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Signal-to-Noise-Ratio-Aware Dynamic
Range Compression in Hearing Aids

Tobias May1, Borys Kowalewski1, and Torsten Dau1

Abstract

Fast-acting dynamic range compression is a level-dependent amplification scheme which aims to restore audibility for hearing-

impaired listeners. However, when being applied to noisy speech at positive signal-to-noise ratios (SNRs), the gain function

typically changes rapidly over time as it is driven by the short-term fluctuations of the speech signal. This leads to an

amplification of the noise components in the speech gaps, which reduces the output SNR and distorts the acoustic properties

of the background noise. An adaptive compression scheme is proposed here which utilizes information about the SNR in

different frequency channels to adaptively change the characteristics of the compressor. Specifically, fast-acting compression

is applied to speech-dominated time-frequency (T-F) units where the SNR is high, while slow-acting compression is used to

effectively linearize the processing for noise-dominated T-F units where the SNR is low. A systematic evaluation of this SNR-

aware compression scheme showed that the effective compression of speech components embedded in noise was similar to

that of a conventional fast-acting system, whereas natural fluctuations in the background noise were preserved in a similar

way as when a slow-acting compressor was applied.
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Introduction

One of the primary tasks of a hearing aid is to improve
speech recognition through restored audibility (e.g.,
Jenstad & Souza, 2007; Souza, Boike, Witherell, &
Tremblay, 2007; Souza & Turner, 1999). Wide dynamic
range compression (WDRC) provides level-dependent
amplification. It is therefore capable of improving the
audibility of soft speech components while avoiding
excessive amplification of high-intensity inputs and the
loudness discomfort that would result from it otherwise
(e.g., Alexander & Rallapalli, 2017; Villchur, 1973).
WDRC is characterized by a number of parameters,
such as the attack and release times, compression ratio
(CR), compression threshold (CT), and the number of
frequency channels. The attack time is usually very short
(below 10ms) such that the compressor can react to a
rapid increase in the intensity of the input signal
(Alexander & Rallapalli, 2017; Jenstad & Souza, 2005).
A compressor is typically classified as fast-acting, with
release times shorter than 200ms, or slow-acting, with
release times longer than 200ms (for a review, see
Souza, 2002).

For a maximum audibility benefit, the compression
system must be able to follow changes in the speech amp-
litude on timescales corresponding to the duration
of a syllable or even a phoneme. This requires a very-
fast-acting system with a release time below about 60ms
(Edwards, 2004). If a longer release time is used, the gain
might lag behind the dynamic changes in the speech
envelope, leaving low-intensity components underampli-
fied (Jerlvall & Lindblad, 1978; Kuk, 1996). As demon-
strated by Braida et al. (1982) and Stone and Moore
(1992), the effective compression ratios (ECRs) decrease
to only a fraction of the nominal ratios when the release
time is too long compared with the rate of the envelope
fluctuations in the signal.
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Several studies have demonstrated a benefit of fast-
acting compression for speech recognition in quiet
(Souza & Turner, 1998, 1999; Villchur, 1973). In con-
trast, Davies-Venn, Souza, Brennan, & Stecker, (2009)
found that when audibility was adjusted with linear
versus level-dependent amplification using WDRC, the
latter was found to be detrimental for speech recogni-
tion. This was probably caused by altered level differ-
ences between phonemes, distortions of the temporal
envelope, or a reduction of the modulation depth of
the speech signal (Alexander & Rallapalli, 2017;
Gallun & Souza, 2008; Jenstad & Souza, 2005, 2007;
Plomp, 1988; Rosen, 1992; Souza & Gallun, 2010;
Souza & Turner, 1996; Stone & Moore, 2003, 2004,
2007, 2008; van Buuren, Festen, & Houtgast, 1999;
Walaszek, 2008). Such distortions are typically more
pronounced for shorter release times and higher
CRs (Alexander & Rallapalli, 2017; Jenstad & Souza,
2005, 2007).

