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ABSTRACT

Objective: Unsupervised machine learning approaches hold promise for large-scale clinical data. However, the

heterogeneity of clinical data raises new methodological challenges in feature selection, choosing a distance

metric that captures biological meaning, and visualization. We hypothesized that clustering could discover

prognostic groups from patients with chronic lymphocytic leukemia, a disease that provides biological valida-

tion through well-understood outcomes.

Methods: To address this challenge, we applied k-medoids clustering with 10 distance metrics to 2 experiments

(“A” and “B”) with mixed clinical features collapsed to binary vectors and visualized with both multidimen-

sional scaling and t-stochastic neighbor embedding. To assess prognostic utility, we performed survival analy-

sis using a Cox proportional hazard model, log-rank test, and Kaplan-Meier curves.

Results: In both experiments, survival analysis revealed a statistically significant association between clusters

and survival outcomes (A: overall survival, P¼ .0164; B: time from diagnosis to treatment, P¼ .0039). Multidi-

mensional scaling separated clusters along a gradient mirroring the order of overall survival. Longer survival

was associated with mutated immunoglobulin heavy-chain variable region gene (IGHV) status, absent Zap 70

expression, female sex, and younger age.

Conclusions: This approach to mixed-type data handling and selection of distance metric captured well-

understood, binary, prognostic markers in chronic lymphocytic leukemia (sex, IGHV mutation status, ZAP70 ex-

pression status) with high fidelity.
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INTRODUCTION

With improved data mining of the electronic medical record, the

scale of data available for clinical research is increasing dramati-

cally. Expanding size and complexity demand new analytical

approaches.1,2 Techniques refined in bioinformatics to analyze high-

throughput data may provide translational methods for large-scale

clinical data, if they can be properly transformed. Pattern discovery

with unsupervised machine learning (UML), a common approach

for multiomics data,3,4 has the potential to revolutionize under-

standing of patient phenotypes and clinical outcomes.5 However,

clinical data, characterized by greater heterogeneity than high-

throughput datasets, pose unique problems for UML.1 Although

there are important roles for mixed-data handling in bioinformatics,

UML in omics contexts commonly involves the uniform application

of a single distance metric to a matrix of homogeneous data, either

continuous or binary.4 Unlike omics data, clinical data contain
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mixed data types, which can impede easy application of UML.1 Het-

erogeneity of data types raises new challenges in feature selection:

choosing a distance metric that captures biological meaning and vi-

sualizing clinical data. This study outlines an informatic experiment

to address a core problem in the application of UML to clinical

data: transforming a heterogeneous dataset to allow rigorous, bio-

logically meaningful discovery by UML algorithms.

UML broadly encompasses algorithms that aim to uncover hid-

den structure in data from input features alone. Clustering analyses,

a subcategory of UML, partition these input data into distinct

groups based on calculated similarities between observations.6 For 2

decades, UML has been a common tool for pattern discovery in bio-

informatics.3,4 Unsupervised analysis of high-throughput omics

experiments uncovered new patterns to annotate the genome, eluci-

date chromatic structure,7 reveal molecular subtypes in cancer from

gene expression,8 and functionally segment the human genome by

understanding histone modification.9 Recently, UML began to be

applied to clinical data. Due to phenotypic and outcome heterogene-

ity in many diseases, clustering analyses have found diverse applica-

tions. They have improved understanding of the role of

comorbidities in atrial fibrillation10 and chronic obstructive pulmo-

nary disease (COPD), including highlighting the driving role of anxi-

ety and depression on COPD progression in young, female

patients.11 Clustering has applications in health services, such as

subtyping inpatient e-portal users to improve care delivery.12 Some

analyses of heterogeneous diseases discover subclasses that are fuzzy

or not mutually exclusive, both in chronic conditions such as

COPD13 and acute sepsis.14 To the best of our knowledge, this is the

first application of clustering to clinical data in cancer.

