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Abstract

Objective: In this study, a novel grey self-memory coupling model was developed

to forecast the incidence rates of two notifiable infectious diseases (dysentery and

gonorrhea); the effectiveness and applicability of this model was assessed based

on its ability to predict the epidemiological trend of infectious diseases in China.

Methods: The linear model, the conventional GM(1,1) model and the GM(1,1)

model with self-memory principle (SMGM(1,1) model) were used to predict the

incidence rates of the two notifiable infectious diseases based on statistical

incidence data. Both simulation accuracy and prediction accuracy were assessed

to compare the predictive performances of the three models. The best-fit model was

applied to predict future incidence rates.

Results: Simulation results show that the SMGM(1,1) model can take full

advantage of the systematic multi-time historical data and possesses superior

predictive performance compared with the linear model and the conventional

GM(1,1) model. By applying the novel SMGM(1,1) model, we obtained the possible

incidence rates of the two representative notifiable infectious diseases in China.

Conclusion: The disadvantages of the conventional grey prediction model, such

as sensitivity to initial value, can be overcome by the self-memory principle. The

novel grey self-memory coupling model can predict the incidence rates of infectious

diseases more accurately than the conventional model, and may provide useful

references for making decisions involving infectious disease prevention and

control.
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Introduction

Prevention and control of infectious diseases is an increasingly important public

health issue. After World War II, developments in preventive medicine, clinical

medicine, and preclinical medicine have served major roles in preventing and

controlling infectious diseases. Many acute or chronic infectious diseases have

been effectively controlled by the use of antibiotics and vaccines [1, 2]. However,

the chronicity, arduousness, and complexity of infectious disease prevention and

control are often ignored, which has resulted in the emergence of new pathogens

with changes in the environment and the expansion of domestic and international

communication [3, 4]. The World Health Organization has declared that

epidemic factors spreading infectious diseases include global population move-

ment, emergence of drug-fast pathogenic microorganisms, global climatic

variation, social unstable factors, and flaws in health management [5]. Strategies

to prevent and control infectious diseases are particularly urgent in developing

countries with a weak economy, poor sanitary condition, large population

density, and significant international and domestic population movement [6, 7].

Previous experiences have shown that accurate forecasts and analyses of the future

trend of infectious diseases can realize timely epidemic detection and prevention.

Establishing long-term prevention strategies can lay the foundation for early

warning of diseases and provide a theoretical basis for drafting prevention

strategies and solutions. Therefore, early warning and forecast of infectious

diseases is important for health care and public hygiene management.

A statistical analytical method that combines mathematics and infectious

disease epidemiology is used to predict the emergence of infectious diseases. This

method has been widely applied for early warning and forecast of all types of

infectious diseases. Model-based prediction methods for epidemics have been a

major research focus in public health. Studies commonly combine statistical

analysis (i.e., regression analysis [8] and time series analysis [9]) and mathematical

modeling (i.e., epidemic dynamic model [10, 11]) to forecast epidemic regularity

and development trends based on data related to infectious diseases. These

methods have been actively researched for their utility in generating early

warnings against disease outbreaks [12, 13]. In particular, prediction of disease

incidence rates is a popular topic of research. Disease forecasts can provide

important references for public hygiene management, and serve as effective

resources for planning, prevention and control. With the development of

powerful prediction theories, statistical regression models [14–16], time-

sequences models [17, 18], discrete time stochastic model [19], age-structured

epidemic model [20], grey system models [21, 22], Markov chain models [23, 24],

and artificial neural network models [25, 26] have been applied to predict future

epidemiological trends. However, common statistical prediction methods have

limitations. For example, large samples of historical data that follow a certain

representative statistical distribution are required. The evolutionary path of an

infectious disease is influenced by uncertainties and characterized as a grey system.

Hence, the occurrence and prevalence of an infectious disease can be regarded as a
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typical dynamic variable grey system. Importantly, grey system models are

practical because data sample size and probability distribution are not strictly

required.

When dealing with small samples and incomplete information, traditional

methods (i.e., probability statistics and fuzzy mathematics) show limitations

[27, 28] such as requirement of a large amount of statistical data and a

structuralized system. To overcome these disadvantages, Deng first proposed the

grey systems theory in 1982 to study the uncertainty of systems with unclear

statistical distribution [29]. The grey model uses the accumulated generating

operation to process raw data to reduce their degree of stochasticity and to

increases their regularity[30, 31]. As the simplest model, the GM(1,1) model

(univariate first-order differential equation) is especially appropriate for

predicting the overall development tendency of the dynamical system (i.e.,

approximate exponential increasing tendency and exponential decreasing

tendency). It has been broadly applied in numerous fields, such as economy and

management, industry and agriculture, medicine and health, and engineering

sciences [32–37]. However, the conventional GM(1,1) model essentially belongs

to the initial value solving problem of differential equations which only meet the

initial condition at one point, i.e., the observed values at one moment.

