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The liver X receptors Lxr�/NR1H3 and Lxr�/NR1H2 are
ligand-dependent nuclear receptors critical for midbrain dop-
aminergic (mDA) neuron development. We found previously
that 24(S),25-epoxycholesterol (24,25-EC), the most potent and
abundant Lxr ligand in the developing mouse midbrain, pro-
motes mDA neurogenesis in vitro. In this study, we demonstrate
that 24,25-EC promotes mDA neurogenesis in an Lxr-depen-
dent manner in the developing mouse midbrain in vivo and also
prevents toxicity induced by the Lxr inhibitor geranylgeranyl
pyrophosphate. Furthermore, using MS, we show that overex-
pression of human cholesterol 24S-hydroxylase (CYP46A1)
increases the levels of both 24(S)-hydroxycholesterol (24-HC)
and 24,25-EC in the developing midbrain, resulting in a specific
increase in mDA neurogenesis in vitro and in vivo, but has no
effect on oculomotor or red nucleus neurogenesis. 24-HC,
unlike 24,25-EC, did not affect in vitro neurogenesis, indicating
that the neurogenic effect of 24,25-EC on mDA neurons is spe-
cific. Combined, our results indicate that increased levels of
24,25-EC in vivo, by intracerebroventricular delivery in WT

mice or by overexpression of its biosynthetic enzyme CYP46A1,
specifically promote mDA neurogenesis. We propose that
increasing the levels of 24,25-EC in vivo may be a useful strategy
to combat the loss of mDA neurons in Parkinson’s disease.

The vertebrate central nervous system is composed of an
extensive variety of neurons that are generated following tightly
regulated developmental programs. Characterization of the
function and specificity of molecules selectively controlling dis-
tinct neuronal populations is thus essential to enhance our
understanding of how such complexity is achieved in the devel-
oping brain, how it is maintained in the adult brain, and how it
can be used for therapeutic purposes. Specific nuclear hormone
receptors and their ligands have been identified as crucial fac-
tors in these processes (1–3). We have shown previously that
liver X receptors (Lxr�3 and Lxr�, encoded by NR1H3 and
NR1H2, respectively) and their endogenous brain ligands (oxi-
dized derivatives of cholesterol and related molecules) regulate
the development of midbrain dopamine (mDA) neurons (4 –6),
red nucleus neurons (5), as well as oculomotor neurons (7).
Moreover, enzymes involved in the biosynthesis of cholesterol,
oxysterols, and 24(S),25-epoxycholesterol (24,25-EC), such as
2,3-oxidosqualene-lanosterol cyclase, cytochrome P450 family
11 subfamily A member 1 (CYP11A1), and CYP46A1 (also
known as cholesterol 24S-hydroxylase), are expressed in the
developing mouse ventral midbrain (VM) during VM neuro-
genesis (4, 8, 9).4 The enzyme CYP46A1 oxidizes cholesterol to
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24(S)-hydroxycholesterol (24-HC), the most abundant oxys-
terol in the adult brain, present at 20 – 40 ng/mg in the mouse
and human (11). It has been shown, in vitro in human embry-
onic kidney 293 cells transfected with CYP46A1, that 24-HC
can be further oxidized to 24,25-dihydroxycholesterol (24,25-
diHC) and to 24,27-diHC (systematic name 24,26-diHC (12))
by CYP46A1 (13, 14). It has been suggested by these studies that
24,25-diHC could then be converted to 24,25-EC, but definite
evidence for such a mechanism is lacking. Interestingly, it has
been shown in vitro that CYP46A1 can also oxidize desmosterol
to 24,25-EC and to 27-hydroxydesmosterol (systematic name
26-hydroxydesmosterol) (15), thereby providing a distinct
24,25-EC biosynthetic pathway via desmosterol in the brain. In
agreement with this study, there is a reduction in both 24-HC
and 24,25-EC levels in the Cyp46a1-knockout mouse adult
brain compared with the WT brain (16). An alternative route to
24,25-EC formation is via a shunt of the mevalonate pathway,
specifically the Bloch arm of the pathway, in which an extra
oxygen atom is introduced by squalene epoxidase into 3S-squa-
lene-2,3-epoxide to give squalene-2,3(S);22(S),23-diepoxide
prior to cyclization by 2,3-oxidosqualene-lanosterol cyclase
(17). This pathway is also expected to be impaired in the
Cyp46a1-knockout mouse, as the necessary enzymes are down-
regulated as a consequence of reduced cholesterol biosynthesis
(18).