We chose chronic lymphocytic leukemia (CLL), a disease with

well-characterized risk factors, to “biologically validate” the dis-

coveries generated by our methodologic approach. For “biological

validation,” we propose to use real data with known behavior as a

source of “ground truth” to evaluate methods. CLL, the most com-

mon leukemia in the Western hemisphere, is characterized by the

accumulation of mature-appearing, but malignant, B lymphocytes

in blood, bone marrow, and lymph nodes.15 The disease course is

heterogeneous; some patients die from refractory disease within a

few years, while others live for decades with indolent disease.

However, patients with initially indolent disease remain at risk of

disease progression, infections, and secondary malignancies.16–18

One of the best predictors of prognosis in clinical use is the somatic

mutation status of the immunoglobulin heavy chain variable region

(IGHV) genes.19 Somatic mutation of IGHV genes is a normal pro-

cess that occurs in the germinal center following antigen exposure

and enhances antibody affinity. In general, CLL patients with

unmutated IGHV genes (U-CLL) have aggressive disease, while

patients with mutated IGHV genes (M-CLL) have more indolent

disease.20,21 Chromosomal abnormalities are also strong predictors

of disease progression and survival in CLL. Fluorescence in situ hy-

bridization analyses on nondividing interphase nuclei demonstrate

that �80% of CLL cases contain nonrandom gains or losses of

chromosomal material, many with prognostic significance.22,23

Deletions in 13q14 (del(13q)) are most common, followed by dele-

tions in 11q22.3-q23.1 (del(11q)), trisomy 12 (þ12), and deletions

in 17p13 (del(17p)). Del(13q), associated with a good prognosis, is

the site of DLEU1 and the microRNA genes, miR-15a/16-1, which

negatively regulate BCL2 post-transcriptionally.24,25 In contrast,

del(17p), the site of TP53, and del(11q), the site of ATM and the

miR34b/c cluster, are markers of poor prognosis. If patients with

þ12 have an intermediate prognosis, their overall survival (OS) lies

between patients with del(13q) and those with del(11q) or

del(17p).

Recently, we studied gene expression data from a subset

(N¼101) of the CLL patients whose clinical data is available

here.26 Using hierarchical clustering (after selecting about 1100

genes associated to time-to-progression after therapy), we found 3

distinct subgroups of CLL with both different gene expression pro-

files and different response to therapy. We then built a robust classi-

fier to predict membership in these subtypes. This classifier was

validated on data from an independent clinical trial, showing that

prognostically relevant subtypes of CLL do, indeed, exist. Ideally,

the same kind of analysis on clinical data could improve treatment

outcomes.

In this experiment, we hypothesized that UML, when applied to

clinical data, could discover clusters of patients with different prog-

noses. Using CLL as a case study, we explored best practices in

transformation to a single data type, a common approach seen in

the clinical clustering literature, as a method for mixed-data han-

dling for a clustering analysis. We applied k-medoids clustering to a

set of clinical features by transforming them to binary vectors, ex-

ploring 10 metrics for calculating a distance matrix and 2 common

methods of visualization. Implementing 2 parallel approaches to dis-

cretization, our analysis revealed statistically significant associations

between clusters and important survival outcomes, visualized by

MDS as a “spectrum” of subgroups. This analysis captured known,

binary markers of prognosis and outcome with high fidelity. Criti-

cally, we identify and propose solutions for important limitations

within this common methodology for mixed-type data handling, in-

cluding challenges with information loss and visualization.