The relative benefit of WDRC versus linear amplifi-
cation depends on the acoustic condition. When noise is
present, the amount of the effective compression and the
distortions of the speech envelope seem to be less pro-
nounced compared with the processing of speech in quiet
(Rhebergen, Versfeld, & Dreschler, 2009; Souza, Jenstad,
& Boike, 2006). Yund and Buckles (1995) studied the
impact of multichannel compression on speech recogni-
tion in the presence of a fixed-level stationary back-
ground noise and found an increased benefit as the
signal-to-noise ratio (SNR) decreased. Moreover,
Gatehouse, Naylor, and Elberling (2003, 2006) suggested
that if the noise is fluctuating with distinct temporal dips,
fast-acting compression would provide differential amp-
lification by applying more gain to the low-intensity
glimpses of the speech than to the noise peaks, poten-
tially leading to improved intelligibility. This prediction
is consistent with recent results from Rhebergen,
Maalderink, and Dreschler (2017) and Desloge, Reed,
Braida, Perez, and D’Aquila (2017), who established a
link between increased speech audibility and improved
speech intelligibility when applying fast-acting compres-
sion to speech in the presence of fluctuating background
noise. On the contrary, compression can negatively affect
the output SNR by reducing the speech level and
overamplifying portions of the noise occurring in the
speech gaps (Alexander & Masterson, 2014; Hagerman
& Olofsson, 2004; Naylor & Johannesson, 2009;
Rhebergen et al., 2017; Souza et al., 2006). As recently
shown by Rhebergen et al. (2017), the reduction of the
output SNR can be detrimental to speech recognition.
Apart from a reduced output SNR, fast-acting compres-
sion of mixed sources (e.g., competing talkers or speech
in noise) introduces across-signal modulations. Stone
and Moore (2007, 2008) demonstrated that this distor-
tion might be detrimental to speech intelligibility, at least

when primarily envelope cues are available. Even if the
effect on recognition can be small, other perceptual attri-
butes might be affected, such as the perceived noisiness
of the sound (e.g., Kuk, 1996; Neuman, Bakke,
Mackersie, Hellman, & Levitt, 1998), leading to a per-
ception of reduced overall quality. Therefore, it has been
suggested that the compression parameters should be
adjusted according to the environment (Kates, 2010;
Yund, Simon, & Efron, 1987) to reach the balance
point, at which the positive and negative acoustic effects
optimally offset each other (Souza, Hoover, & Gallun,
2012).

The hypothesis of the current study was that an opti-
mal hearing-aid compensation strategy should (a) amp-
lify low-level portions of speech, (b) reduce the dynamic
range of speech to avoid excessive loudness, (c) avoid
amplifying the noise in speech gaps (so-called pumping),
and (d) maintain the natural fluctuations in the back-
ground noise. To achieve this, an adaptive amplification
scheme would be required that selectively changes
the characteristics of the compressor in a given time-
frequency (T-F) unit depending on whether speech or
noise components are dominating. In earlier approaches,
such as the K-amp strategy (Killion, Teder, Johnson, &
Hanke, 1992) and the dual front-end automatic gain con-
trol system (Moore & Glasberg, 1988; Stone, Moore,
Alcántara, & Glasberg, 1999), the release time varied
according to how long the compression circuit had
been activated, which can help to reduce the pumping
artifacts. Similar principles have been applied in guided
level estimators (Neumann, 2008; Simonsen & Behrens,
2009). Moreover, Lai, Li, Tsai, Chu, and Young (2013)
proposed an adaptive WDRC system that adjusted the
CR in individual frequency channels depending on the
estimated short-term dynamic range. These systems,
however, are only sensitive to changes in the overall
signal level but do not utilize information related to the
presence of the target signal versus the background
noise. In the context of binaural WDRC, an adaptive
amplification scheme was proposed by Hassager, May,
Wiinberg, and Dau (2017), where knowledge about the
acoustic scene in terms of the direct-to-reverberant
energy ratio (DRR) was utilized to selectively apply
fast-acting compression only to T-F units that are domi-
nated by the direct sound. This direct sound–driven com-
pression scheme, in conjunction with a binaural link, was
demonstrated to improve sound source localization and
externalization compared with conventional fast-acting
compression (Hassager et al., 2017).