The functions of 24-HC and 24,25-EC in the central nervous
system are diverse. 24-HC plays a role as a cholesterol transport
molecule, crossing the blood– brain barrier and thus facilitating
transport of cholesterol to the liver for further metabolism (8,
11, 19). 24-HC is also a ligand for Lxr� and Lxr� in the brain (5)
and binds to the endoplasmic reticulum–resident protein
INSIG (insulin-induced gene) (20), modulating processing of
SREBP-2 (sterol response element– binding protein-2) to its
active form as the master transcription regulator for cholesterol
biosynthesis. On the other hand, 24,25-EC is the most abun-
dant Lxr ligand in the developing but not the adult brain (5, 21).
Within the embryonic VM, 24,25-EC is present at a much
higher concentration than 24-HC (Ref. 5 and this study). More-
over, we found previously that 24,25-EC is the most potent
endogenous Lxr ligand to promote mDA neurogenesis in
mouse progenitor VM cultures, embryonic stem cells in vitro,
and zebrafish in vivo (5). However, the function of 24,25-EC in
the developing mouse brain in vivo remains to be determined.
In this study, we address this question by examining the mid-
brain of mouse embryos either injected intracerebroventricu-
larly with 24,25-EC in utero or transgenic mice expressing
CYP46A1 under the control of a hybrid �-actin promoter (22).
We show that increases in 24,25-EC in the developing VM, by
either of these two strategies, result in increased number of
mDA neurons in vivo. Thus, our results identify a new function
of CYP46A1 and 24,25-EC in the mammalian brain in vivo.

Results

CYP46A1-overexpressing mice exhibit elevated levels of 24-HC
and 24,25-EC

To examine the role of CYP46A1 in the developing brain, we
examined the VM of transgenic mice overexpressing this

enzyme. We first analyzed the levels of several sterols, oxyste-
rols, and related compounds in WT and CYP46A1-overex-
pressing mice. We found a 29.2-fold increase in 24-HC levels
and a 3.9-fold increase in 24,25-EC levels in the developing VM
of CYP46A1-overexpressing mice compared with WT mice at
E11.5 (Fig. 1 and Table S1). We also found a 1.98-fold increase
in cholesterol levels in the developing VM of CYP46A1-overex-
pressing mice compared with WT mice (Table S1). However,
the level of desmosterol (266-fold higher than that of 24,25-EC
in WT mice) did not change in CYP46A1-overexpressing mice.
Furthermore, we did not find any alteration in 22(R)-HC,
25-HC, 27-HC (systematic name (25R)26-HC), 7�-HC, or
7�,24-dihydroxycholesterol in CYP46A1-overexpressing mice
(Table S1), indicating that the increases in 24-HC and 24,25-EC
levels are very specific.

To determine whether these changes were stable over time,
we analyzed the levels of these compounds in the adult brain of
CYP46A1-overexpressing mice. We found that, although the
levels of cholesterol were not significantly different from WT
mice, the levels of 24-HC and 24,25-EC increased by 22% and
25%, respectively, in CYP46A1-overexpressing mice (Table S2).
Thus, our results portend CYP46A1 as a highly relevant enzyme
in the biosynthesis of 24,25-EC in the developing and adult
mouse brain.

