutic management, thereby possibly sparing the need for invasive procedures and their associated morbidity. 
In this work, we applied radiomics analysis on conventional MRI-derived data in order to predict the BRAF 
mutation status in patients with BMM.

Methods
Data acquisition and ethical approval. Clinical and imaging data were collected from two tertiary 
neurosurgical referral centers (Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel [40 patients] and Fondazione 
IRCCS Istituto Neurologico C. Besta, Milan, Italy [13 patients]). Table 1 lists the demographic and BRAF charac-
teristics of the study patients. The study protocol was approved by the institutional review boards (IRBs) in both 
centers (IRB approval numbers 0200–10, and 53/2018, from the Fondazione IRCCS Istituto Neurologico C. Besta 
IRB, and the Tel Aviv Sourasky Medical Center IRB respectively). No informed consent was required by the IRB 
at either center for this retrospective study which utilized anonymous data. All procedures were carried out in 
accordance with relevant guidelines and regulations.

imaging protocol. The analyses were performed on post-contrast 3D T1-weighted MRIs (T1W + c) col-
lected retrospectively from patients’ routine clinical assessments, which had been performed at different sites with 
different MRI vendors, systems, and acquisition parameters. Specifically, 21 scans were performed on General 
Electric (GE) systems, 20 on Siemens systems, 13 on a Philips MRI system, 33 on 1.5 Tesla MRI systems, and 
21 on 3.0 Tesla MRI systems. The voxel size (mean/median) was 0.9/0.94 * 0.9/0.94, with a slice thickness of 
1.6/1.6 mm.

Image Analysis. A Matlab (2018a) environment was employed for image analysis which included the 
following:

•	 MRI data preprocessing included skull removal and intensity normalization relative to the normal-appearing 
white matter area, both performed with a statistical parametric mapping segmentation tool (SPM 12).

•	 Tumor segmentation by a commercial software (AnalyzeDirect 11.0) performed at the slice (2D) level and 
based on the T1W + c images. The extracted mask was then used to define the 3D target tumor area based on 
the normalized T1W + c image (Fig. 1).

•	 Feature extraction and radiomics analysis performed based on the normalized T1W + c image at the entire 
(3D) lesion area.

A total of 195 features were extracted for each patient including:

•	 Clinical and demographic data (age and gender).
•	 Sixteen location features calculated as the percent of the segmented (3D) lesion area in each of the 16 brain 

regions (the left and right frontal, parietal, temporal, occipital, limbic, sublobar lobes, cerebellum, and brain-
stem, defined according to the Talairach space anatomy template18).

•	 Nine morphological features parameters calculated by Matlab regionprops3 function, including vol-
ume, EquivDiameter extent, principal axis length (for the x, y, and z axes), ConvexVolume, solidity, and 
SurfaceArea.

•	 Twelve first-order statistical features extracted by analyses using Matlab, including the mean, median, stand-
ard deviation, variance, minimum, maximum, percentile (5, 25, 75, and 95), kurtosis, and skewness. And 

Variable Total
BRAF 
positive

BRAF 
negative p

Number 54 25 29

Age at surgery, years 60 ± 13.8 55 ± 14 64.4 ± 12.3 0.01

Female/male, n 21/32 9/16 12/17

Metastasis size, mm3 19.62 ± 18.3 21.5 ± 21.2 18 ± 15.6 0.498

Table 1. Patient demographics and BRAF characteristics. Values are mean ± standard deviation.
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on one-hundred and fifty-six second-order statistical features (gray-level co-occurrence matrix, n = 156) 
calculated with the Matlab cooc3d function19 and based on Haralick et al.20, including energy, entropy, cor-
relation, contrast, variance, sumMean, inertia, cluster shade, cluster tendency, homogeneity, maxProbability, 
and inverse variance. Those 12 parameters were calculated with a distance of 8 between voxels (based on 
experimental results) and along 13 offset, 4 standard 2D directions, with offset (angle between the pixel of 
interest and its neighbor) = 0°, 45°, 90°, 135°, and an additional 9 directions to extract the 3D information.

•	 For dimensional reduction, the Matlab kstest, ranksum, ttest2, and pcacov functions were applied to the 195 
features in order to reduce the number of random variables under consideration and to improve the classifi-
cation results. All features were standardized before classification according to:

σ= − ˆ ˆX X X X[ ]/SDi i

where xi = value of the individual subject for a given feature, and X̂ and σX̂ = mean and standard deviation value 
of the entire group for a given parameter.