In this study, the idea of such a scene-aware amplifi-
cation scheme was studied for acoustic scenes where
speech and background noise were presented simultan-
eously. Specifically, an adaptive amplification system
was considered that applied fast-acting compression
only to speech-dominated T-F units, while the processing
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of noise-dominated T-F units was linearized through a
longer release time. The resulting amplification scheme,
termed SNR-aware dynamic range compression, was
compared with conventional fast- and slow-acting com-
pression systems using three objective metrics based on
the ECR as well as relative changes in the modulation
spectrum and the broadband SNR.

System

The block diagram of the SNR-aware dynamic range
compression algorithm is shown in Figure 1. First, the
input signal was analyzed by a short-time discrete
Fourier transform (STFT). In the acoustic scene analysis
stage, a binary decision about speech activity was
obtained by applying a threshold criterion to the
estimated short-term SNRs in individual frequency
channels. This decision was then utilized in the dynamic
range compression stage to adaptively adjust the release
time of the compressor. Specifically, a short release time
was selected if a particular T-F unit was dominated by
speech (high SNR), whereas a long release time was used
for noise-dominated T-F units (low SNR). Then, a gain
function was calculated and applied to the STFT repre-
sentation of the noisy speech signal. Finally, the output
signal was reconstructed using the STFT synthesis stage.
All of the individual building blocks are described in
detail in the following subsections.

STFT Analysis

The input signal was sampled at a rate of 20 kHz and
segmented into overlapping frames of 10ms duration
with a shift of 2.5ms. Each frame was Hann-windowed
and zero-padded to a length of 512 samples and a 512-
point discrete Fourier transform (DFT) was computed,

producing an STFT representation of the input signal
(Allen, 1977).

Speech Detection

Based on the STFT representation of noisy speech, a
binary decision about speech activity was performed
for each individual T-F unit. Therefore, the speech
power spectral density (PSD) was first obtained in indi-
vidual DFT bins using the minimum mean-square error
estimator by Erkelens, Hendriks, Heusdens, and Jensen
(2007). This method relies on an estimate of the noise
PSD, which was derived from noisy speech using the
algorithm proposed by Hendriks, Heusdens, and
Jensen (2010). Both the noisy speech power and the esti-
mated speech PSD were then integrated into seven
octave–wide bands, by applying the filterbank described
below, and subsequently used to estimate the short-term
SNR (Eaton, Brookes, & Naylor, 2013; May,
Kowalewski, Fereczkowski, & MacDonald, 2017).
Finally, speech activity was detected by applying a
threshold to the estimated SNRs1 in individual T-F
units. These thresholds were determined by a training
procedure described in the Parameters subsection.

Filterbank

The dynamic range compressor operated separately in
seven octave–wide bands with center frequencies ranging
from 125Hz to 8 kHz. The octave bands were designed
to have rectangular filter weights that were applied to
each DFT bin. Given the DFT resolution, the effective
filter shape of the individual octave bands was as rect-
angular as possible. For each octave band, the power of
the respective DFT bins was integrated and the magni-
tude of individual T-F units was returned.

Speech 
detection

STFT ISTFT

Level 
estimation dB Gain Inter-

polationFilterbank lin

Figure 1. Block diagram of the SNR-aware compressor consisting of three processing layers: (a) STFT-based analysis and synthesis, (b)

acoustic scene analysis, and (c) dynamic range compression. See System section for more details regarding the individual processing steps.

ISTFT¼ inverse short-time discrete Fourier transform; SNR¼ signal-to-noise ratio; STFT¼ short-time discrete Fourier transform.
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Level Estimation

The magnitude of the individual T-F units was smoothed
by a first-order infinite impulse response filter with dif-
ferent time constants associated with attack and release.
Given the binary decision about speech activity, two dif-
ferent sets of attack and release time constants were
defined for speech-dominated and noise-dominated T-F
units: (a) a short attack time of 5ms and a short release
time of 40ms were used for the speech-dominated T-F
units with a high SNR, and (b) a short attack time of
5ms and a long release time of 2,000ms were used for the
noise-dominated T-F units where the SNR was low. In
both cases, a short attack time was chosen to maintain
the responsiveness of the compressor to rapid intensity
changes, irrespective of whether the dominant signal was
speech or noise.