Interestingly, our analysis of the developing mouse VM by
single-cell RNA-Seq (9) indicates that Cyp46a1 is expressed at
higher levels in two cell types lining the ventricle, ependymal
and radial glia–like3 cells (Fig. S1), suggesting that these cell
types may be the endogenous source of 24-HC and 24,25-EC in
the developing VM.

Increased dopamine neuron number in midbrain cultures from
CYP46A1-overexpressing mice

We next studied the impact of CYP46A1 overexpression on
distinct neuronal populations in the developing VM. Notably,
mouse VM progenitor cultures from CYP46A1-overexpressing
mice exhibited a significant 49.8% increase in the number of
mDA neurons compared with cultures from WT mice (Fig. 2, A
and B). These neurons co-expressed the rate-limiting enzyme
in the synthesis of dopamine tyrosine hydroxylase (TH), � III
tubulin (TuJ1, a pan-neuronal marker), Forkhead box tran-

Figure 1. CYP46A1-overexpressing mice exhibit elevated levels of
24,25-EC and 24-HC. LC-MS(MSn) analysis demonstrated a significant
increase in 24,25-EC and 24-HC but not desmosterol concentrations in the
developing VM of CYP46A1-overexpressing mice compared with WT mice.
Data are means � S.E. (n � 4 – 6); *, p � 0.05 by Mann–Whitney test compared
with the WT group.
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scription factor (Foxa2, required for midbrain development
regulation) (23), and pituitary homeobox 3 (Pitx3, a transcrip-
tion factor required for the survival and maintenance of mDA
neurons) (24) (Fig. 2A), thereby showing that they were true
mDA neurons. Because mouse Cyp46a1 was also expressed in
other cell types of the developing VM (Fig. S1), we examined
adjacent neuronal populations. No significant change in the
number of Islet1� oculomotor neurons or Brn3a� red nucleus
neurons was detected (Fig. 2B), thereby demonstrating that the
effect of CYP46A1 overexpression is specific to mDA neurons.
We next examined whether 24-HC and 24,25-EC increase the
number of mDA neurons when added to WT VM progenitor cul-
tures. Although 24,25-EC enhances mDA neurogenesis (Ref. 5 and

Fig. S2), we found that 24-HC had no significant effect on the
number of TH� mDA neurons (Fig. S3). Interestingly, the effect of
24,25-EC on TH� mDA neurons was abolished in VM progenitor
cultures from Lxr�� double knockout mice (Fig. S2), thereby
showing that LXR receptors are required for the increase in mDA
neuron numbers by 24,25-EC. Combined, our results indicate that
elevated levels of 24,25-EC lead to increased numbers of mDA
neurons in CYP46A1-overexpressing mice.

CYP46A1 overexpression increases the number of mDA
neurons in the developing brain in vivo

We also investigated whether CYP46A1-overexpression
impacts VM development in vivo. We thus examined the num-

Figure 2. Increased dopamine neuron numbers in midbrain cultures from CYP46A1-overexpressing mice. A, representative images of TH� and TuJ1�

neurons as well as Foxa2�, Pitx3�, Islet1�, and Brn3a� neuron nuclei in VM cultures from WT and CYP46A1-overexpressing mice. Scale bar � 50 �m. B,
quantification of TH�, Islet1�, and Brn3a� neurons in VM cultures from WT and CYP46A1-overexpressing mice. Data are means � S.E. (n � 3); *, p � 0.05 by
Student’s t test compared with the WT group.
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ber of mDA and oculomotor neurons in coronal sections
through the VM of CYP46A1-overexpressing and WT mice at
E11.5. We observed that the number of TH� mDA neurons
significantly increased by 42.6% in CYP46A1-overexpressing
compared with WT mice (Fig. 3, A and B). However, the num-
ber of Islet1� oculomotor neurons did not change, arguing for a
specific effect of CYP46A1 overexpression on mDA neurons in
vivo. Combined, our results indicate that elevated levels of
24,25-EC in CYP46A1-overexpressing mice lead to increased
numbers of mDA neurons.

