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A network property necessary for concentration
robustness
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Maintenance of functionality of complex cellular networks and entire organisms exposed to

environmental perturbations often depends on concentration robustness of the underlying

components. Yet, the reasons and consequences of concentration robustness in large-scale

cellular networks remain largely unknown. Here, we derive a necessary condition for

concentration robustness based only on the structure of networks endowed with mass action

kinetics. The structural condition can be used to design targeted experiments to study

concentration robustness. We show that metabolites satisfying the necessary condition are

present in metabolic networks from diverse species, suggesting prevalence of this property

across kingdoms of life. We also demonstrate that our predictions about concentration

robustness of energy-related metabolites are in line with experimental evidence from

Escherichia coli. The necessary condition is applicable to mass action biological systems of

arbitrary size, and will enable understanding the implications of concentration robustness in

genetic engineering strategies and medical applications.
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R
obustness against environmental fluctuations is found
across different scales of cellular organization, from
metabolite levels and enzyme activities1–5 to complex

cellular functions6–10. Cellular components (for example,
transcripts, proteins and metabolites) involved in regulation
and control of physiological functions do not act in isolation, but
form intricate cellular networks. Therefore, understanding how
robustness of concentrations arises in the context of these large-
scale biochemical networks can point to mechanisms that allow
maintenance of cellular functions in a narrow range. Further,
pinpointing the reasons and consequences of concentration
robustness can help us elucidate the strategies employed by
single cells and entire organisms to mitigate the effects of
intracellular and environmental perturbations11,12.

Identifying cellular components that exhibit concentration
robustness in a biological system exposed to environmental
perturbations is a non-trivial task. To this end, the (steady-state)
concentration for a given cellular component is determined from
samples of genetically identical organisms subject to different
environments. These measurements are based on various
resource-intensive phenotyping technologies13–15. For instance,
identification of metabolites and measurement of their
cellular concentrations with modern metabolomics technologies
necessitates the usage of expensive authentic chemical standards
or labelling techniques15–17. Moreover, the existence of cellular
components whose pools are partitioned among various cellular
compartments18 further complicates the study of concentration
robustness. It may be the case that a compartment-specific
concentration is robust to environmental perturbations, although
the entire component pool may not be maintained in a narrow
range. Therefore, more elaborate experiments often have to be
designed to allow for extraction of subcellular pools of cellular
components19,20. As a result, the model-driven identification of
concentration robustness on a subcellular level will greatly benefit
from methods that allow selection of cellular components for
targeted experiments.

Recent systems biology efforts have resulted in the assembly
of large-scale models that consider the entirety of known
biochemical reactions at various levels of cellular organization,
from gene regulation and signalling to metabolism21. Therefore,
one promising possibility to design targeted experiments with the
aim of identifying components with robust concentrations is to
rely on the analysis of these mechanistic network-based
descriptions of cellular activities.

Given a biochemical network model, here we identify a
network-based condition which must be satisfied by each cellular
component exhibiting concentration robustness to environmental
perturbations. Therefore, any component violating the identified
structural condition can be excluded from further experimental
investigation of robustness to environmental perturbations.
We show that the identified structural property underlying
the condition necessary for concentration robustness can be
efficiently determined for genome-scale metabolic networks.
As a result, we use the derived necessary condition to test the
possibility for prevalence of concentration robustness for
metabolites across different organisms under realistic modelling
assumptions. In addition, we examine the effect of network
perturbations on our findings, and show that the predictions
about lack of concentration robustness are in line with
experimental evidence and kinetic modelling of Escherichia coli’s
metabolism.