Statistical analyses. The one-sample Kolmogorov-Smirnov test was used to test the distribution of each 
feature. Significant differences (p < 0.05) between groups (tumoral versus non-tumoral components) were tested 
using the Mann-Whitney U-test or t-test (depending upon data distribution). Next, principal component analysis 
(PCA) was applied only on features that were significantly different (p < 0.05) between groups.

Classification and evaluation of the results. Following dimensional reduction and classification of 
the BRAF mutation status, several support vector machine (SVM) classifier types were tested, including linear, 
quadratic, cubic, fine gaussian, medium gaussian, and coarse gaussian. This algorithm was chosen after having 
been shown to produce better results in various brain tumors classification tasks compared to other conventional 
machine-learning classifiers21–23. The results were evaluated by means of a 5-fold cross-validation scheme of ran-
domly splitting the data into training and validation sets (42 and 11 patients, respectively), while maintaining the 
correct patient representation in each of the five data sets. Precision, sensitivity, specificity, accuracy, and receiver 
operating characteristics (ROC) curves were calculated for each data set (Table 2).

Results
clinical characteristics. We conducted a retrospective analysis of data obtained from 53 melanoma patients 
with CNS involvement who underwent resection of their BMM tumors and for whom the BRAF mutation sta-
tus was available. We retrieved 54 post-contrast 3D T1-weighted MRI scans for those 53 patients (one patient 

Figure 1. Tumor segmentation. (a) Manual delineation of tumor area (green) superimposed on a normalized 
T1W + c image (normalized relative to normal-appearing white matter). (b) 3D view of the extracted lesion.

Data set

BRAF positive (n = 25) BRAF negative (n = 29) Model 
accuracyPrecision Sensitivity Specificity Precision Sensitivity Specificity

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.80 0.80 0.83 0.83 0.83 0.80 0.82

3 0.60 0.60 0.67 0.67 0.67 0.60 0.64

4 0.67 0.40 0.83 0.63 0.83 0.40 0.64

5 0.80 0.80 0.80 0.80 0.80 0.80 0.80

Mean ± standard deviation 0.77 ± 0.14 0.72 ± 0.20 0.83 ± 0.11 0.79 ± 0.13 0.83 ± 0.11 0.72 ± 0.20 0.79 ± 0.13

Table 2. The 5-fold validation results.
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underwent resection of two separate metastases and therefore analysis was carried independently for each metas-
tasis). The patients’ demographic and BRAF characteristics are presented in Table 1.

Twenty-five tumors were positive and 29 were negative for BRAF mutation. Patients with a BRAF muta-
tion were younger (59.8 ± 14.5 years) than those harboring non-mutated tumors (69.2 ± 11.0 years, p = 0.0092, 
Fig. 2a). Fifty out of 195 features significantly (p < 0.05) differentiated between tumors with BRAF mutations and 
those without BRAF mutations. Of those features, 46 were second-order statistical features (Fig. 2b) and three 
were anatomical, with BRAF-positivef lesions more common in the right limbic and left parietal regions, and 
BRAF-negative lesions more common in the left frontal area (Fig. 3, a + b). Second-order statistical differences 
were detected for the features of energy, max probability, variance, entropy, and inertia (Fig. 2b), with the top 
three features being energy at 90 degrees (2D direction), MaxProbability at 45/135 degrees, and MaxProbability 
at 135/135 degrees (3D directions), indicating higher tumor signal heterogeneity for patients with negative BRAF 
mutations. Following the application of PCA on the 50 significant features, nine components were found to 
explain 95% of the variance and they were subsequently used for classification.

Classification results. Classification between tumors with and without BRAF mutations was based on the 
nine principal components extracted from the 50 significant radiomics features and with the use of six types of 
SVM classifiers. The best classification results were obtained using the linear SVM classifier, with mean accu-
racy = 0.79 ± 0.13, mean precision = 0.77 ± 0.14, mean sensitivity = 0.72 ± 0.20, mean specificity = 0.83 ± 0.11 
for BRAF-positive, and mean precision = 0.79 ± 0.13, mean sensitivity = 0.83 ± 0.11, and mean specificity = 
0.72 ± 0.20 for BRAF-negative. The area under the curve (AUC) of the ROC curve was 0.78 for the prediction of 
a positive BRAF mutation. The classification results for each of the five iterations are given in Table 2. Figure 4 

Figure 2. (a.) Boxplot of age differences detected between patients with positive (59.8 ± 14.5 years old) and 
negative (69.2 ± 11.0 years old) BRAF mutation. *= significant difference, p = 0.0092. (b.) Spider plot of 
significant difference (p < 0.05) detected for the second-order statistical features (significant mean group 
differences across the different offsets).