24,25-EC promotes mouse midbrain dopaminergic
neurogenesis in vivo and prevents toxicity by GGPP

Finally, to directly examine the function of 24,25-EC in the
developing mouse midbrain in vivo, we performed 24,25-EC
injections into the cerebrospinal fluid, at the level of the aque-
duct, in E11.5 WT mouse embryos in utero and analyzed brain
sections at the midbrain level at E13.5 (Fig. 4A). Neurogenesis
was examined by performing a pulse of EdU intraperitoneally at
E11.5 to label proliferative progenitors and assess their capacity
to undergo neurogenesis and give rise to mDA neurons that can
be identified by the expression of tyrosine hydroxylase (Th).
Upon injection of 24,25-EC, we found that the number of dou-
ble EdU�;TH� cells increased by 39% (Fig. 4, B and C), thereby
demonstrating that 24,25-EC promotes mDA neurogenesis in

vivo. In contrast, injection of the Lxr inhibitor geranylgeranyl
pyrophosphate (GGPP), reduced the number of double EdU�;
TH� cells, indicating that LXR activity is required for mDA
neuron development. Notably, the effect of GGPP was blocked
by co-injection of 24,25-EC, indicating that 24,25-EC is not
only required and sufficient to promote mDA neurogenesis in
vivo but can also prevent the toxic effect of GGPP. Thus, our
results demonstrate that elevated levels of 24,25-EC promote
mDA neurogenesis in vivo.

Discussion

In this study, we show that overexpression of CYP46A1 in
transgenic mice increases the levels of 24-HC and 24,25-EC in
the VM but does not alter desmosterol or other oxysterol levels,
which remain at a similar level as in WT mice. Our results,
together with previous findings showing a reduction in both
24-HC and 24,25-EC levels in Cyp46a1-knockout mice (16),
lend support to the hypothesis that CYP46A1 is highly relevant
in the biosynthesis of 24,25-EC. This could be achieved either
by increased biosynthesis of 24,25-EC from desmosterol by
CYP46A1 (as suggested in Ref. 15) or by increased biosynthesis
of 24,25-EC from cholesterol by CYP46A1 via 24-HC and
24,25-diHC (as suggested in Refs. 13, 14). In either case, our
results demonstrate the importance of CYP46A1 in 24,25-EC
biosynthesis in the developing mammalian VM. We also found

Figure 3. Increased dopamine neuron numbers in the VM of CYP46A1-overexpressing mice. A, representative images of anterior-to-posterior coronal VM
sections from E11.5 WT and CYP46A1-overexpressing mice showing TH� neurons, Islet1� neuron nuclei, and 4�,6-diamidino-2-phenylindole–stained nuclei.
Scale bar � 50 �m. B, quantification of TH� and Islet1� neurons in VM sections from WT and CYP46A1-overexpressing mice. Data are means � S.E. (n � 5–15);
*, p � 0.05 by Mann–Whitney test compared with the WT group.
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that 24-HC does not affect the number of mDA neurons,
whereas 24,25-EC strongly promotes mDA neurogenesis, a
finding consistent with our previous results showing Lxr
ligand–specific activities in the developing mouse VM (5, 7).
These results also indicate that the observed increase in mDA
neurogenesis in vitro and in vivo in CYP46A1-overexpressing
mice is indeed associated with the increase in 24,25-EC in these
mice. Notably, the effect of CYP46A1 was specific to mDA neu-
rons, as neighboring cell populations in the developing basal

plate of the VM, such as oculomotor neurons or red nucleus
neurons, were not affected in CYP46A1-overexpressing mice.
These results show that increased levels of Lxr ligands do not
alter their cell type specificity, which is conferred by LXRs, as
we described previously (5, 7). Mechanistically, we found that
intracerebroventricular injection of the LXR agonist 24,25-EC
or the LXR antagonist GGPP was capable of, respectively, pro-
moting or inhibiting mDA neurogenesis in vivo. These effects
were specific because 24,25-EC had no effect on red nucleus,