Gain Calculation

Given the smoothed level estimation in decibels (dB), a
broken-stick gain function was used to derive the
respective gains in the individual T-F units. The
broken-stick gain function provided a linear gain below
the CT and a constant CR above the CT. This gain func-
tion was based on the NAL-NL2 prescription (Keidser,
Dillon, Flax, Ching, & Brewer, 2011) fitted to the N4

standard audiogram corresponding to a flat and moder-
ately sloping hearing loss (Bisgaard, Vlaming, &
Dahlquist, 2010) using the settings slow and unilateral.
The CTs were derived by measuring the output level of
the individual frequency channels in response to station-
ary speech-shaped noise. The speech-shaped noise had
the same long-term average spectrum (LTAS) as the
Danish hearing in noise test (HINT) speech material
and was normalized to a root mean square–level of
50 dB. The resulting CRs and CTs for the seven octave
bands are summarized in Table 1.

Interpolation of Gain Values

The linear gains were interpolated from the channel
center frequencies to the DFT frequency axis using a

piecewise cubic interpolation to avoid aliasing artifacts.
These interpolated gains were subsequently applied to
the STFT representation of noisy speech.

STFT Synthesis

After multiplying the gains with the STFT representation
of noisy speech, the processed time domain signal was
reconstructed by applying an inverse short-time discrete
Fourier transform (ISTFT). Specifically, an inverse dis-
crete Fourier transform produced individual time seg-
ments that were combined by a weighted overlap-add
method (Crochiere, 1980). The weighted overlap-add
approach extends the original overlap-add method pro-
posed by Allen (1977) with a synthesis window. A 512-
sample tapered cosine window with 39-sample ramps
was used as a synthesis window (Grimm, Herzke, Berg,
& Hohmann, 2006) to smooth discontinuities at the
frame boundaries, which can occur because of temporal
aliasing.

Evaluation

Stimuli

Noisy speech was created by mixing clean speech from the
Danish HINT (Nielsen & Dau, 2011) with four different
types of background noise at seven SNRs (–6, –3, 0, 3, 6,
9, and 12 dB). The following noise types were used:
Stationary International Collegium of Rehabilitative
Audiology (ICRA)-1 noise and nonstationary ICRA-7
noise representing a six-talker speech babble (Dreschler,
Verschuure, Ludvigsen, & Westermann, 2001) as well as
car noise and factory noise from the NOISEX database
(Varga & Steeneken, 1993). The noise signals were split
into two halves of equal size to ensure that there was no
overlap between the noise segments used for training the
speech detection stage (see Parameters subsection) and
evaluation. Following Naylor and Johannesson (2009),
the LTAS of all noise types measured in 1/3 octave
bands was adjusted to match the LTAS of the Danish
HINT corpus.

Each noisy speech mixture consisted of 10 randomly
selected HINT sentences from the test lists that were
concatenated and mixed with a random noise segment.
The noise was normalized to a root mean square–level
corresponding to 50 dB while the level of the speech
signal was adjusted to yield a predefined SNR. An initial
noise-only segment of 250-ms duration was incorporated
to ensure that the noise PSD estimator (see Speech
Detection subsection) was properly initialized. After pro-
cessing, this noise-only segment was removed and did
not bias the analysis of the objective metrics. For each
of the four noise types and seven SNRs, 20 noisy speech
mixtures with an average length of 15.5 s were created,

Table 1. CTs in Decibels and CRs for Individual Channel Center

Frequencies.

Channel center frequency (Hz)

125 250 500 1000 2000 4000 8000

CT (dB) 43 43 41 41 37 31 28

CR 2.2:1 2.2:1 2.2:1 3.0:1 3.5:1 3.3:1 2.5:1

Note. CT¼ compression threshold; CR¼ compression ratio.
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resulting in a set of 4� 7� 20 ¼ 560 noisy speech mix-
tures used for evaluation.