Accordingly, the original dynamical differential equation has the limitation of

being sensitive to initial values, and that becomes a disadvantage when historical

information is not fully available. Recently, many scholars have focused on

improving the prediction performance of the grey prediction models. The self-

memory principle is one of the most important methods to enhance the precision

of a model.

On the basis of retrieved modeling methods, the self-memory principle of

dynamic system was first proposed by Cao in 1993 [38]. As a statistically dynamic

method to solve problems of nonlinear dynamic systems, it successfully integrated

determinism and random theories with mathematics [39]. The self-memory

principle can retrieve ideal nonlinear dynamic models from practical observa-

tional data. It overcomes the weakness of being sensitive to initial values for

differential equations, as well as the limitation of irrelevance to the mechanism

modeling due to utilization of historical materials. The method is a breakthrough

for numerical solution of traditional initial-value problems and statistical

approaches. This novel prediction model combines the advantages of the self-

memory principle and the grey GM(1,1) model by coupling their prediction

methods. Its excellent predictive performance lies in the fact that the weakness of

conventional GM(1,1) model, i.e., sensitivity to initial value, can be overcome by

using a multi-time-point initial field instead of a single-time-point initial field.

The concept has been utilized increasingly in time series forecasting in multiple

fields, such as meteorology, engineering, and economics [40, 41]. In recent years,

some scholars have attempted to introduce the self-memory principle into certain

basic grey prediction models [42–44]. However, these published research methods

have been applied mainly in the fields of meteorology, hydrography, and

engineering science, and only minimally in medicine and public health.
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In the fields of epidemiology and public hygiene, the occurrence and prevalence

of an infectious disease are commonly accompanied by irregular individual

fluctuations due to many internal and external unstable factors. Hence, the spread

and prevalence of an infectious disease can be regarded as a dynamical variable

grey system with stochastic fluctuation. The grey prediction models have been

effectively utilized for forecast and analysis of the morbidity and mortality of

epidemics, such as parasitosis and phymatosis [21, 37]. In this paper, in light of

the uncertainty features of infectious diseases, two representative infectious

diseases (dysentery and gonorrhea) among categories A and B of notifiable

diseases in China were selected to predict their incidence rates by coupling the

GM(1,1) model and the self-memory principle. Although most infectious diseases

have been successfully controlled in China, handling of epidemics of some

infectious diseases in certain regions are not going well [22]. Dysentery is a major

public health issue in many countries in the world [45]. Transmission of dysentery

is fecal-oral, which may involve polluted food, water, daily contact, and flies.

Despite the fact that the incidence of intestinal infectious diseases has declined

considerably in recent years worldwide, the incidence of dysentery remains high in

developing countries. Dysentery is one of the most common epidemics in

overcrowded areas with inadequate sanitation. Notably, dysentery is a recurrent

challenge in many parts of the world. In addition, gonorrhea, a bacterial infection

caused by Neisseria gonorrhoeae, is a highly communicable sexually transmitted

infection and, due to its short incubation period, may serve as an indicator of

recent risky sexual behavior in symptomatic cases [46]. Furthermore, in

developing countries, sexually transmitted diseases and their complications are

among the top five conditions for which adults seek medical care. These

conditions may cause acute or chronic symptoms as well as delayed sequels such

as infertility, ectopic pregnancy, cervical cancer and premature fatalities among

infants and adults. Consequently, dysentery and gonorrhea rank top in categories

A and B of notifiable diseases in China.

In this study, prediction performances of the SMGM(1,1) model, the

conventional GM(1,1) model and the linear model were compared. The model

with the best fit was then utilized to deduce emerging epidemic tendencies. We

propose that the grey self-memory coupling prediction model is appropriate for

forecasting the incidence rates of infectious diseases in China. Results of our

analyses may provide effective guidance in the decision-making process for the

prevention and control of epidemics.

Materials and Methods

Data sources

In this study, the incidence rates of two types of notifiable infectious diseases

(dysentery and gonorrhea) were investigated. The incidence rates of the two

infectious diseases were obtained from public governmental statistical data,

published by the China Health Statistical Yearbook of 2013 [47]. Since the
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Chinese Centre for Disease Control and Prevention was founded in 2002, and it

experienced the ordeal of the SARS epidemic the following year, only statistical

data from 2004 to 2012 were selected for modeling analysis.

Methods

The linear model was formulated as y5mx+b. Detailed principles of modeling

analysis and accuracy assessment of the grey self-memory coupling prediction

method have been described previously by Wu et al. [31] and Cao et al. [48]. Excel

software, Grey system software 3.0 and MATLAB software 7.0 were utilized for

modeling and simulation.