Figure 4. 24,25-EC promotes neurogenesis of mouse midbrain dopamine neurons in vivo and prevents toxicity by GGPP. A, vehicle or 24,25-EC and/or
GGPP was injected into the mesencephalic ventricle of E11.5 mouse embryos in utero, and embryos were collected at E13.5. Dopamine neurogenesis was
examined by EdU intraperitoneal injection and by assessing the acquisition of TH expression. B, quantification of double EdU�;TH� cell numbers (mean � S.E.)
for the indicated conditions: vehicle, 24,25-EC-, GGPP-, and 24,25-EC � GGPP–injected embryos. Data are means � S.E. (n � 3–12); *, p � 0.05; **, p � 0.01 by
Mann–Whitney test compared with the vehicle group or as indicated. C, microphotographs of midbrain coronal sections showing TH� dopamine neurons
(green) and EdU� cells (red) (left panels) and higher-magnification pictures of the boxed region (right panels) for the indicated conditions. Arrowheads indicate
double EdU�;TH� cells. Scale bars � 50 �m.
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serotonin� neurons, oculomotor neurons, or GABA� neurons
in vitro and in vivo (Ref. 5 and this work). In sum, our results
demonstrate a clear role of LXR receptors and 24,25-EC in
mDA neurogenesis in vivo.

Several studies have associated a reduced level of CYP46A1
with neurodegeneration and neuronal dysfunction as well as
restoration of normal CYP46A1 levels with functional recovery
and neuroprotection. For instance, knockdown of Cyp46a1 in
mice results in deficits in spatial, associative, and motor learn-
ing and in hippocampal long-term potentiation (25). In addi-
tion, reduced Cyp46a1 levels result in cognitive deficits, ele-
vated production of �-amyloid peptides, and abnormal
phosphorylation of tau (26) as well as in progressive loss of
hippocampal neurons and an Alzheimer’s disease–like pheno-
type (27). Conversely, increased expression of CYP46A1
improves spatial memory retention in aged female mice (28)
and reduces cognitive decline and amyloid burden in several
mouse models of Alzheimer’s disease (29 –31). Furthermore,
similar results have been obtained by enhancing CYP46A1
activity with the reverse transcriptase inhibitor efavirenz (32),
arguing for the feasibility of using a pharmacological treatment
to reduce neurodegeneration.

With regard to neurodegeneration in the basal ganglia, it has
been reported that the level of CYP46A1 is decreased in the
putamen of patients with Huntington’s disease (33). Notably,
CYP46A1 knockdown in the mouse striatum induced sponta-
neous striatal neurodegeneration associated with abnormal
balance and motor coordination. Conversely, increased levels
of CYP46A1 in the R6/2 Huntington’s disease mouse model
decreased striatal neuron atrophy, protein aggregates, and
motor deficits.

Much less is known about the role of CYP46A1 in Parkin-
son’s disease. For instance, it remains to be determined whether
the level and functionality of CYP46A1 are conserved or altered
in Parkinson’s disease models or patients. The results in this
study provide first evidence that 24,25-EC can rescue a defect in
mDA neurogenesis induced by GGPP in vivo, suggesting a
potential application of CYP46A1 and 24,25-EC in regenerat-
ing mDA neurons in vivo. Previous studies have also shown that
a synthetic LXR ligand can prevent the degeneration of mDA
neurons in an animal model of Parkinson’s disease (34). Thus
combined, our results and data in the literature suggest that
24,25-EC or pharmacological tools capable of activating LXR
receptors or enhancing the function and/or levels of CYP46A1
could be used to enhance mDA neurogenesis, limit neurode-
generation, and advance cell replacement strategies for the
treatment of Parkinson’s disease.

Experimental procedures

Extraction of sterols

Sterols were extracted from mouse adult brain and mouse
embryonic VM into ethanol and fractionated by reverse-phase
solid phase extraction (SPE) to give an oxysterol-rich fraction
devoid of cholesterol (5, 7, 16, 36).