RELATED WORK

Unsupervised clustering analyses have been used to uncover sub-

groups within clinical data since the 1960s.27 Then and now, hierar-

chical clustering methods have been a dominant approach.12,27–30

Recently, a few studies have applied k-means and k-medoids algo-

rithms to cluster clinical data.31–33 Increasingly, studies have

emerged comparing traditional hierarchical clustering approaches to

k-means and k-medoids.11,13,34

Studies clustering clinical data apply several approaches to inte-

grating heterogeneous data, but disparities in reporting impede the

identification of best practices. In the clinical literature, often no de-

scription of mixed data handling is reported.32,34 Within the studies

described here, Euclidean distance, which is best suited for continu-

ous data, was the most commonly employed dissimilarity metric re-

gardless of the data type being clustered.11 Often, no distance metric

was reported.31–33

Approaches for clustering mixed-type data in the literature often

use 2 methods of calculating similarity: 1 for continuous and 1 for cat-

egorical data. These may combine 2 distance metrics (usually a Min-

kowski distance for continuous data with the Hamming distance or

Gower coefficient for categorical)35–38 or 2 algorithms, such as

Huang’s k-Prototypes algorithm, which implements k-means for con-

tinuous data and k-modes for categorical data.39,40 An alternative ap-

proach is to restrict data sets to only 1 data type.41,42 Clinical

applications of this approach include an experiment on Z-normalized

continuous data in the critical care setting,31 normalizing on fre-

quency,33 or transforming mixed-type data to categorical.11

When comparing k-means and hierarchical approaches, Pikoula

and colleagues11 found k-means clustering recovered more stable

clusters than hierarchical methods. Using unsupervised random for-

1020 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7



ests for feature selection and similarity matrix calculation, Castaldi

and colleagues13 demonstrated similar performance between k-

medoids and hierarchical clustering. The team recovered best perfor-

mance with hierarchical clustering with removal of “poorly classifi-

able subjects,” but in some experiments this resulted in removal of

up to 86% of subjects, which suggests the potential for loss of bio-

logical meaning. Clustering these experiments, regardless of type, of-

ten produced clusters with limited coherence. When the percentage

frequency of a defining feature in a cluster was reported in a study,

the most common features defining a cluster had low frequencies,

sometimes less than 50%. This indicates that the recovered clusters

lacked strong identities and had reduced potential for clinical dis-

covery.11,31,32

In this study, we propose that transformation to a single data

type represents a simple solution to a complex problem if it can be

successfully implemented through careful methods. We explore rig-

orous methods to apply a “simple” set of solutions to produce inter-

pretable results from a process with low computational intensity.

Data transformation risks information loss and introduction of bias.

However, we argue that complicated solutions, such as those pro-

duced by Castaldi and others, run similar risks with an increased

burden from impaired interpretation of results.

We used k-medoids clustering in this paper, which produces

more stable clinical data clusters.11 The 2 primary challenges to ei-

ther hierarchical clustering or k-means or k-medoids approaches are

solutions for mixed-type data and selection of an appropriate dis-

tance metric. In this paper, we transform mixed data to binary fea-

tures to eliminate conflict from multiple data types and assess 10

distance metrics to make a judicious choice to maximize biological

meaning recovery.

MATERIALS AND METHODS

Samples and clinical findings
This study uses deidentified data that were previously published.

Originally, peripheral blood samples were obtained from 247 treat-

ment-naı̈ve CLL patients after obtaining informed consent at the

University of Texas MD Anderson Cancer Center and processed as

described.43–45 The studies were approved by the Institutional Re-

view Boards and conducted according to the principles expressed in

the Declaration of Helsinki. Clinical and routine laboratory data

were obtained by review of the medical records (Table 1). Addi-

tional information on these data is available in Supplementary File

A.1. The somatic mutation status of IGHV genes and ZAP70 ex-

pression, measured by either flow cytometry or immunohistochemis-

try, were assessed on blood or bone marrow samples according to

established protocols.46–48 Common CLL-associated abnormalities

(del(11)(q22.3); del(13)(q14.3); del(17)(p13.1); trisomy 12), were

assessed by array-based single nucleotide polymorphism genotyp-

ing.43,48 Cases were grouped according to the Döhner hierarchy.23

Our analysis included 7 measures of outcome collected over 15 years

of follow-up: overall survival (OS), time from diagnosis to treatment

(TTT), time from sample collection to treatment (TST), event-free

survival (EFS), progression-free survival (PFS), time-to-progression

(TTP), and survival after treatment (TxOS).

Clinical data transformation
Our clinical data are heterogeneous, including binary, nominal, or-

dinal, and continuous features (Supplementary Table A.1). Because

our data set was already dominated by binary features, we chose to

discretize to binary data, believing that altering fewer features

reduces opportunities to introduce bias. The approach for discretiza-

tion of continuous variables was driven by biological meaningful-

ness. Reclassifying categorical and continuous data as binary

required decision-making steps that inherently result in information

loss. So, we compared 2 distinct approaches which we refer to as

“Data transformation A” and “Data transformation B.” Further

details are in Supplementary Methods A.2.