A. The principle of grey self-memory coupling prediction

After the accumulated original statistical data are generated and the moving

average is calculated, the grey system GM(1,1) model can weaken the randomness

of the original data and generate regular cumulative data. Consequently, the

prediction model can be approximated by the solution of a linear first-order

differential equation. Nevertheless, the self-memory principle not only emphasizes

the overall exponential development tendency of the dynamical system, but also

its individual stochastic fluctuations. After introducing the memory function,

which contains historical information, into the system’s dynamic differential

equation, the equation can be transformed into a difference-integral equation,

called self-memorization equation, by defining the inner product in Hilbert space.

Because the systematic self-memorization equation contains multiple time-point

initial fields instead of only single time-point initial field, the weakness of being

sensitive to the initial value of the original dynamic differential equation can be

overcome. By studying systematic inner memorability, the systematic overall

exponential development tendency with individual stochastic fluctuations can be

modeled and predicted. The superiority of the self-memory principle lies in the

fact that the systematic predictive ability can be improved by not only combining

dynamics calculations and estimating parameters of historical data, but also

extracting systematic information from historical data in statistics.

B. Model construction

For our modeling analysis, the incidence data of the two infectious diseases from

2004 to 2011 were taken as the modeling samples (i.e., original series

X(0)~fx(0)(1),x(0)(2), � � � ,x(0)(n)g). Furthermore, the incidence data of the year

2012 were selected as the testing samples for the prediction test.

First, the general procedure for a conventional GM(1,1) model was derived as

follows:

Step 1. Assume that the sequence X(0)~fx(0)(1),x(0)(2), � � � ,x(0)(n)g is an

original non-negative data sequence, where x(0)(k) is the time series data at time k.

The sequence X(1)~fx(1)(1),x(1)(2), � � � ,x(1)(n)g is the first-order accumulated

generation sequence of X(0), where x(1)(k)~
Pk

i~1 x(0)(i), k~1,2, � � � ,n.
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Step 2. The basic form of the GM(1,1) model is defined as

x(0)(k)zaz(1)(k)~b, (z(1)(k)~
x(1)(k)zx(1)(kz1)

2
)

where the parameters a and b are called developing and grey input coefficients,

respectively. Let sampling time Dt~1; then, by the least square method, the

parameters a and b can be obtained as

â

b̂

� �
~(BTB){1BTXn

where

Xn~

x(0)(2)

x(0)(3)

..

.

x(0)(n)

2
66664

3
77775, B~

{z(1)(2) 1

{z(1)(3) 1

..

. ..
.

{z(1)(n) 1

2
66664

3
77775

Step 3. The whitenization equation of the GM(1,1) model is given by

dx(1)

dt
zax(1)~b. By making the initial value x̂(1)(1)~x(0)(1), the time response

sequence of the GM(1,1) model is given by

x̂(1)(kz1)~(x(0)(1){
b
a

)e{akz
b
a

ð1Þ

and the simulative value of sequence X(1) can be obtained from Eq. 1 accordingly.

Consider the inverse accumulated generation

x̂(0)(kz1)~x̂(1)(kz1){x̂(1)(k)~(1{ea)(x(0)(1){
b
a

)e{ak, k~1,2, � � � ,n{1

Thus, the simulative value of sequence X(0) can be obtained.

The procedure followed to develop a novel SMGM (1,1) model is as follows:

Step 1. Determining the self-memory dynamic equation.

Let dx(1)
�

dt in the whitenization differential equation of the GM(1,1) model be

F(x,t). Then,

F(x,t)~{ax(1)zb ð2Þ

The differential equation dx(1)
�

dt, determined by Eq. 2, is considered

systematic self-memory dynamic equation of the grey self-memory coupling

model:

Grey Self-Memory Coupling Model to Forecast the Incidence Rates

PLOS ONE | DOI:10.1371/journal.pone.0115664 December 29, 2014 6 / 17



dx
dt

~F(x,t) ð3Þ

where x is a variable, t is time interval series, and F(x,t) is the dynamic kernel.

Then, a memory function b(t) was introduced and an inner product in the Hilbert

space was defined:

f ,gð Þ~
ðb0

a0

f (j)g(j)dj f ,g[L2
� �

ð4Þ

Step 2. Deducing the difference-integral equation.

Let one time set T~½t{p,t{pz1, � � � ,t{1,t0,t�, where t{p,t{pz1, � � � ,t{1,t0 is

historical observation time, t0 is predicted initial time, t is coming prediction

time, the retrospective order of the equation is p and time sampling interval is Dt.

After applying the above inner product operation into Eq. 3 and supposing that

variables x,b are continuous, differentiable, and integrable, the analytic formula of

Eq. 3 is obtained as
Ð t

t{p
b(t) Lx

Lt dt~
Ð t

t{p
b(t)F(x,t)dt, that is,

ðt{pz1

t{p

b(t)
Lx
Lt

dtz

ðt{pz2

t{pz1

b(t)
Lx
Lt

dtz � � �z
ðt

t0

b(t)
Lx
Lt

dt~

ðt

t{p

b(t)F(x,t)dt ð5Þ

For every integral term in the left-hand side of Eq. 5, after applying calculus and

performing integration by parts, applying the median theorem, and performing

algebraic operations, a difference-integral equation is deduced as:

btxt{b{px{p{
X0

i~{p

xm
i (biz1{bi){

ðt

t{p

b(t)F(x,t)dt~0 ð6Þ

where bt:b(t), xt:x(t), bi:b(ti), xi:x(ti), i~{p,{pz1, � � � ,0, and mid-value

xm
i :x(tm), tivtmvtiz1.