Charge-tagging of sterols

The sterols were charge-tagged with GP-hydrazine as de-
scribed previously (5, 7, 16, 36). This greatly enhances their

response when analyzed by LC-electrospray ionization-MS
(LC-ESI-MS) and MS with multistage fragmentation (MSn).

Reagents

HPLC-grade water and solvents were from Fisher Scientific
or Sigma-Aldrich. Authentic sterols and oxysterols were from
Avanti Polar Lipids. Girard P (GP) reagent (1-[carboxymethyl-
]pyridinium chloride hydrazide, [2H0]GP) was from TCI
Europe or synthesized in-house ([2H5]GP) as in earlier studies
(37), and cholesterol oxidase from Streptomyces sp. was from
Sigma-Aldrich. Certified Sep-Pak C18 200-mg (SPE1) and
OASIS HLB 60-mg (SPE2) columns were from Waters.

LC-ESI-MSn on the Orbitrap ELITE

LC-ESI-MS and LC-ESI-MSn were performed using an Ulti-
mate 3000 HPLC system (Dionex, now Thermo Fisher Scien-
tific) linked to the ESI source of an Orbitrap ELITE (Thermo
Fisher Scientific) mass spectrometer as described previously (5,
7, 16, 35, 36).

WT mice

Mice were housed, bred, and treated according to the guide-
lines of the European Communities Council (directive 86/609/
EEC) and the Society for Neuroscience. Ethics approval for
mouse experimentation was granted by Stockholm Norra
Djurförsöksetisks Nämnd N154/06, N145/09, N370/09, N273/
11, and N486/12.

Mice overexpressing human CYP46A1

Human CYP46A1-overexpressing transgenic mice were gen-
erated as described before (22, 28). All animal experiments
received full approval from the local Animal Experimentation
Ethics Committee. Tissue sampling from these mice was per-
formed under the aegis of the UK Scientific Procedures (Ani-
mals) Act, 1986.

Primary midbrain cultures

Brains from E11.5 mice were obtained. The ventral midbrain
region was dissected, mechanically dissociated, plated on poly-
D-lysine (150,000 cells/cm2), and grown in serum-free N2
media consisting of a 1:1 mixture of F12 and Dulbecco’s modi-
fied Eagle’s medium with 10 ng/ml insulin, 100 �g/ml apo-
transferrin, 100 �M putrescine, 20 nM progesterone, 30 nM sele-
nium, 6 mg/ml glucose, and 1 mg/ml BSA. Cells were treated
for 3 days in vitro with the compounds of interest, fixed with 4%
PFA, and processed for staining using appropriate antibodies.
Hoechst staining was performed by permeabilizing cells with a
0.3% Triton X-100/PBS solution for 5 min, followed by incuba-
tion with Hoechst 33258 (Sigma) for 10 min.

Immunocytochemical analysis

Cells were fixed in 4% paraformaldehyde (PFA), washed in
PBS, and blocked in 5% normal goat serum/PBS for 1 h at room
temperature. Primary antibodies were diluted in PBS (pH 7.4),
0.3% Triton X-100, and 1% BSA, and incubations were carried
out overnight at �4 °C or at room temperature for 2 h. The
antibodies used were anti-TH (1:1000, Pel-Freeze), anti-Islet1
(1:100, Developmental Studies Hybridoma Bank), anti-Brn3a

24,25-Epoxycholesterol in the mouse brain

4174 J. Biol. Chem. (2019) 294(11) 4169 –4176



(1:250, Millipore), anti-TuJ1 (1:1000, Promega), anti-FoxA2
(1:400, Cell Signaling Technology), anti-Pitx3 (1:400, Invitro-
gen) and appropriate secondary antibodies (Jackson Immu-
noResearch Laboratories or Alexa). Cells positive for the corre-
sponding marker were counted directly at the microscope at a
magnification of �20. Cells were counted in every well, in eight
consecutive fields (going from one side of the well to the other,
passing through the center), in three different wells per exper-
iment, and in three different experiments per condition. Posi-
tive cell counts were normalized to the total number of cells
(counted utilizing Hoechst-stained nuclei) and presented as
-fold increase over WT or vehicle. Random pictures of the wells
were taken for every condition to document the result, and
representative pictures were subsequently selected to represent
the quantitative data. Photos were acquired with a Zeiss
Axioplan microscope and a Hamamatsu camera (C4742-95)
using the Openlab software.