Both transformations included binary features which can be sub-

classified into 2 types. For symmetric binary features, such as sex,

both values are about equally likely, and there is no reason to prefer

coding either value as 0 or 1. In our data, both the IGHV somatic

mutation status and ZAP70 expression were symmetric, and either

presence or absence is relevant to predict clinical outcome. For

asymmetric binary features, 1 of the values tends to be much rarer

than the other, and is usually coded as 1. This value is “more

informative,” since people who share the attribute have more in

common than people who lack it. For example, anemia, splenomeg-

aly, and hypogammaglobulinemia are asymmetric binary features of

our clinical data. For symmetric binary features in both transforma-

tions, we retained 2 binary vectors—1 for presence and 1 for ab-

sence of a feature. For asymmetric binary features, we retained 1

vector capturing a positive result (or presence of a feature).49

In data transformation A, we preserved categorical and continuous

data in more detail than in data transformation B. For categorical

data, we transformed each category into binary dummy variables,

retaining a set of vectors for each category. Thus, for the Döhner clas-

Table 1. Clinical characteristics of chronic lymphocytic leukemia

(CLL) patients

Patients n (%)

Total 247

Sex

Male 173 (70.0)

Female 74 (30.0)

Race

Asian 1 (0.4)

Black 11 (4.5)

Hispanic 7 (2.8)

White 228 (92.3)

Rai Stage

Low (0–2) 196 (79.4)

High (3–4) 51 (26.0)

Döhner Classification

del13q 90 (36.4)

þ12 37 (15.0)

FISH normal 73 (29.6)

del11q 34 (13.8)

del17p 13 (5.3)

IGHV Mutation Status

Mutated 106 (43.1)

Unmutated 140 (56.9)

Treatment Status

Never treated 20 (8.1)

Treated with FCR 227 (91.9)

Age at Diagnosis Years

Minimum 26.74

Median 55.87

Maximum 82.41

Selected clinical and routine laboratory data, somatic mutation status, and

common recurrent cytogenetic abnormalities collected at time of diagnosis on

247 treatment-naı̈ve patients diagnosed with CLL and obtained by chart review.
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sification, we retained 5 binary vectors corresponding to 5 cytogenetic

categories. We binned continuous data along clinically interpretable

lines. We binned age by decade and prolymphocyte count by percent-

age into 6 categories each. We converted these sets of dummy variables

using the same approach that we applied to categorical data. The

greatest number of dummy variables for any given category was 6.

In data transformation B, we converted all categorical and con-

tinuous features into 2 clinically meaningful binary categories. Each

feature was divided along a meaningful clinical cutoff and retained

as 2 symmetric binary vectors. For example, the continuous variable

“age” was split into 2 vectors corresponding to age greater or less

than 65 years. Although this transformation was smoothly applied

to continuous data, Döhner classification, an ordinal variable, could

not be collapsed into 2 meaningful binary categories. Thus, we

retained only the Döhner classification as a nonbinary set of dummy

variables, with a total of 5 vectors.

Unsupervised machine learning
We applied an identical UML workflow to both transformations.