Step 3. Discretizing the self-memory prediction equation.

Let x{p:xm
{p{1 and b{p{1:0, Eq. 6 can be converted into

xt~
1
bt

X0

i~{p{1

xm
i (biz1{bi)z

1
bt

ðt

t{p

b(t)F(x,t)dt~S1zS2 ð7Þ

which is called self-memory equation with the retrospective order p. The first term

S1, defined as the self-memory term in Eq. 7, denotes the relative contributions of

historical data at pz1 times to the value of variable xt. The second term S2,

defined as the exogenous effect term, is the total contribution of the function

F(x,t) in the retrospective time interval ½t{p,t0�. Eq. 7 emphasizes serial correlation

of the system by itself, i.e., the self-memory characteristic of the system. Therefore,

Eq. 7 is the self-memory prediction equation of the system. If integral operation is

substituted by summation and differential is transformed into difference in Eq. 7,

then the mid-value xm
i is replaced by two values of different times, namely,

Grey Self-Memory Coupling Model to Forecast the Incidence Rates
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xm
i ~ 1

2 (xiz1zxi):yi. By taking equidistance time interval Dti~tiz1{ti~1, and

merging bt and bi together, the self-memory equation of discrete form is shown as

follows:

xt~
X{1

i~{p{1

aiyiz
X0

i~{p

hiF(x,i) ð8Þ

where ai~(biz1{bi)
�

bt ,hi~bi=bt . ai and hi are called memory coefficients, and

F(x,t) is determined by the dynamic kernel {ax(1)zb of the GM(1,1) model.

Step 4. Solving the self-memory prediction model.

Assuming that there are L items of historical data, the memory coefficients ai

and hi can be estimated by the least square method. Let

Xt
L|1

~

xt1

xt2

..

.

xtL

2
66664

3
77775, Y

L|(pz1)
~

y{p{1,1 y{p,1 � � � y{1,1

y{p{1,2 y{p,2 � � � y{1,2

..

. ..
.

P
..
.

y{p{1,L y{p,L � � � y{1,L

2
66664

3
77775, A

(pz1)|1
~

a{p{1

a{p

..

.

a{1

2
66664

3
77775

C
L|(pz1)

~

F(x,{p)1 F(x,{pz1)1 � � � F(x,0)1

F(x,{p)2 F(x,{pz1)2 � � � F(x,0)2

..

. ..
.

P
..
.

F(x,{p)L F(x,{pz1)L � � � F(x,0)L

2
66664

3
77775, H

(pz1)|1
~

h{p

h{pz1

..

.

h0

2
66664

3
77775

Then, Eq. 8 can be expressed in matrix form as follows:

Xt~YAzCH ð9Þ

Let Z~ Y ,C½ �, W~
A
H

� �
, then Eq. 9 turns into Xt~ZW, thereby W is obtained

by the least square method: W~(ZTZ){1ZTXt. When the memory coefficients

matrix W is obtained, the simulation and prediction of original data sequence X(0)

can be performed. For the simulated and predicted value x̂(1)(t) of the

accumulated generation sequence in grey self-memory coupling model, its inverse

accumulated value x̂(0)(t) can be obtained as follows:

x̂(0)(tz1)~x̂(1)(tz1){x̂(1)(t)

where t~1,2, � � � ,n{1 and x̂(1)(1)~x(0)(1).

C. Modeling simulation and prediction accuracy assessment

Simulation and prediction accuracy is an important criterion for evaluating

prediction models. Accuracy test must be performed to evaluate the rationality

and reliability of prediction models before extrapolation and application.
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Consequently, two popular test criteria such as variance ratio and small error

probability [22] were used to compare the accuracy of different prediction

models, as shown in Table 1.

s1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k~1
(x(0)(k){�x)2

r
and s2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k~1
("(k){�")2

r
are the mean

square error of original values and residual error, respectively. Given C0w0, if the

variance ratio C~s2=s1vC0, then the model is considered to pass through the

variance ratio test [22].

In the same way, given p0w0, if the small error probability

p~P( "(k){�"j jv0:6745s1)wp0, then the model is supposed to pass through the

small error probability test [22].

The absolute percentage error at time k is denoted by

APE(k)~
x̂(0)(k){x(0)(k)

x(0)(k)










|100%, and the mean absolute percentage error at all

times is defined as MAPE~
1

n{1

Xn

k~2
APE(k). Accordingly, comparisons

between the actual values and simulative values derived from each prediction

models can be analyzed using APE(k) and MAPE.