Figure 3. (a) Bar plot of tumor location differences detected between patients with positive and negative BRAF 
mutations. Significant differences (*p < 0.005) were detected for the left frontal, right limbic, and left parietal 
area. (b) 3D visualization of the location with significant differences between groups (red = negative BRAF 
mutation, blue = positive BRAF mutation).
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illustrates the confusion matrix of the classification results (Fig. 4a) and the ROC curve for the classification of 
positive and negative BRAF mutations (Fig. 4b).

Discussion
The results of this study demonstrate a proof of concept for virtual biopsy using radiomics analysis for the non-
invasive diagnosis of BRAF mutation status in BMM. The MRI studies of 54 BMM with known BRAF status 
were designated to undergo radiomics analysis for the extraction of selected features, and submitted to machine 
learning in order to classify them according to their mutation status. Despite the limited number of patients, our 
preliminary results from a linear SVM classifier demonstrated 78% accuracy.

The application of radiomics and machine learning for tumor classification in modern oncology and 
neuro-oncology is rapidly gaining momentum, and its gradual transformation from an experimental tool to an 
auxiliary clinical tool can be expected in the not-too-distant future. In parallel to the development of artificial 
intelligence, neural networks, and deep learning-based classification models, novel radiological biomarkers are 
being identified and introduced into various aspects of the clinical setting. Trebeschi et al. recently demonstrated 
that standard of care body imaging can be used via radiomics-based analysis to generate a noninvasive biomarker 
for the response to immunotherapy in systemic malignancies. They reported that this biomarker predicted 
response to anti-PD1 therapy with an AUC of 0.83 for patients with non-small-cell lung carcinoma, and that the 
application of an integrated model predicted a survival advantage of 24% following immunotherapy using their 
classifier in a subgroup of those patients24.

A noninvasive, radiomics-based approach would be highly desirable in the brain, where invasive tissue sam-
pling is sometimes associated with surgical complications. Three main areas that may especially benefit from 
this approach have been recently studied: imaging-based pathological diagnosis (primary vs secondary, low- vs 
high-grade, and origin of metastasis), identification of treatable mutations or of mutations that influence thera-
peutic decision-making, and prognostic classification of patients25–29. Kniep et al. recently classified the five most 
common BMM according to the primary tumor based on heterogenous clinical MRI scans obtained routinely 
during the clinical workup. In their study, random forest machine-learning algorithms yielded an AUC ranging 
from 0.64 to 0.82, depending upon tumor type30. Despite this success in identifying the tumor type, no attempt 
was made to further characterize the genetic landscape of a specific melanoma metastasis. With a similar ration-
ale as that of our current study, the utilization of radiomics for the detection of BRAF and CTNNB1 mutations 
in craniopharyngioma patients was successfully demonstrated by Chen et al., who achieved a level of accuracy 
of 0.93 in the detection of mutation status, and demonstrated the promising potential of radiomics for those 
mutations31. Della Seta et al. used three-dimensional quantitative tumor enhancement, an approach similar to 
our methodology, in order to stratify patients harboring BMM into prognostic groups32. These studies and others 
that were recently published focused mainly on noninvasive diagnoses, and not on genetic landscape characteri-
zation26,29. Classification of treatable mutations, however, remains poorly investigated.

Bordia et al. used traditional radiological and genetic characteristics in order to assess the prognosis 
of patients with BMM. Aside from the number of metastases, they reported that BRAF mutation status and 
concomitant BRAF inhibitor treatment was the most significant prognostic factor. No correlation was found 
between traditional radiological features and BRAF status, further emphasizing the need for novel radiological 
biomarkers for this mutation33. Since the use of BRAF inhibitors have dramatically improved the prognosis of 
advanced-stage melanoma and allow for long-term control in some cases, it is critical to assess the mutation status 
of the tumor12,34–36. This especially holds true for patients with non-resectable BMM who are candidates for stere-
otactic radiosurgery. For these individuals, the addition of BRAF targeted therapy to the radiation treatment was 
shown to have significant benefit, thus making the potential establishment of a noninvasive diagnostic method 
even more valuable37. In addition, recent evidence has demonstrated a discrepancy between the genetics of the 
primary tumor and its CNS metastasis in 13.4% of cases and in 7% of lesions in patients with polymetastatic dis-
ease38,39. Thus, the need for the development of a noninvasive tool that allows sequential evaluation of the genetic 
status of multiple metastases is clear.