We began with principal component analysis and clustering using

the Thresher R package.50,51 Using the Mercator R package, we

assessed 10 binary distance metrics (Sokal&Michener, Euclidean,

Manhattan, Pearson, Hamming, Jaccard, Binary, Canberra, Rus-

sell&Rao, and Goodman&Kruskal; see Supplementary Methods

A.3.1) representing meaningful groupings of 76 distance metrics.52

Mercator provides streamlined tools for principal component analy-

sis from different distance metrics, application of the Thresher algo-

rithm, and multiple visualizations. To select an appropriate metric,

we recovered k clusters at a range of k values, calculated the categor-

ical distance between clusters, and visualized the similarity between

distance metrics with hierarchical clustering (Supplementary Figure

A.1). For analysis of both transformations, we selected the

Sokal&Michener distance dSM for representativeness of trends

among recovered clusters. Developed for taxonomy, the

Sokal&Michener distance tolerates symmetric binary variables and

categorical data.49,53 It is easily interpretable, calculating dissimilar-

ity as a ratio of concordant matches to all pairs:52

dSM ¼
N00 þN11

N00 þN01 þN10 þN11

where Nij counts the number of times the first vector contains the

value i while the second vector contains the value j. We recovered

clusters using Partitioning Around Medoids (PAM).49 Goodness-of-

fit for each cluster was determined from the silhouette width (Sup-

plementary Methods A.3.2), which represents the tightness of clus-

tering between groups.54 The number of clusters was determined by

maximizing the average silhouette width. For each cluster, we de-

fined “salient” features as those that characterize >75% of patients

within the cluster (Supplementary Methods A.3.3). We visualized

clusters with both linear (MDS) and nonlinear (t-stochastic neighbor

embedding [t-SNE]) dimension reduction methods.55 To assess

prognostic utility, we performed survival analysis using a Cox pro-

portional hazards model, evaluated with the log-rank test and visu-

alized by Kaplan-Meier curves.

RESULTS

Data transformation A
Data transformation A, which preserved categorical features, pro-

duced 40 binary vectors. PAM clustering on a Sokal&Michener dis-

similarity matrix returned k¼7 clusters (average silhouette width ¼
0.10). Survival analysis with a Cox proportional hazards model

revealed a statistically significant association between 7 clusters and

OS from time of diagnosis (logrank¼5.84, P¼ .016; Figure 1A) Re-

covered clusters were not significantly associated with other out-

come measures (TTT, logrank¼0.04, P¼ .84; EFS, logrank¼0.63,

P¼ .43; PFS, logrank¼0.26, P¼ .607; TTP, logrank¼0.27,

P¼ .27; TxOS, logrank¼2, P¼ .158; TST, logrank¼3.64,

P¼ .06). Visualization by t-SNE (Figure 1B and C) demonstrated

loose groupings. Visualized by MDS, these loose clusters were

arrayed along a gradient in the first dimension that mirrored the OS

order seen in the Kaplan-Meier curves. Visualizations of the other 9

tested distance metrics using MDS (Supplementary Figure B.2) and

t-SNE (Supplementary Figure B.3) are available as supplemental

files.

Informative features that varied with survival outcome included

IGHV somatic mutation status, sex, ZAP70 expression, immuno-

globulin light chain subtype, hypogammaglobulinemia, anemia, and

Döhner classification. A subset of informative features is presented

in Table 2, with complete results in Supplementary Table B.1. The 3

clusters with the longest survival (A1, A2, A3) were associated with

mutated IGHV status and lack of ZAP70 expression. The cluster

with second-longest survival was the only cluster associated with fe-

male sex. The 2 clusters with shortest survival (A6, A7) were associ-

ated with unmutated IGHV status and ZAP70-positivity, regardless

of sex. The clusters with second- and third-longest survival were as-

sociated with del(13q), the only Döhner classification abnormality

identified by the analysis. Only 2 clusters were associated with

dummy categorical features, specifically del(13q); all other clusters

are based on binary features. Light chain subtypes lambda (A1) and

kappa (A4, A6) were identified as salient features.

Some common features characterized a majority of patients in

many of the recovered clusters. In all clusters, 75% or more patients

were diagnosed at low Rai stage (Rai stage < III). All clusters fea-

tured low CD38 except for A4, with high CD38. Some clusters were

notable only for the absence of a common feature. All clusters ex-

cept A7 had low beta-2 microglobulin. All clusters had low white

blood cell counts at diagnosis except cluster A6. All clusters except

A4 and A7 had typical Matutes score.

Data transformation B
Collapsing categorical values to binary classifiers reduced transfor-

mation B to 32 features. Using the Sokal&Michener distance, PAM

recovered k¼6 clusters (average silhouette width ¼ 0.17). Survival

analysis by Cox proportional hazards on several outcome measures

revealed statistically significant associations between 6 recovered

clusters and TTP (logrank¼4.05, P¼ .0451; Supplementary Figure

B.1) and time from diagnosis to treatment (logrank¼8.41,

P¼ .0039; Supplementary Figure B.1), a related measure. Recovered

clusters were not significantly associated with other outcomes (OS,

logrank¼0.74, P¼ .39; EFS, logrank¼2.31, P¼ .129; PFS,

logrank¼2.93, P¼ .088; TxOS, logrank¼2.08, P¼ .151). t-SNE

visualized loose groupings without broad separation. Along the first

dimension, MDS separated clusters along a gradient in an order mir-

roring OS, but not other outcomes such as TTP (Figure 2B and C).