D. Programming procedure of MATLAB software

The calculation was performed, as mentioned above, with the help of MATLAB

software for computational efficiency. The programming procedure for the

SMGM(1,1) model is shown in Fig. 1.

Data analysis

The incidence rates of two representative infectious diseases (dysentery and

gonorrhea) from 2004 to 2012 in China were adopted to demonstrate the

practicability and effectiveness of the proposed SMGM(1,1) model and its

superiority to the linear model and the conventional GM(1,1) model. On the

whole, the time series of incidence rates of dysentery and gonorrhea all showed an

Table 1. List of variance ratio and small error probability obtained in the accuracy test.

Modeling
accuracy
class Test index

Variance ratio C Small error probability p

1st level
(superior)

ƒ0:35 §0:95

2nd level
(qualified)

0:35*0:50 0:80*0:95

3rd level
(marginal)

0:50*0:65 0:70*0:80

4th level
(disquali-
fied)

§0:65 ƒ0:70

doi:10.1371/journal.pone.0115664.t001
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obvious exponential decreasing tendency. They were accompanied by some

irregular individual fluctuations due to unstable changes imposed by social and

economic factors. Therefore, two SMGM(1,1) models were established to model

and predict the incidence rates, and were compared with their corresponding

linear models and conventional GM(1,1) models. When performing the modeling

analysis, the incidence rates of the first eight time-points were taken as modeling

samples, and the data of the ninth time-point was selected as the test sample for

the prediction test. In accordance with the principles and the steps mentioned

above, two SMGM(1,1) models were established to forecast incidence rates. The

value of retrospective order was uniformly determined as p~1 by trial calculation

under the principle of minimum error. APE(k) and MAPE were used to compare

the actual values with the simulated values to evaluate the predictive performance

compared to linear models and conventional GM(1,1) models.

Results

Forecasting the incidence rates of dysentery

Based on the incidence data of dysentery from 2004 to 2011, the differential

equation of conventional GM(1,1) model can be formulated as follows:

dx(1)

dt
~{0:1250x(1)z42:4204 ð10Þ

Let the right-side term of Eq. 10 be the dynamic kernel F(x,t). Then, the

systematic self-memory dynamic equation dx=dt~F(x,t) of SMGM(1,1) model is

obtained. After applying the inner product operation (4) into dx=dt~F(x,t),

then the analytic formula is obtained as
Ð t0

t{1
b(t)

Lx
Lt

dtz
Ð t

t0
b(t)Lx

Lt dt~Ð t
t{1

b(t)F(x,t)dt. According to the modeling steps mentioned above, a difference-

integral equation is deduced as

btxt{b{1x{1{
P0

i~{1
xm

i (biz1{bi){
Ð t

t{1
b(t)F(x,t)dt~0, and the self-memory

prediction equation is obtained as xt~
1
bt

X0

i~{2

xm
i (biz1{bi)z

Fig. 1. Programming procedure for the SMGM(1,1) model.

doi:10.1371/journal.pone.0115664.g001
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1
bt

ðt

t{1

b(t)F(x,t)dt. After the integral operation is substituted by summation and

the differential is transformed into difference, the discrete form of self-memory

equation for dysentery incidence can be expressed as

xt~
P{1

i~{2
aiyiz

P0
i~{1

hiF(x,i), where ai~(biz1{bi)
�

bt, hi~bi=bt. Using the least

square estimation method, the memory coefficients matrix can be obtained as

W~ a{2 a{1 h{1 h0½ �T~ 0:1784 0:8344 12:4231 {12:4821½ �T

The simulated values and errors of the linear model, the conventional GM(1,1)

model and the SMGM(1,1) model are presented in Table 2. The variance ratio

and small error probability of the three models are all at the first level, as shown in

Table 1. Since the three models passed the simulation accuracy assessment, they

could be used to perform predictions. From the APE(k) and MAPE of fitting

values, as shown in Table 2, the simulated precision of the novel SMGM(1,1)

model is markedly superior to that of the other two models. Considering the

incidence rate in 2012, the SMGM(1,1) model also exhibits better single-step

predictive performance compared with the other models. Using the SMGM(1,1)

model, the next incidence rate of dysentery in China is predicted to be 14.10 per

100,000.

Forecasting the incidence rates of gonorrhea

Based on the incidence data of gonorrhea from 2004 to 2011, the differential

equation of the conventional GM(1,1) model is formulated as follows:

dx(1)

dt
~{0:1065x(1)z16:2546

Then, the prediction equation of gonorrhea incidence can be similarly obtained

by using the same formula above, where the memory coefficients matrix is

W~ a{2 a{1 h{1 h0½ �T~ 0:0019 0:9989 {1:7813 3:4540½ �T

The simulated values and errors of the linear model, the conventional GM(1,1)

model and the SMGM(1,1) model are presented in Table 3. All models passed the

simulation accuracy assessment, and the simulated and single-step predictive

precisions of the SMGM(1,1) model were also superior to other two models.