Results
Network concepts to study concentration robustness. A bio-
chemical network exhibits absolute concentration robustness
(ACR) for a given cellular component if the concentration of the
component is the same in every positive steady state2. It has been
shown that existence of components with ACR allows for
sustaining normal cellular function (for example, growth) under
suboptimal conditions4. In the following, we define and illustrate
the key concepts which are essential for deriving the necessary
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Figure 1 | Illustration of the network concepts and the derived necessary condition for concentration robustness. (a) Standard reaction diagram of a

network in which six components, A–F, are interconverted by 10 reactions. The reaction diagram has n¼ 8 nodes, corresponding to complexes and 10

edges, representing the reactions. The two linkage classes are surrounded by dashed lines. (b) Stoichiometric matrix N of the network in a. Reactions R1,

R2 and R3, with the corresponding edges in the reaction diagram and columns in N coloured in green, belong to the same linkage class (c) Standard reaction

diagram for the network in a upon removal of component C. Since C exists as a single-component complex in a, its removal introduces the zero complex,

O, coloured in green. This network contains n¼ 7 nodes, 10 reactions, l¼ 1 linkage class. (d) Standard reaction diagram for the network in a upon

removal of component B. Since B exists as a single-component complex in a, its removal introduces the zero complex, 0, coloured in green. The network

in a upon removal of B contains n¼6 nodes, 10 reactions, l¼ 1 linkage class. The structural deficiencies of the networks in a,b are ds¼ 1, while for the

network c, ds¼0.
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structural condition for ACR—stoichiometric matrix22 and
standard reaction diagram23

A biochemical reaction is specified by two positive linear
combinations of components, called substrate and product
complexes, respectively. A reaction vector is given by the
difference of the product and substrate complexes of the
corresponding reaction. For a set of biochemical reactions,
the stoichiometric matrix, N, comprises the reaction vectors as
its columns and rows that correspond to the components. For
instance, the stoichiometric matrix corresponding to the reactions
in Fig. 1a is given in Fig. 1b. Here, every reversible reaction is split
into the forward and backward irreversible reactions.

A standard reaction diagram then corresponds to the directed
graph whose nodes represent the complexes, and a directed edge
connects two nodes if they refer to the substrate and the product
complex of a reaction, respectively. For instance, a standard
reaction diagram with 10 irreversible reactions, represented by
directed edges, and eight complexes (that is, nodes) composed of
six components, A–F, is shown in Fig. 1a; BþC is the substrate
complex and D is the product complex of reaction R4.

The set of nodes connected by paths in the reaction diagram
belong to the same linkage class24. For instance, in Fig. 1a,
complex 2A is in the same linkage class (marked by green edges)
with complex C as they are connected by a path; in contrast, the
complexes 2A and 2B do not belong to the same linkage class.
Therefore, the number of linkage classes corresponds to the
number of connected pieces in a given standard reaction diagram.
The network in Fig. 1a has two linkage classes (l¼ 2) surrounded
by dashed lines.

With the help of these concepts, we present the notion of
structural deficiency of a network, denoted by ds, central to the
chemical reaction network theory25. The structural deficiency of a
network is given by ds¼ n� l� r(N), where n is the number of
nodes, l is the number of linkage classes and r(N) is the rank
of the stoichiometric matrix (that is, the maximum number of
linearly independent reaction vectors, which can be efficiently
computed with standard techniques26). Therefore, the structural
deficiency can be efficiently determined for a reaction network of
arbitrary size. It is known that for any network the structural
deficiency is a non-negative integer which has been associated to
the existence and uniqueness of steady-states25. For the network
in Fig. 1a, there are n¼ 8 complexes, l¼ 2 linkage classes,
the rank of the stoichiometric matrix is r(N)¼ 5. Hence, the
structural deficiency is ds¼ 8� 2� 5¼ 1.

Absolute concentration robustness in mass action networks.
The change in concentration of a given component is shaped by
the stoichiometry and the rates of biochemical reactions in which
the component participates as a substrate or a product.
The property of ACR has already been extensively studied for
networks of reactions whose rates are described by the widely
used mass action kinetics. In real-world applications, each
component is associated with a positive mass. A network of
biochemical reactions is termed conservative, if the masses of the
substrate and product complexes of each reaction are the same27.
It is known that conservative mass action networks of deficiency
zero cannot contain a component exhibiting ACR irrespective of
the values assigned to the rates constants28.