Although MDS separated clusters on the first dimension along the

order of OS, the association between clusters and OS was not statis-

tically significant.

Informative features defining 75% of the patients in a given clus-

ter are presented in Table 2, with complete results in Supplementary
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Figure 1. Data transformation A: (A) Kaplan-Meier survival curve, (B) MDS plot, and (C) t-SNE plot for 7 unsupervised clusters of CLL patients. Unsupervised ma-

chine learning, using k-means clustering with Partitioning Around Medoids (PAM) and the Sokal&Michener distance yields 7 clinical phenotypes with significant

differences in overall survival (OS) (P¼ .0164). Clusters separated by MDS along the first dimension reflect OS outcomes.

Table 2. Informative, identifying features of clusters for data transformations A and B, in order of overall survival

Data Transformation A.

ID n Sexa IGHV Status ZAP70 Döhner CD38 Light Chain Other

A1 19 M Mutated � Low Lambda Hypogammaglobulinemia

A2 29 F Mutated � del13q Low

A3 36 M Mutated � del13q Low

A4 27 M Unmutated High Kappa

A5 25 M Unmutated � Low Anemia

A6 38 Unmutated þ Low Kappa

A7 22 Unmutated þ Low Anemia

Data Transformation B.

ID n Sexa IGHV Status ZAP70 CD38 Age (yrs) Prolymphocytes (%) Light Chain Otder

B1 46 Mutated � Low < 65 < 10 Lambda

B2 37 Mutated � Low < 65 < 10 Kappa

B3 26 M Unmutated < 65 < 10 Anemia

B4 44 Unmutated þ Low < 65 < 10 Kappa

B5 12 M Unmutated þ Low � 65 Lambda Anemia

B6 31 M Unmutated þ High < 65 < 10 Kappa

Notes: Clusters are ordered by predicted survival outcome, from longest survival (A1 or B1) to shortest (A7 or B6). Characteristic features of each cluster, de-

fined as a feature present in at least 75% of members of a given cluster, include known indicators of superior prognosis (IGHV-mutated status and female sex)

and poor prognosis (ZAP70 positivity). For complete results and percentages, see Supplementary Table B.1.
aM, male; F, female.
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Table B.1. Clusters with improved OS had mutated IGHV status

and ZAP70-negativity. Clusters with shorter OS had unmutated

IGHV status and ZAP70 positivity. The cluster with the second-

shortest survival was associated with older age (> 65 years) at the

time of diagnosis. The cluster with shortest survival was associated

with CD38 positivity. As in data transformation A, lambda (B1, B5)

and kappa (B2, B4, B6) light chains were alternately identified as sa-

lient features.

As in data transformation A, some common features were repre-

sented in many clusters. For example, most clusters were associated

with low Rai stage—except B3 and B5, which did not have a predomi-

nant association with any Rai stage. Most clusters had typical immu-

nophenotypes by Matutes score—except B5 and B6, which had fewer

than 75% of members with typical immunophenotypes, but no cluster

was characterized by atypical immunophenotypes by Matutes.

DISCUSSION

Applying methods common in bioinformatics to clinical data entails

potential problems and pitfalls. Difficulties in recovering clusters are

rooted in clinical data heterogeneity. Our analysis captured symmet-

ric, binary classifiers with high fidelity but lagged in capturing im-

portant prognostic features of other data types. Two of the best-

understood prognostic features in CLL are IGHV mutation status

and ZAP70 expression. Both transformations identified these fea-

tures as salient and informative. Some features proved uninforma-

tive because they characterized a majority of patients in most or all

of the recovered clusters. Binary features for which 1 of the 2 catego-

ries predominated within the dataset, such as Rai stage or white

blood cell count, were sufficiently common as to be identified as sa-

lient features in each cluster by our 75% cutoff. Such features are

meaningless due to their frequency across the data as a whole.