In utero intraventricular injections

Mouse in utero injections were performed as described pre-
viously (7, 38). Female WT CD-1 mice (25–35 g, Charles River
Breeding Laboratories) were used for these experiments. Ethics
approval was granted by Stockholm Norra Djurförsöksetisks
Nämnd N273/11 and N486/12. For embryo analyses, WT CD-1
mice were mated overnight, and noon of the day the plug was
considered E0.5. E11.5 pregnant females were deeply anesthe-
tized using isoflurane (IsoFlo�, Abbott Labs), and the uterine
horns were accessed through an abdominal incision. 1 �l of
24,25-EC (5 mM), GGPP (5 mM), or vehicle solution (methanol/
PBS, 50% v/v) was injected into the cerebral aqueduct. The
uterine horns were replaced into the abdominal cavity, which
was then closed with sutures. For EdU pulse-chase experi-
ments, EdU (50 mg/kg of body weight) was injected by intra-
peritoneal injection 30 min after the injections to the embryo.
Embryos were analyzed 48 h later, at E13.5. The concentration
and volume of the compounds utilized in these experiments
were chosen for the compounds to be in a physiological range
because the cerebrospinal fluid volume in the E11.5 mouse
embryo is �40 �l, the cerebrospinal fluid is replaced at a speed
of 3.3 � 10	4 ml/min in mice (10), and mouse embryos were
analyzed 48 h after injection.

Mouse VM coronal sections and immunohistochemical
analysis

Embryos were dissected out of the uterine horns in ice-cold
PBS, fixed in 4% PFA for 4 h to overnight, cryoprotected in
15–30% sucrose, frozen in Tissue-Tek Optimum Cutting Tem-
perature compound (Sakura Fine-Tek) on dry ice, and stored at
	80 °C until use. 14-�m serial coronal sections through the
E11.5 or E13.5 midbrain region were cut on a cryostat and
placed serially on 10 slides. Slides 1 and 6 were subjected to
immunohistochemistry. Sections were preincubated for 1 h in
blocking solution, followed by incubation at 4 °C overnight with
the following primary antibodies: sheep anti-TH (1:500, Novus
Biologicals), rabbit anti-TH (1:750, Pel-Freeze), and mouse
anti-Islet-1 (1:100, Developmental Studies Hybridoma Bank).
After washing, slides were incubated for 1 h at room tempera-
ture with the appropriate fluorophore-conjugated (Cy2, Cy3,

and Cy5, 1:300, Jackson ImmunoResearch Laboratories; Alexa
488, 555, and 647, 1:1000, Invitrogen) secondary antibodies.
The EdU click reaction was performed according to the instruc-
tions of the manufacturer (Life Technologies). Confocal pic-
tures were taken on a Zeiss LSM700 microscope. TH� cells,
Islet1� cells, and double EdU�;TH� cells were counted on
three sections covering the rostral to caudal midbrain for each
embryo.

Statistical analysis

Statistical analyses (Mann–Whitney test and Student’s t test)
were performed using Prism 4 (GraphPad Software, La Jolla,
CA). A p value less than 0.05 was considered significant; *, p �
0.05; **, p � 0.01. Data represent mean � S.E.

Animal studies approval statement

Ethics approval for WT and CYP46A1-overexpressing trans-
genic mouse experimentation was granted by the local Animal
Experimentation Ethics Committee (Stockholm Djurförsök-
setisks Nämnd N154/06, N145/09, N370/09, N273/11, and
N486/12).
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