For mass action networks, there also exist structural properties
that provide sufficient conditions for existence of a component
with ACR29,30. However, these sufficient conditions are either
too restrictive or cannot be efficiently computed in large-scale
metabolic networks typically employed in studies of
metabolism31–33. For instance, one of the sufficient conditions
can only be invoked for networks of structural deficiency of one2.

However, genome-scale metabolic networks are of considerably
larger deficiency (Supplementary Table 2). The other sufficient
condition treats the rate constants as symbols29 and relies on
determining invariant linear combination of complexes. Despite
the advances in symbolic computation, systematic determination
of such invariants becomes computationally infeasible for real-
world large-scale metabolic networks29. Therefore, determining a
structural condition necessary for ACR of a particular component
offers another alternative to analyse concentration robustness in
large-scale networks.

Structural deficiency and absolute concentration robustness.
Our main result is based on establishing whether or not the
structural deficiency changes upon removing a single component
from the network. To this end, we rely on the network obtained
by eliminating a given component from each complex containing
the component. Removal of a component may drastically alter the
network, in terms of number of nodes, linkage classes and the
rank of the stoichiometric matrix. For instance, the network in
Fig. 1a upon removal of component C is illustrated in Fig. 1c;
it has n¼ 7 nodes, l¼ 1 linkage class, and the rank of the
stoichiometric matrix is r(N)¼ 5; the structural deficiency is,
thus, of value ds¼ 7� 1� 5¼ 1. The number of complexes is
reduced in the new system since the complex BþC upon removal
of C coincide with the complex B, present in the original network.
This is the reason why the stitching of the reactions is changed,
leading to a single linkage class. In addition, removal of a
component may lead to the introduction of the so-called zero
complex34. This is the case upon removal of components B from
the network in Fig. 1a (Fig. 1d).

The idea of removing a component from biochemical reaction
network has been previously employed to make statements about
the possibility of the network to exhibit multistationarity35.
Namely, for a given set of rate constants, it has been shown that if
a reaction system obtained upon removal of a component admits
multiple non-degenerated positive steady states, so does the
original system. Therefore, this result may be used to identify
subnetworks conferring multistationarity to the entire network.
Here, we establish a connection between a structural deficiency,
as a key network invariant, and ACR for a particular component.
It is this connection that allows us to apply the results to
large-scale networks, typically arising in the study of metabolism.

We now have the concepts required for stating our main result,
proved in Supplementary Methods.

Theorem. Consider a mass action reaction system that for given
rate constants admits a positive steady state with and without
removal of a component S. If the system has ACR in species S,
then the systems with and without removal of S have the same
structural deficiencies.

The removal of a component assumed to exhibit ACR in a
mass action system can be intuitively understood as rescaling of
the rate constants for the reactions in which the component
appears as a substrate. This allows us to establish a correspon-
dence between the two reaction systems with respect to the linear
combinations of reaction rates around each complex, leading to
our theoretical result.

Our necessary condition can be used to pinpoint the
components which do not show ACR. Therefore, it can be
readily employed to reduce the number of components for which
targeted experiments over multiple environments must be
planned to explore and validate the possibility for ACR. For
instance, component B in the network on Fig. 1a does not have
ACR since the structural deficiencies of the original and of the
network in panel a upon removal of B differ (Fig. 1d). In contrast,
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the structural deficiencies of the original network and the network
upon removal of component C coincide (Fig. 1c), and C cannot
be precluded from having ACR. Analytic solution demonstrates
that, indeed, component C does exhibit ACR. However, although
removal of the components A, D, E and F does not alter the
deficiency, these components do not exhibit ACR (as shown in
the analytical solution in Supplementary Methods). As already
pointed out, our theorem is not applicable to conservative mass
action networks of deficiency zero in which the existence of ACR
components is precluded28.