Thus, the next incidence rate of gonorrhea in China is estimated at 6.05 per

100,000 based on the SMGM(1,1) model.

Furthermore, Figs. 2–5 illustrate the fitting results of the simulated curves

obtained by the three compared models with the original incidence curves of

dysentery and gonorrhea, and their corresponding comparison results of relative
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percentage error distribution. From the comparative analysis, the prediction

accuracy of the proposed SMGM(1,1) model is remarkably higher than that of the

linear model and the conventional GM(1,1) model. Consequently, the proposed

SMGM(1,1) model can better catch the tendency of integral development and

individual variation of original data, and is a reliable and stable prediction model

for predicting the future development tendency of infectious diseases.

Discussion

The GM(1,1) model, as a basic and typical grey system prediction model, mainly

reflects the statistical laws of diseases by processing the corresponding statistical

Table 2. Simulated values and errors of the linear model, the GM(1,1) model and the SMGM(1,1) model for the incidence rate of dysentery (1/105).

Linear model GM(1,1) model SMGM(1,1) model

Year Original Value Simulative value APE Simulative value APE Simulative value APE

2004 38.30 37.91 1.01% 38.3 — — —

2005 34.92 34.77 0.44% 35.38 1.32% — —

2006 32.36 31.62 2.28% 31.22 3.52% 32.40 0.12%

2007 27.99 28.47 1.73% 27.55 1.57% 27.45 1.93%

2008 23.43 25.33 8.10% 24.32 3.80% 24.60 4.99%

2009 20.45 22.18 8.47% 21.46 4.94% 19.93 2.54%

2010 18.90 19.03 0.71% 18.94 0.21% 18.42 2.54%

2011 17.74 15.89 10.44% 16.71 5.81% 18.06 1.80%

MAPE 4.15% 3.02% 2.32%

2012 15.40 12.74 17.26% 14.75 4.22% 15.12 1.82%

There is no simulated value for the first two time-points because of the retrospective order p~1.

doi:10.1371/journal.pone.0115664.t002

Table 3. Simulated values and errors of the linear model, the GM(1,1) model and the SMGM(1,1) model for the incidence rate of gonorrhea (1/105).

Linear model GM(1,1) model SMGM(1,1) model

Year Original Value Simulative value APE Simulative value APE Simulative value APE

2004 17.34 15.30 11.78% 17.34 — — —

2005 13.79 14.10 2.22% 13.67 0.87% — —

2006 12.14 12.90 6.23% 12.29 1.24% 12.14 0.00%

2007 11.08 11.70 5.55% 11.05 0.27% 11.11 0.27%

2008 9.90 10.49 6.00% 9.93 0.30% 9.85 0.51%

2009 9.02 9.29 3.03% 8.93 1.00% 8.96 0.67%

2010 7.91 8.09 2.31% 8.03 1.52% 8.03 1.52%

2011 7.31 6.89 5.71% 7.21 1.37% 7.28 0.41%

MAPE 5.36% 0.94% 0.56%

2012 6.82 5.69 16.55% 6.49 4.84% 6.64 2.64%

There is no simulated value for the first two time-points because of the retrospective order p~1.

doi:10.1371/journal.pone.0115664.t003
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data. Through conversion of the original sequence, the model establishes a

regression equation based on the regular generated sequence. Consequently,

prediction of the dynamic development trend of diseases can be conducted using

the regression equation. The GM(1,1) model is gradually developing into a

common analytical method for both medicine and public health [22, 36, 37]. The

grey self-memory coupling model is established on the basis of the conventional

GM(1,1) model by combining it with the self-memory principle of dynamic

systems. The coupling model can reflect the macroscopic development laws of

disease systems based on the GM(1,1) model, and further explores their

microscopic fluctuating laws with the help of the self-memory principle. The

excellent prediction performance of the coupling model is supported by the

systematic self-memorization equation containing multiple time-point initial

fields instead of only single time-point initial fields. The equation overcomes the

weakness of being sensitive to initial values of the conventional GM(1,1) model

and takes full advantage of the system information contained in historical data

[42].

In this paper, the conventional GM(1,1) model and the SMGM(1,1) model

were utilized to predict the incidence rates of three representative infectious

diseases in China. Analysis of simulation results indicated that the SMGM(1,1)

model possesses more superior predictive performance than the conventional

Fig. 2. Comparison of incidence rates and simulated values among the three different prediction
models for dysentery.

doi:10.1371/journal.pone.0115664.g002

Fig. 3. Relative percentage error distribution of the three different prediction models for dysentery
from 2006 to 2012.

doi:10.1371/journal.pone.0115664.g003
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GM(1,1) model. Therefore, the SMGM(1,1) model was selected to predict the

future incidence rates of three infectious diseases in China. The incidence rate is

the most straightforward and objective index, which evaluates the effect of

prevention and control measures, because the numerator of the incidence rate is

the new morbidity number within a time of resignation. The model significantly

reduces prediction error of future incidence rates of infectious diseases. The

combination of self-memory component and the grey system model can obtain

encouraging prediction performances. This coupling model is a practical

forecasting tool for infectious diseases with characteristics of stable epidemic

factors, because its requirements of the original data are not as strict as those of

other common statistical models. Therefore, the novel coupling prediction model

can be used to predict the regularity of occurrence and development of infectious

diseases and to identify their dynamic tendencies, thus providing a scientific basis

for the prevention and control of infectious diseases.