Parameters

The binary decision of speech activity was obtained by
thresholding the estimated SNRs in individual T-F units
(see Speech Detection subsection). These thresholds were
found by maximizing the hit rate minus false alarm rate
(H � FA) between the estimated and the true speech
activity using a small training set. For this purpose,
10 randomly selected HINT sentences from the training
lists were mixed with ICRA-1 and IRCA-7 noise at �5,
0, and 5 dB SNR, producing a training set of
10� 2� 3 ¼ 60 noisy speech mixtures. The true speech
activity was obtained by applying a threshold criterion of
0 dB to the a priori SNR, which was calculated from the
individual speech and noise signals.

The noise PSD estimator by Hendriks et al. (2010)
was used with the default parameter set and initialized
for each noisy speech mixture by averaging the PSD
across the initial noise-only segment of 250ms. The
speech PSD estimator from Erkelens et al. (2007) was
configured with the two generalized gamma parameters
c¼ 1 and n¼ 0.6. Moreover, the smoothing factor a
employed by the decision-directed approach corres-
ponded to a time constant of 0.792 s.

Objective Metrics

Shadow-filtering (Fredelake, Holube, Schlueter, &
Hansen, 2012; Gustafsson, Martin, & Vary, 1996) was
employed to investigate the impact of compression on
speech, noise, and noisy speech separately. The compres-
sor gain was always estimated based on the noisy speech
mixture and then subsequently applied to speech alone,
noise alone, and noisy speech (in the STFT domain). The
following three objective metrics were computed for a
range of input SNRs:

. The ECR was calculated based on the estimated
dynamic range before and after compression (Souza
et al., 2006). The dynamic range was derived by cal-
culating the level difference between the 99th and the
50th percentile in the different frequency channels.

. The relative change in the modulation spectrum
(DMS) was computed before and after processing.
The modulation spectrum reveals perceptual distor-
tions introduced by compression (Alexander &
Rallapalli, 2017; Gallun & Souza, 2008; Souza &
Gallun, 2010). The modulation spectrum was com-
puted based on the broadband envelope which was
extracted by half-wave rectification and low-pass fil-
tering with a cut-off frequency of 100Hz.
Subsequently, the power in seven octave–spaced

modulation filters (0.5, 1, 2, 4, 8, 16, and 32Hz) was
calculated and normalized by the direct current com-
ponent of the envelope.

. The input/output SNR was computed based on the
broadband signals before and after processing
(Naylor & Johannesson, 2009; Rhebergen et al.,
2017; Souza et al., 2006).

Compression Systems

The following four compression systems were evaluated
which all operated in seven octave bands: fast-acting,
slow-acting, SNR-aware compression as well as ideal
SNR-aware compression based on the a priori SNR.
An overview of the respective parameters is given in
Table 2. While the conventional fast- and slow-acting
compression systems were characterized by the attack
and release times, the SNR-aware approach adaptively
switched between two sets of attack and release times for
speech- and noise-dominated T-F units. The ideal SNR-
aware compression system used the true speech activity
based on the a priori SNR (see Parameters subsection),
rather than the speech activity estimator described in the
Speech Detection subsection.

The processing principle of the four different compres-
sion schemes is illustrated in Figure 2 for a speech signal
mixed with ICRA-1 noise at 6 dB SNR. Given the noisy
speech signal, the respective gain functions are shown for
a channel center frequency of 2 kHz. The fast-acting
system is able to follow rapid intensity changes of
the noisy speech signal, while inherent fluctuations
in the noise-only segments also result in fast changes in
the gain function. In contrast, the slow-acting system
only responds to strong onsets and only slowly recovers
following the offset of the dominant signal (speech, in
this case). Because of the prolonged recovery, the gain
remains relatively low after higher intensity segments,
leaving other low-level speech components underampli-
fied. The SNR-aware system adaptively switches between
fast and slow processing depending on the estimated
speech activity. Thus, in speech-active time segments,

Table 2. Configuration of the Four Tested Compression

Schemes.