Figure 4. (a.) Confusion matrix and (b) receiver operating characteristics curve (ROC) for the classification of 
positive and negative BRAF mutations.
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Our tool, which is presented herein, represents a proof of concept for the noninvasive identification of the 
genetic status of BMM. Using our classifier, it was possible to achieve an AUC of 0.78 despite the limited number 
of sample subjects. The positive predictive value and the negative predictive value in our study were 81% and 
75.8%, respectively. Although these results are lower than the traditional histology-based results40, they may still 
be useful in polymetastatic or fragile patients who are not optimal surgical candidates. Doing so may spare these 
patients from the need to undergo invasive brain tissue sampling, yet will still enable them to receive targeted 
biological therapy.

The main limitation of our study stems from the relatively small number of patients. However, given the fact 
that this work is a collaboration between two neuro-oncological centers with a relatively large neurosurgical vol-
ume load, the low power represents a real-world problem of tissue rarity and limited availability. This is especially 
true in an era when alternatives to surgical resection such as radiosurgery and targeted biological therapy are 
becoming more popular. For this exact reason we believe that noninvasive mutation characterization will be even 
more valuable in the future.

conclusion
Noninvasive classification of BRAF status in BMM based on MRI findings is feasible and may enable treatment 
optimization in patients unfit for surgery. It may also aid in choosing patients for neoadjuvant targeted therapy. 
This approach allows for sequential estimation of genetic mutations by means of routine clinical imaging. Given 
that radiomics and other advanced imaging-based approaches may be easily compiled and shared online for pub-
lic use, the need for tissue databanks, online imaging repositories, and multicenter collaborative studies is that 
much more pressing. Radiomics is a promising technology that may lead to noninvasive characterization of the 
genetic landscape of brain metastasis, and it warrants further studies on larger cohorts.

Received: 12 December 2019; Accepted: 6 April 2020;
Published: xx xx xxxx

References
 1. Ferlay, J. et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012: Globocan 

2012. Int. J. Cancer 136, E359–E386 (2015).
 2. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J Clin 68, 394–424 (2018).
 3. Cohen, J. V. et al. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell 

Melanoma Res. 29, 627–642 (2016).
 4. Hannan, E. J. et al. The significance of BRAF V600E mutation status discordance between primary cutaneous melanoma and brain 

metastases: The implications for BRAF inhibitor therapy. Medicine 96, e8404 (2017).
 5. Chamberlain, M. C. Brain metastases: a medical neuro-oncology perspective. Expert Rev Neurother 10, 563–573 (2010).
 6. Chiarion-Sileni, V. et al. Central nervous system failure in melanoma patients: results of a randomised, multicentre phase 3 study of 

temozolomide- and dacarbazine- based regimens. Br. J. Cancer 104, 1816–1821 (2011).
 7. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).
 8. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 

(2012).
 9. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).
 10. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 

(2015).
 11. Dhomen, N. et al. Oncogenic Braf Induces Melanocyte Senescence and Melanoma in Mice. Cancer Cell 15, 294–303 (2009).
 12. Luke, J. J., Flaherty, K. T., Ribas, A. & Long, G. V. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev 

Clin Oncol 14, 463–482 (2017).
 13. Robert, C. et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. https://doi.

org/10.1056/NEJMoa1904059 (2019).
 14. Brastianos, P. K. et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. 

Cancer Discov 5, 1164–1177 (2015).
 15. Heinzerling, L. et al. Mutation landscape in melanoma patients clinical implications of heterogeneity of BRAF mutations. Br J 

Cancer 109, 2833–2841 (2013).
 16. Saroufim, M. et al. Comparing BRAF mutation status in matched primary and metastatic cutaneous melanomas: Implications on 

optimized targeted therapy. Experimental and Molecular Pathology 97, 315–320 (2014).
 17. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 278, 563–577 (2016).
 18. Lancaster, J. L. et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10, 120–131 (2000).
 19. Philips, C. & Li, D. cooc3d. (2008).
 20. Haralick, R. & Shanmugam, K. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics. IEEE 

Transactions on systems, man, and cybernetics 6, 610–621 (1976).
 21. Artzi, M., Bressler, I. & Ben Bashat, D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. 