Results of our simulations show that the novel grey self-memory coupling

prediction model has improved the prediction accuracy of incidence rates,

especially for short-term prediction. However, the model has certain limitations.

First, when the grey self-memory coupling model is applied to long-term

prediction, the prediction accuracy may decline. For this reason, the model needs

to be further amended [49]. Over time, unknown disturbance factors may enter

Fig. 4. Comparison of incidence rates and simulated values among the three different prediction
models for gonorrhea.

doi:10.1371/journal.pone.0115664.g004

Fig. 5. Relative percentage error distribution of the three different prediction models for gonorrhea
from 2006 to 2012.

doi:10.1371/journal.pone.0115664.g005

Grey Self-Memory Coupling Model to Forecast the Incidence Rates

PLOS ONE | DOI:10.1371/journal.pone.0115664 December 29, 2014 14 / 17



the system and exert unpredictable influences. Therefore, to forecast the long-

term incidence rates of infectious diseases, the latest data should be utilized to

amend the model to generate a new information model. Old data, which have

minor effects on system development, may be discarded to improve the prediction

accuracy. The spread of infectious diseases is inevitably influenced by natural,

social, and environmental factors [50]. As a result, the most suitable model should

be constructed by synthetically considering and systematically analyzing relevant

influencing factors [22]. Prevention and early warning of infectious diseases can

then be performed successfully using the appropriate prediction models.

Acknowledgments

The authors wish to thank the editors and anonymous reviewers, whose

constructive comments and suggestions were helpful in strengthening the

presentation of this paper.

Author Contributions
Conceived and designed the experiments: XG SL. Performed the experiments: XG

LW. Analyzed the data: XG LW. Wrote the paper: XG SL LW LT.

References

1. Gonzalez-Castillo J, Candel FJ, Julian-Jimenez A (2013) Antibiotics and timing in infectious disease
in the emergency department. Enfermedades Infecciosas y Microbiologı́a Clı́nica 31: 173–180.

2. Thomas S, Luxon BA (2013) Vaccines based on structure-based design provide protection
againstinfectious diseases. Expert Review of Vaccines 12: 1301–1311.

3. Brouqui P (2009) Facing highly infectious diseases: new trends and current concepts. Clinical
Microbiology and Infection 15: 700–705.

4. Zhang L, Wilson DP (2012) Trends in notifiable infectious diseases in China: implications for
surveillance and population health policy. PloS One 7: e31076.

5. World Health Organization (2013) World health report 2013.

6. Apisarnthanarak A, Mundy LM (2006) Infection control for emerging infectious diseases in developing
countries and resource-limited settings. Infection Control and Hospital Epidemiology 27: 885–887.

7. Andrus JK, Solorzano CC, de Oliveira L, Danovaro-Holliday MC, de Quadros CA (2011)
Strengthening surveillance: confronting infectious diseases in developingcountries. Vaccine 29: D126–
D130.

8. Osei FB, Duker AA, Stein A (2012) Bayesian structured additive regression modeling of epidemic data:
application to cholera. Bmc Medical Research Methodology 12: 118.

9. Nunes B, Natario I, Carvalho ML (2011) Time series methods for obtaining excess mortality attributable
to influenza epidemics. Statistical Methods in Medical Research 20: 331–345.

10. Xu R (2012) Global dynamics of an SEIS epidemic model with saturation incidence and latent period.
Applied Mathematics and Computation 218: 7927–7938.

11. Liu ZJ (2013) Dynamics of positive solutions to SIR and SEIR epidemic models with saturatedincidence
rates. Nonlinear Analysis: Real World Applications 14: 1286–1299.

Grey Self-Memory Coupling Model to Forecast the Incidence Rates

PLOS ONE | DOI:10.1371/journal.pone.0115664 December 29, 2014 15 / 17



12. Ma JQ, Wang LP, Qi XP, Shi XM, Yang GH (2007) Conceptual model for automatic early warning
information system of infectious diseases based on Internet reporting surveillance system. Biomedical
and Environmental Sciences 20: 208–211.

13. Dopson Stephanie A (2009) Early warning infectious disease surveillance. Biosecurity and
bioterrorism: biodefense strategy, practice, and science 7: 55–60.

14. Hall IM, Gani R, Hughes HE, Leach S (2007) Real-time epidemic forecasting for pandemic influenza.
Epidemiology and Infection 135: 372–285.