Compressor Attack

(ms)

Release

(ms)

Speech

detection
Estimator

Fast 5 40 Off –

Slow 5 2,000 Off –

SNR-aware 5/5 40/2,000 On Estimated SNR

SNR-aware ideal 5/5 40/2,000 On a priori SNR

Note. SNR¼ signal-to-noise ratio.
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the SNR-aware system is able to follow rapid intensity
changes caused by the short release time, while the use of
a long release time for noise-dominant time segments
effectively linearizes the processing, which avoids rapid
fluctuations in the gain in response to noise-only
segments.

Results

The ECRs are shown in Figure 3 as a function of the
input SNR and the channel center frequency. Each of the
four rows represents a different compression scheme,
that is, fast-acting (first row), slow-acting (second row),
SNR-aware (third row), and ideal SNR-aware compres-
sion (fourth row). The left, middle, and right columns
show results for the three different signal categories, that
is, shadow-filtered speech, shadow-filtered noise, and
noisy speech.

As expected, the fast-acting compression system pro-
vided the highest ECRs for all three signal categories.
For noisy speech (right column), a maximum ECR of
up to 2.0 was measured for high frequencies. When
using shadow-filtering to analyze the impact of compres-
sion on speech and noise separately (left and middle col-
umns), it can be seen that both speech and noise

components were compressed, with ECRs of up to 1.6
and 1.3, respectively. The slow-acting compression
system did not compress the noise components (with
ECRs of 1 and lower) and also provided no compression
to the speech components, where the ECR was 1.1 for
the entire range of input SNRs. The ECRs of the SNR-
aware compressor for the speech components were in a
similar range (up to 1.4) as for the fast-acting compres-
sor, while the ECR associated with the noise components
was close to 1 (�0.1) for a wide range of input SNRs.
Finally, the ECR contours of the SNR-aware and the
ideal SNR-aware compressor were very similar to each
other for all three signal categories.

Figure 4 shows the relative change in the modulation
spectrum (DMS) as a function of modulation frequency
(ranging from 0.5 to 32Hz) and the input SNR. Negative
values indicate a reduction in modulation depth, while
positive values reflect an increase in modulation depth
caused by the level-dependent amplification (compres-
sion). Again, the four rows represent the different
compression schemes (fast-acting, slow-acting, SNR-
aware, and ideal SNR-aware compression) and the
three columns show results for shadow-filtered speech,
shadow-filtered noise, and the noisy speech mixture,
respectively.

SlowSNR-aware idealSNR-awareFastSpeech activity

SNR-aware

Fast

Noisy speech

G
ai

n
(d

B
)

Time (s)
0 1 2 3 4

-15

-10

-5

0

Figure 2. Speech mixed with ICRA-1 noise at 6 dB SNR (top panel) along with the estimated speech activity and gain functions of four

compression systems (fast-acting, slow-acting, SNR-aware, and ideal SNR-aware compression) for a frequency channel centered at 2 kHz.

The lowest two panels show the output of the fast-acting and the SNR-aware compressor, respectively. ICRA¼ International Collegium of

Rehabilitative Audiology; SNR¼ signal-to-noise ratio.
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Fast-acting compression reduced the modulation
depth of the shadow-filtered speech signal for modula-
tion frequencies between 0.5 and 8Hz and this effect
increased with increasing SNR. At the same time, the
modulation depth of the shadow-filtered noise signal
was enhanced with a clear peak around 4Hz for
higher input SNRs. Slow compression did not markedly
affect the modulation spectra of the shadow-filtered
speech and noise signals. While DMS was positive in
the range between 0.5 and 8Hz for the shadow-filtered
noise, the individual functions obtained for the
different SNRs were fairly flat and did not show any
pronounced peak. This coincided with a decreased
ECR as already observed in Figure 3. Both SNR-aware
systems resembled the conventional fast-acting compres-
sor in terms of DMS for shadow-filtered speech.
Although modulations around 4Hz were to some
extent enhanced in the shadow-filtered noise, the individ-
ual functions were much flatter compared with the fast-
acting system and the respective magnitudes were closer
to those obtained with the slow-acting compression
system.