Applications to metabolic networks. Our mathematical results
provide a tractable way to restrict the number of metabolites to be
tested for ACR in genome-scale metabolic networks, under the
assumption that these networks support positive steady states.
To this end, we analyse 14 networks from a broad range of
organisms spanning all kingdoms of life, which vary greatly in
their sizes, tissues, subcellular compartmentalization and uni- or
multicellular organization (Supplementary Table 1). We found
significant correlations of 0.89 (P value¼ 2.17� 10� 5, Fisher
z-transformation, R2¼ 0.79) between the number of metabolites
with potential for ACR and the total number of metabolites
(Fig. 2). The implication of this finding is that the number of
metabolites to be tested for ACR can be reduced by, on average,
42.5% of the total number of metabolites over the investigated
species (Supplementary Table 2).

We also conduct a simulation study of a well-investigated
medium-size kinetic model of E. coli consisting of 830
components (that is, metabolites and enzymes) and 1,330
reactions. The rates of these reactions are modelled with mass
action kinetics and are associated positive rate constants that yield
a positive steady state from an initial condition36, thus satisfying
the hypothesis of our theoretical result. Altogether, 784
components do not violate the necessary condition and, thus,
may exhibit ACR. To narrow down the search for components
that are likely ACR in this model, we simulate 150 different
positive steady-state concentrations starting from 150 different
initial conditions. By analysing the identified steady-state
concentrations, we identify two components whose steady-state

concentration is unchanged upon perturbations in initial
conditions (Supplementary Table 3). Therefore, only 0.26% of
components that satisfy the necessary condition in this model are
likely to show ACR, although simulation studies cannot provide a
conclusive answer.

We next focus on identifying whether the necessary condition
for ACR holds for compounds essential for characterizing the
energy status of biological systems, namely, the oxidized and
reduced version of NAD and NADP as well as the adenosine
phosphates (that is, AMP, ADP and ATP)37. These compounds
provide the energy for driving the biochemical reactions in which
they participate. Under the assumption that the networks support
positive steady states with mass action kinetics, we find that in
the networks of archaea and bacteria generally these compounds
violate the necessary condition (Supplementary Table 2),
in line with experimental observations38,39. This result suggests
that simple organisms may have not evolved mechanisms to
maintain specific levels of energy-related metabolites. Our results
can also be used to base simulation studies of metabolic networks
on more appropriate biochemical assumptions, since energy-
related compounds in such studies are often assumed to be
constant. Moreover, while these compounds do not show ACR in
the genome-scale network of E. coli, NADH, NAD, NADP and
ATP satisfy the necessary condition in the highly simplified core
metabolic network used for estimating fluxes from labelling
experiments. Therefore, our results point out that the necessary
condition for ACR in selected subnetworks may not match the
predictions based on the entire metabolic network. Hence, ACR is
a truly systemic property which arises from the network as a
whole and may not be conferred by its presence in the network
modules. Our prediction that ATP does not show ACR in E. coli
is in line with recent experimental evidence about variability of
ATP concentration in single cells40.

In contrast to results pertaining to archaea, bacteria and fungi,
the metabolic networks of plants and animals contain compounds
characterizing the energetic status that satisfy our necessary
condition for ACR. Specifically, our necessary condition applied
on the metabolic networks of Chlamydomonas reinhardtii is
satisfied for NADP and ATP in more than one cellular
compartment. This result indicates that, even if the total pool
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of a metabolite, on the level of the entire cell, varies with
environmental changes, its subcellular concentration may in fact
exhibit ACR. Therefore, our findings provide important direction
for experimental planning and conducting measurements of
subcellular concentrations for specific metabolites. For instance,
the oxidized and reduced version of NAD and NADP do not
violate the necessary condition in most of the compartments
(Supplementary Table 2), in line with modelling evidence41.

Effects of network perturbations. The analysed large-scale
metabolic networks include the characterized enzymatic activities
in different organisms. However, due to the existence of
uncharacterized gene functions, some of these networks may be
incomplete. Therefore, to examine the sensitivity of our findings
to this bias in the network, we consider removing 1, 2, 5, 7 and
10% randomly selected reactions from each of the analysed
networks. To quantify the effect of the reaction removal, we focus
on those metabolites that satisfy the necessary condition in
the original network (Supplementary Table 2 for the number
of metabolites satisfying the necessary condition). For these
metabolites, we identify those which violate the condition upon
the network perturbation. We refer to such metabolites as
switching metabolites. We then determine the switching ratio,
defined as the proportion of switching metabolites from those
which satisfy the necessary condition in the original network. The
switching ratio for every network and perturbation level (that is,
percentage of removed reactions) was determined over at least
40 samples.