J Magn Reson Imaging 50, 519–528 (2019).
 22. Blumenthal, D. T. et al. Classification of High-Grade Glioma into Tumor and Nontumor Components Using Support Vector 

Machine. AJNR Am J Neuroradiol 38, 908–914 (2017).
 23. Artzi, M. et al. Differentiation between vasogenic edema and infiltrative tumor in patients with high-grade gliomas using texture 

patch-based analysis: Texture Patch-Based Analysis in HGG. J. Magn. Reson. Imaging 48, 729–736 (2018).
 24. Trebeschi, S. et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of Oncology 30, 

998–1004 (2019).
 25. Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 

5, 4006 (2014).
 26. Shofty, B. et al. MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J CARS 13, 563–571 (2018).
 27. Kickingereder, P. & Andronesi, O. Radiomics, Metabolic, and Molecular MRI for Brain Tumors. Semin Neurol 38, 032–040 (2018).
 28. Kickingereder, P. et al. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved 

Performance over Established Clinical and Radiologic Risk Models. Radiology 280, 880–889 (2016).
 29. Zhou, H. et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19, 862–870 

(2017).

https://doi.org/10.1038/s41598-020-63821-y
https://doi.org/10.1056/NEJMoa1904059
https://doi.org/10.1056/NEJMoa1904059


7Scientific RepoRtS |         (2020) 10:6623  | https://doi.org/10.1038/s41598-020-63821-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 30. Kniep, H. C. et al. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology 290, 479–487 (2019).
 31. Chen, X. et al. Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach. BMC Neurol 19, 6 

(2019).
 32. Della Seta, M. et al. A 3D quantitative imaging biomarker in pre-treatment MRI predicts overall survival after stereotactic radiation 

therapy of patients with a singular brain metastasis. Acta Radiologica https://doi.org/10.1177/0284185119831692 (2019). 
028418511983169.

 33. Bordia, R. et al. Melanoma brain metastases: correlation of imaging features with genomic markers and patient survival. J Neurooncol 
131, 341–348 (2017).

 34. Forschner, A. et al. Improvement of overall survival in stage IV melanoma patients during 2011–2014: analysis of real-world data in 
441 patients of the German Central Malignant Melanoma Registry (CMMR). J Cancer Res Clin Oncol 143, 533–540 (2017).

 35. Sloot, S. et al. Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint 
therapies: Survival from Melanoma Brain Metastases. Cancer 124, 297–305 (2018).

 36. Maxwell, R. et al. BRAF ‐V600 mutational status affects recurrence patterns of melanoma brain metastasis. International Journal of 
Cancer 140, 2716–2727 (2017).

 37. Hadi, I. et al. Stereotactic radiosurgery combined with targeted/ immunotherapy in patients with melanoma brain metastasis. 
Radiation Oncology 15, (2020).

 38. Valachis, A. & Ullenhag, G. J. Discrepancy in BRAF status among patients with metastatic malignant melanoma: A meta-analysis. 
European Journal of Cancer 81, 106–115 (2017).

 39. Mesbah Ardakani, N. et al. Clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma. Pigment 
Cell Melanoma Res. 30, 233–242 (2017).

 40. Long, G. V. et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. 
Am. J. Surg. Pathol. 37, 61–65 (2013).

Author contributions
Authors B.S., M.A. and R.G. designed the study, B.S., M.A., S.S., C.F., F.D.M., O.H. and S.P.H. collected the data 
and performed the analyses, Z.R. and D.B.B. critically revised the manuscripts, R.G. supervised the study and 
B.S., M.A., S.S. and R.G. wrote the manuscript.

competing interests
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-
profit sectors.

Additional information
Correspondence and requests for materials should be addressed to B.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-63821-y
https://doi.org/10.1177/0284185119831692
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Virtual biopsy using MRI radiomics for prediction of BRAF status in melanoma brain metastasis
	Methods
	Data acquisition and ethical approval. 
	Imaging protocol. 
	Statistical analyses. 
	Classification and evaluation of the results. 

	Results
	Clinical characteristics. 
	Classification results. 

	Discussion
	Conclusion
	Figure 1 Tumor segmentation.
	Figure 2 (a.
	Figure 3 (a) Bar plot of tumor location differences detected between patients with positive and negative BRAF mutations.
	Figure 4 (a.
	Table 1 Patient demographics and BRAF characteristics.
	Table 2 The 5-fold validation results.