Finally, the input/output SNR analysis for the four
compression schemes and a linear reference condition
(dashed line) is shown in Figure 5. All tested compression
systems led to a reduction in the output SNR, which was
most pronounced at higher input SNRs. The fast-acting
compressor reduced the output SNR by up to 4.8 dB,
while the slow-acting system was closest to the linear ref-
erence condition. The SNR-aware compressor produced a
consistently higher output SNR than the fast-acting system
over the complete range of input SNRs. This benefit was
about 2 dB at higher input SNRs and was very similar for
the SNR-aware and the ideal SNR-aware compressors.

In general, the objective metrics computed for the
SNR-aware and the ideal SNR-aware compressor were
very similar, suggesting that the accuracy of the SNR
estimator was sufficiently high. The performance of the
speech detection algorithm is summarized in Table 3 in
terms of the hit rate (H), the false alarm rate (FA), and
the H � FA for different frequency channels. While the
H � FA was not higher than 34.7 % for the lowest two
frequency channels, performance increased up to 59.0 %
at higher center frequencies.

Figure 3. Contours of ECRs for the fast-acting (first row), slow-acting (second row), SNR-aware (third row), and ideal SNR-aware

compressor (fourth row) as a function of the input SNR and the channel center frequency. Results were averaged across all four noise

types. The left, middle, and right columns show results for shadow-filtered speech, shadow-filtered noise, and noisy speech, respectively.

ECR¼ effective compression ratio; SNR¼ signal-to-noise ratio.
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Discussion

The analysis of �MS indicated that distortions of the
speech components are an inevitable consequence of
fast-acting compression. A rapidly changing gain

function reduces the temporal contrasts of the speech
components which, in turn, reduces the modulation
power. This is also reflected in the ECRs, which are high-
est for the fast-acting compression scheme. As pointed
out by Villchur (1989), the reduction in modulation
power is not necessarily detrimental, as long as it coin-
cides with an improvement in speech audibility. At the
same time, fast-acting compression increases the modu-
lation depth of noise signal components at positive
SNRs. As shown in Figure 4, the largest increase was

Figure 4. Relative change in modulation spectra (DMS) caused by fast-acting (first row), slow-acting (second row), SNR-aware (third

row), and ideal SNR-aware compression (fourth row) as a function of the modulation frequency and the input SNR. Results were averaged

across all four noise types. The black dashed line indicates the zero line while the left, middle, and right columns show results for shadow-

filtered speech, shadow-filtered noise, and noisy speech, respectively. SNR¼ signal-to-noise ratio.
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Figure 5. Input/output SNR analysis for the four different com-

pression schemes and a linear system averaged across all four noise

types. SNR¼ signal-to-noise ratio.

Table 3. Performance Analysis of the Binary Speech Detection

Algorithm in Terms of H, FA, and H � FA in Percentage as a

Function of the Channel Center Frequency Averaged Across All

Noise Types and SNRs.

Channel center frequency (Hz)

Rates (%) 125 250 500 1000 2000 4000 8000

H 53.1 55.2 67.5 72.0 74.0 73.2 81.3

FA 18.9 20.5 13.5 15.9 18.3 21.8 22.3

H � FA 34.2 34.7 54.0 56.1 55.7 51.4 59.0

Note. H¼ hit rate; FA¼ false alarm rate; H � FA¼ hit rate minus false

alarm rate; SNR¼ signal-to-noise ratio.