15. Hu MG, Li ZJ, Wang JF, Jia L, Liao YL, et al. (2012) Determinants of the incidence of hand, foot and
mouth disease in China using geographically weighted regression models. PloS One 7: e38978.

16. Getachew Y, Janssen P, Yewhalaw D, Speybroeck N, Duchateau L (2013) Coping with time and
space in modelling malaria incidence: a comparison of survival and count regression models. Statistics
in Medicine 32: 3224–3233.

17. Bhatnagar Sunil, Lal Vivek, Gupta Shiv D, Gupta Om P (2012) Forecasting incidence of dengue in
Rajasthan, using time series analyses. Indian Journal of Public Health 56: 281–285.

18. Zhang XY, Liu YY, Yang M, Zhang T, Young AA, et al. (2013) Comparative study of four time series
methods in forecasting typhoid fever incidence in China. PloS One 8: e63116.

19. Nishiura H (2011) Real-time forecasting of an epidemic using a discrete time stochastic model: a case
study of pandemic influenza (H1N1-2009). BioMedical Engineering OnLine 10: 15.

20. Nishiura H, Ejima K, Mizumoto K, Nakaoka S, Inaba H, et al. (2014) Cost-effective length and timing
of school closure during an influenza pandemic depend on the severity. Theoretical Biology and Medical
Modelling 11: 5.

21. Ren Y, Ding F, Suo S, Bu R-e, Zarlenga DS, et al. (2012) Incidence rates and deaths of tuberculosis in
HIV-negative patients in the United States and Germany as analyzed by new predictive model for
infection. PLoS One 7: e42055.

22. Shen XJ, Ou LM, Chen XJ, Zhang X, Tan XR (2013) The Application of the Grey Disaster Model to
Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China. PLoS One 8: e60601.

23. Hsin-Min L, Zeng D, Hsinchun C (2010) Prospective infectious disease outbreak detection using
Markov switching models. IEEE Transactions on Knowledge and Data Engineering 22: 565–577.

24. Yaesoubi R, Cohen T (2011) Generalized Markov models of infectious disease spread: a novel
framework for developing dynamic health policies. European Journal of Operational Research 215: 679–
687.

25. Padhi R, Bhardhwaj JR (2009) An adaptive drug delivery design using neural networks for effective
treatment of infectious diseases: a simulation study. Computer Methods and Programs in Biomedicine
94: 207–222.

26. Sree Hari Rao V, Naresh Kumar M (2010) Estimation of the parameters of an infectious disease model
using using neural networks. Nonlinear Analysis: Real World Application 11: 1810–1818.

27. Guo H, Xiao XP, Forrest J (2013) A research on a comprehensive adaptive grey prediction model
CAGM(1,N). Applied Mathematics and Computation 225: 216–227.

28. Cui J, Liu SF, Zeng B, Xie NM (2013) A novel grey forecasting model and its optimization. Applied
Mathematical Modelling 37: 4399–4406.

29. Liu SF, Forrest J, Yang YJ (2013) Advances in Grey Systems Research. The Journal of Grey System
25: 1–18.

30. Xie NM, Liu SF, Yang YJ, Yuan CQ (2013) On novel grey forecasting model based on non-
homogeneous index sequence. Applied Mathematical Modelling 37: 5059–5068.

31. Wu LF, Liu SF, Yao LG, Yan SL (2013) The effect of sample size on the grey system model. Applied
Mathematical Modelling 37: 6577–6583.

32. Li J, Wang BY, Zhang BS (2006) Application of improved grey prediction model to petroleum cost
forecasting. Petroleum Science 3: 89–92.

33. Li GD, Wang CH, Masuda S, Nagai M (2011) A research on short term load forecasting problem
applying improved grey dynamic model. International Journal of Electrical Power & Energy Systems 33:
809–816.

Grey Self-Memory Coupling Model to Forecast the Incidence Rates

PLOS ONE | DOI:10.1371/journal.pone.0115664 December 29, 2014 16 / 17



34. Li DC, Chang CJ, Chen CC, Chen WC (2012) Forecasting short-term electricity consumption using the
adaptive grey-based approach-an Asian case. Omega 40: 767–773.

35. Hsu LC (2003) Applying the grey prediction model to the global integrated circuit industry. Technological
Forecasting and Social Change 70: 563–574.

36. Lin WZ, Fang JA, Xiao X, Chou KC (2012) Predicting secretory proteins of Malaria Parasite by
incorporating sequence evolution information into pseudo amino acid composition via grey system
model. PloS One 7: e49040.

37. Ding F, Zarlenga DS, Qin C, Ren X (2011) A novel algorithm to define infection tendencies in H1N1
cases in Mainland China. Infection, Genetics and Evolution 11: 222–226.

38. Cao HX (1993) Self-memorization equation in atmospheric motion. Science in China (Series B) 36: 845–
855.
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