In data transformation A, a high proportion of categorical and

binned continuous data led to loose clusters and low silhouette

widths. Salient clinical features identified by our workflow failed to

capture meaningful categorical data, including age, a well-

understood prognostic indicator. These limitations led us to explore

data transformation B. Collapsing categorical data to binary form

improved silhouette width and led to the inclusion of 2 important

classifiers, age and prolymphocyte count, in cluster definitions. We

believe that the improved results may be due to making binary selec-

tions based on clinically meaningful thresholds.

Both data transformations captured light chain subtype (lambda

or kappa) as a salient feature for the majority of clusters. Light chain

Figure 2. Data transformation B: (A) Kaplan-Meier survival curve, (B) MDS plot, and (C) t-SNE plot for 6 unsupervised clusters of CLL patients. Unsupervised ma-

chine learning, using k-means clustering with Partitioning Around Medoids (PAM) and the Sokal&Michener distance yields 7 clinical phenotypes with significant

differences in time-to-progression (TTP) (P¼ .0451). (Supplementary Figure 1) Clusters separated by MDS along the first dimension reflect order of overall sur-

vival (OS) outcomes.
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subtype is a commonly recorded variable with known function in

physiological B-cell development and differentiation. However, its

role as a prognostic indicator is poorly understood. Furthermore, al-

though light chain subtype helps distinguish cluster identities, the al-

ternating pattern of light chain subtype along the survival spectrum

in transformation B suggests that association with overall survival is

unlikely. Our analysis captured several pairs of clusters differenti-

ated by few features other than light chain subtype. In data transfor-

mation B, clusters B1 and B2 are differentiated only by light chain

subtype. Thus, although light chain is not a powerful predictor, it

does drive clustering. Applications of unsupervised ML to clinical

data hold the potential to explore other poorly understood clinical

features and their role in predicting treatment response or survival

outcomes. Future work remains to refine methodologies to elucidate

these clinical features.

Critically, neither transformation captured what is perhaps the

most important, best understood, prognostic indicator in CLL: the

Döhner classification. Data transformation A identified a Döhner

abnormality in 2 clusters only, and data transformation B failed to

identify Döhner classification for any cluster at all. The Döhner

classification was the only ordinal feature that could not be mean-

ingfully collapsed into binary form, which may explain why it was

not captured by either model. Another possible explanation arises

because the Döhner classification is strongly associated with both

IGHV mutation status and ZAP70 expression. Cases which only

have del(13q) tend to be IGHV-mutated and negative for ZAP70

and have good prognosis. Cases with del(17p) or del(11q) tend to

be IGHV-unmutated and positive for ZAP70 and have poor prog-

nosis. Nevertheless, this finding suggests that important categorical

factors with many levels may have less influence on clustering than

associated symmetric binary factors. It also reflects the fact that (by

definition) UML methods are inherently less powerful than super-

vised methods at finding factors relevant to a particular clinical out-

come; we know that the Döhner classification is prognostic because

it was found during supervised analyses of clinical data from CLL

cohorts.

A simple binary transformation and subsequent application of

dissimilarity metrics uniformly across a clinical data set is clearly in-

sufficient to capture all medically important facets within the data.

Collapsing age to a binary classifier of greater or less than 65 years

successfully led to its inclusion as a salient feature in data transfor-

mation B. However, patient ages in the data set ranged from less

than 40 to over 80 years old at diagnosis. Clearly, rich and impor-

tant clinical information was lost with at least some binary transfor-

mations. Ideally, the power of applying UML to clinical data would

be in capturing clinical details not previously identified. Collapsing

continuous data to a binary classifier may prevent the realization of

this important potential.

Clinical data are inherently complex. Our dataset, though small,

is representative of this complexity. These data contain features that

are symmetric, balanced, and binary (eg, sex); symmetric and bi-

nary, but strongly unbalanced (eg, Rai stage); binary but asymmetric

(eg, anemia); nominal (eg, Döhner classification); continuous on an

interval scale (eg, age); and continuous on a ratio scale (eg, prolym-

phocyte count). Any UML approach must capture and leverage this

complexity.