Our results indicate that the switching ratio depends on a small
set of reactions (Fig. 3, Supplementary Fig. 1). This is supported
by the observation that already the removal of 1% of reactions, on
average, leads to as large value for the switching ratio as the
removal of 10% of the reactions. In addition, since the switching
ratio is not larger than 0.5 across all networks (with exception to
Chlamydomonas reinhardtii), we conclude that some metabolites
satisfy the necessary condition even upon all considered levels of
perturbations. This finding suggests that these metabolites may

essentially participate in pathways which may be effectively
decoupled in the considered networks.

Another source of uncertainty of large-scale metabolic
networks is represented by the directionality of the included
reactions. While some reactions are known to operate effectively
as irreversible, others may change the operating direction
preferentially according to cellular conditions42. Nevertheless,
changing the directionality of a reaction does not affect the
number of complexes and the number of linkage classes.
Moreover, the rank of the stoichiometric matrix is not affected
by change of directionality. These facts together with the
definition of structural deficiency demonstrate that change of
reaction directionality does not affect the structural deficiency.
Therefore, our findings are not affected by possible uncertainty in
reaction directionality.

Discussion
Our necessary condition for ACR is applicable to any mass action
network irrespective of the values of the rate constants ensuring
positive steady states. Since Michaelis–Menten kinetics is derived
from mass action, the derived necessary conditions can also be
used to rule out the possibility of ACR for components in systems
endowed with this type of kinetics. Our simulations studies,
however, indicate that the number of components that could
likely exhibit ACR may be substantially lower than that implied
by the necessary condition. Nevertheless, the tractable means for
precluding ACR in combination with genome-scale metabolic
networks can be used for model-driven planning of experiments
under different environments and with variety of organisms.
Altogether, our findings pave the way for studying the
evolutionary implications of ACR on a genome-scale level as
well as the role of ACR in metabolic diseases and metabolic
engineering strategies.

Methods
Large-scale metabolic network models. We demonstrate the applicability of our
approach on 14 metabolic networks from a broad range of organisms spanning
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all kingdoms of life. These metabolic networks vary greatly in their sizes, tissues,
subcellular compartmentalization and uni- or multi-cellular organization
(Supplementary Table 1). The models are of high quality, as each considered
reaction preserves mass and charge balance; therefore, they are mass conservative,
as is our example in Fig. 1a. Reactions that do not carry flux in any steady state,
so-called blocked reactions, are excluded from the analysed networks, as they
preclude the existence of a positive steady state. In addition, each reversible
reaction is split into two irreversible reactions (see Supplementary Table 2 for
characteristics of the analysed models). To examine the sensitivity of our findings
to network perturbations, we consider removing 1, 2, 5, 7 and 10% randomly
selected reactions from each of the analysed networks.

Structural deficiency. To calculate the structural deficiency for a given metabolic
network, we use a stand-alone application written in the statistical programming
environment R version 3.2.1 based on functions in the igraph package43. To this
end, we determine the number of complexes and the number of linkage classes in
the reaction diagram derived from a given stoichiometric matrix, as well as the rank
of the stoichiometric matrix specified by the model. The structural deficiency of a
network upon removal of given species is determined based on a stoichiometric
matrix from which the row corresponding to the species is removed.

Kinetic modelling. We employ a kinetic model of E. coli36 from which we
considered only the reactions associated to positive rate constants. The model was
simulated from 150 different, randomly selected positive initial conditions, each
leading to a different positive steady-state concentrations for the components. The
model is simulated in MATLAB with the ode15s solver.

Data availability. All relevant data are available from the authors upon request.
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