8 Trends in Hearing



found around the 4-Hz region, which corresponds to the
typical maximum in the speech modulation spectrum
(e.g., Plomp, 1983; Souza & Gallun, 2010). This results
from the compressor gain following short-term fluctu-
ations in the intensity of the dominating speech signal,
which disrupts the natural fluctuations in the back-
ground noise. As a consequence, the glimpses of noise
that are cyclically amplified because of the increased gain
during the speech pauses may lead to a sensation of
pumping and increased overall noisiness (Neuman
et al., 1998). Such processing thus is likely to decrease
the SNR in the modulation domain, which has been
proposed to be detrimental for speech intelligibility
(Jørgensen & Dau, 2011; Jørgensen, Ewert, & Dau,
2013). Furthermore, the long-term level of the noise is
increased at the output of the compressor, causing a
reduced output SNR (Naylor & Johannesson, 2009). In
contrast, slow-acting compression avoids the amplifica-
tion of the noise components. As shown in Figure 2, the
changes in the gain function of the slow-acting system
do not follow the fluctuations of speech very closely.
Therefore, distortions in the modulation spectrum
of the noise components, as shown in Figure 4, are
of much smaller magnitude. This leads to a more
linear behavior in terms of the input/output SNR
analysis. However, a slow-acting system does not pro-
vide any substantial compression to the speech signal
components.

The SNR-aware compression scheme appears to com-
bine the desired properties of the two conventional sys-
tems. The analysis of the ECR suggests that the effective
compression of speech embedded in noise, as provided
by the SNR-aware system, is very similar to the one
obtained with conventional fast-acting compression.
This behavior should be advantageous, as it is linked
to improved audibility (Alexander & Rallapalli, 2017).
At the same time, the fluctuations in the gain function
become much slower when speech is absent, which
avoids the amplification of noise-only segments and
increases the output SNR relative to that obtained with
fast-acting compression. This is also reflected in the
ECRs associated with the noise components, which clo-
sely resemble the behavior of the slow-acting compres-
sor. Thus, the SNR-aware compression scheme
maintains the acoustic properties of the background
noise similar to slow-acting compression while applying
fast-acting compression to the speech signal components.
Preserving the modulation fidelity of the background
noise may facilitate the target-background segregation,
improve the perceived quality of the acoustic scene, and
aid speech recognition in adverse conditions.

The SNR-aware compression scheme utilizes an esti-
mation of the short-term SNR to detect speech-
dominated T-F units. The estimation accuracy of this
speech detection stage, as reflected by the H � FA,

was as high as 59% and generally in a similar range as
the speech detector used in the DRR–aware compression
scheme (Hassager et al., 2017). Instead of using the
output of the speech detection stage directly for noise
reduction, the binary classification of speech activity
was used to adaptively select different time constants
for speech and noise components. Thus, estimation
errors in the speech detection stage do not introduce
clearly audible artifacts, and only limit the effective com-
pression of speech components. In a binaural setup with
two hearing aids, the estimation of speech activity could
be further improved by spatial cues (May, van de Par, &
Kohlrausch, 2011), which would allow the application of
fast-acting compression to speech-dominated T-F units
corresponding to a target source at a specific spatial
location.

Conclusion

This study presented a scene-aware amplification strat-
egy that adaptively changes the characteristics of the
compressor depending on the estimated speech activity
in individual T-F units. Specifically, fast-acting compres-
sion was applied to speech-dominated T-F units where
the SNR was high, while slow-acting compression was
performed for noise-dominated T-F units with a low
SNR. A systematic analysis using three technical metrics
showed that this SNR-aware compression scheme
achieved similar ECRs compared with conventional
fast-acting compression, while the natural fluctuations
in the background noise were preserved in a similar
way as processing the noise components with a conven-
tional slow-acting system. Future work will quantify the
subjective benefit of the SNR-aware compression scheme
by performing behavioral listening tests.
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Note

1. The speech detection performance of the first two frequency

channels was relatively poor, probably because of the high

temporal resolution of 10ms which limited the frequency

resolution and caused the first two octave filters to be

based on only up to five discrete Fourier transform bins.

As a consequence, the estimated signal-to-noise ratio was

less reliable, which limited the speech detection
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performance. Thus, the signal-to-noise ratio estimate of the
third channel (500Hz) was used for the first two channels,
for which nevertheless individual thresholds were found as

described in the Parameters subsection.
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