Although our methods captured clinical features associated with

survival outcomes, visualization by t-SNE and MDS showed loose

groupings instead of tight, well-separated clusters. Many diseases

present with clinical phenotypes arrayed along spectra, as opposed

to fully distinct subgroups. CLL is 1 such disease. Importantly, for

both transformations, MDS recovered a spectrum of subgroups that

mirrored the outcomes seen in overall survival. These results suggest

that some common modes of dimension reduction and subgroup vi-

sualization, such as t-SNE, may be inappropriate for diseases with

diffuse clinical presentation, failing to visualize clusters even when

clinically meaningful subgroups are present. In clinical contexts,

there is merit in exploring methods to visualize other patterns within

data, such as the spectra of clusters associated with an important

clinical outcome visualized here with MDS.

In this article, we explored the concept of “biological validation”

to assess a clustering method using real data. In the absence of

known “ground truth” clusters, which are never available in real

data, testing clustering methods on data from well-understood dis-

eases provides a means to test accuracy and meaningfulness of clus-

ters. Although experiments on well-understood disease may fail to

yield a wealth of novel insights, we argue that “biological vali-

dation” experiments provide a fruitful avenue for rigorous assess-

ment of unsupervised methods in clinical contexts.

A primary methodological concern of our analysis and future

directions is fitting an appropriate distance metric to a given prob-

lem. Here, we selected the Sokal&Michener distance for appropri-

ateness of data type, representativeness of other distance metrics,

and representativeness of trends within our data. First, the

Sokal&Michener distance, although originally developed for

small, categorical data,53 is appropriate for use in symmetric bi-

nary data,49 such as the important features in our data that are

prognostically meaningful both when absent or present. Second,

the Sokal&Michener distance produces results highly correlated

with other well-understood measures of binary distance, including

Manhattan, Minkowski, and Gower distances,52 so we can view

the Sokal&Michener distance as representative of other

approaches to calculating dissimilarity. Finally, when visualizing

our data across 10 distance metrics (see Supplementary Figures

A.2 and A.3), the Sokal&Michener distance qualitatively repro-

duced plotting trends across multiple methods of calculating dis-

similarity.

Although clustering is a common approach in bioinformatics,

both current bioinformatics and future clinical informatics applica-

tions can benefit from careful attention to this problem. Many dis-

tance metrics currently used in bioinformatics have their roots in

taxonomic and speciation problems of the early- to mid-twentieth

century.52,53 Clustering remains, in many ways, a taxonomic prob-

lem. Creating meaningful biological classifications requires thought-

ful assignment of a distance metric to a particular set of data.

Although the heterogeneity of clinical data stresses the most com-

plex aspects of this problem, we argue that exploring multiple dis-

tance metrics to select the best fitting calculation of dissimilarity for

a given data set should be an integral step in any UML workflow.

In bioinformatics, homogeneous datasets can easily be subjected

to a single dissimilarity metric. However, analysts typically resort to

software defaults, such as the Euclidean distance for continuous

metrics as opposed to selecting the metric that best fits the particular

experiment. Failure to disclose distance metrics in the construction

of a dissimilarity matrix or linkage metrics in hierarchical clustering

is an impediment to reproducibility. In 1980, in response to publica-

tion of cluster experiments characterized by insufficient methodo-

logical reporting to allow reproducibility, Blashfield27 called for

reporting of the chosen similarity metric in all published clustering

analyses. Forty years later, this recommendation and reporting need

still stands. Although using a default measure is convenient,

thoughtlessly applying an artificial, mathematically-constructed dis-
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tance metric may rest on faulty assumptions that an arbitrary metric

can correspond to meaningful biological reality.

Any solution for clustering clinical data must capture relation-

ships between data types without information loss. To tackle the

heterogeneous data problem, Kaufman and Rousseuw49 suggest

clustering a dissimilarity matrix, as opposed to raw data. They sub-

compartmentalize distinct data types—each requiring different solu-

tions and metrics in the construction of a dissimilarity matrix—

including symmetric or asymmetric binary data, ordinal, nominal,

interval-scale continuous, and ratio-scale continuous. Each data

type is subjected separately to targeted distance calculations, then

recombined in a dissimilarity matrix for clustering. This methodol-

ogy and more elegant solutions merit further exploration.
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