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Advances in genomics, proteomics, and structural genomics have identified a large number of protein targets. Virtual

screening has gained popularity in identifying drug leads by computationally screening large numbers of chemicals

against experimentally determined protein targets. In that context, there continues to be a ‘‘target-rich and lead-poor’’

imbalance, reflecting an insufficiency of chemists pursuing drug discovery in academia, the challenge of engaging more

chemists in this area of research, and a paucity of available protein target structures. This imbalance in manpower and

structural information can be ameliorated, in part, by adapting a ‘‘genome-to-drug-lead’’ approach, in which chemicals

can be virtually screened against computer-predicted protein targets, within the context of the US National Science

Foundation’s petascale computing initiative. This approach offers a solution to reduce manpower requirements for more

chemists to experimentally search for drug leads, which represent one of the greatest limitations to drug discovery and

better exploits the extensive availability of drug targets at the gene level, ultimately improving the success of moving

discoveries from the laboratory to the patient.

TARGET-RICH AND LEAD-POOR

The completion of the Human Genome Project in 2003 and
recent advances in proteomics and the Structural Genomics
Initiative have identified a large number of human proteins
as drug targets whose activities can be specifically affected
by traditional small organic molecules (chemicals).1–3 The
human genome has advanced our understanding of the
scientific basis of individual variations, and those variations
caused by single-nucleotide polymorphism have further
increased the number of potential drug targets to an
estimated 5,000 (http://www.bio-itworld.com/archive/100902/
firstbase.html). At the same time, the number of chemicals
generated by traditional and contemporary approaches has
increased dramatically. In theory, there could be as many as
1047 quadrillion chemicals that can be made to interact with
human protein targets.4

To test this myriad of chemicals, computational screening
(virtual screening) can be pursued by iteratively docking each
chemical into the active site of a protein target to identify
drug leads.5–8 Identification is based on the evaluation of the
fitness between the two molecules in terms of their shapes
and charges. Virtual screening has gained popularity in

identifying drug leads with potencies of less than 100 mM by
screening chemicals against a protein structure determined by
single-molecule X-ray crystallography or nuclear magnetic
resonance spectroscopy. In theory, virtual screening is scalable
computationally and could yield the desired balance between
available therapeutic targets and the identification of drug
lead compounds. However, there remains a ‘‘target-rich and
lead-poor’’ imbalance. Why?

One obvious reason is that, relative to biologists, there is a
paucity of organic/medicinal chemists in academia who are
supported to experimentally identify drug leads. This
situation could be ameliorated by policies directing support
to this endeavor. However, a change in policy to support
more chemists pursuing drug research will not immediately
correct the imbalance. Skilled organic/medicinal chemists are
expensive and require time for adequate training, reflecting
their need for tacit, rather than explicit, knowledge to create
chemicals as potential drugs. It typically takes 4–6 years of
training to acquire the tacit knowledge required for drug
design and organic synthesis. Therefore, in the context of the
shortage of organic/medicinal chemists to search experimen-
tally for drug candidates, computational approaches offer a
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solution to better balance the availability of therapeutic
targets and the identification of drug leads.

Technically, virtual screening appears to offer a viable
solution to optimize therapeutic drug candidate discovery. A
one-teraflops computer is able to perform 31.536� 1018 float
point operations per year. In a highly simplified scenario, a
dedicated one-teraflops computer in a year could screen 200
million chemicals for each of the 5,000 protein targets, in a
year. This scenario assumes that it takes 31.536� 106 float
point operations to screen one chemical against a protein
target at a resolution of 1.0-Å translational increment in a
3� 3� 3-Å3 docking box and 101 of arc rotational increment
in the x, y, and z directions.9 According to the US National
Science Foundation’s petascale science and engineering
initiative (http://www.nsf.gov/pubs/2005/nsf05625/nsf05625.
htm), in 2010 a one-petaflop computer will perform
31.536� 1021 float point operations, with a theoretical
capacity to screen 200 billion chemicals for each of the 5,000
protein targets, in a year. Although 200 billion chemicals are a
small fraction of 1047 quadrillion chemicals, this is more than
the number of chemicals tested for the development of any
clinical therapeutic developed to date.

Although this computational approach clearly offers a
solution to better balance the availability of drug targets and
the identification of therapeutic lead candidates in the
current drug discovery/development paradigm, there are
limitations to this virtual screening model. Many human
protein targets, especially those with variations caused by
single-nucleotide polymorphism, currently do not have
three-dimensional (3D) structures defined. This lack of 3D
protein structure for targets prohibits the application of
virtual screening to identify lead drug candidates. In that
context, a new approach is required.

THE GENOME-TO-DRUG-LEAD APPROACH

Whereas several approaches can be employed to define 3D
protein structures, the primary method is to experimentally
determine structures of globular proteins bearing unique
folds through the Structural Genomics Initiative.3 A
complementary method is to predict 3D protein structures
from their sequences. By combining improved low- and high-
resolution conformational sampling methods, 1.5-Å-resolu-
tion structure prediction has been achieved for small protein
domains with less than 85 amino acids.10

This advance and our own protein modeling experience
described below suggest that virtual screening can be
expanded to screen chemicals against protein targets whose
active site-containing domain or subdomain is predicted
computationally, an ambitious approach we term ‘‘genome-
to-drug-lead’’.11 To illustrate feasibility, we built a dedicated
1.1 teraflops computer (Figure 1) to run multiple molecular
dynamics simulations (MMDSs) in parallel. The stochastic
sampling of protein conformations achieved by MMDSs is
more efficient than sampling by a single long molecular
dynamics simulation.12–17 The efficiency of the stochastic
sampling is demonstrated by MMDSs of the ubiquitin E2

variant domain of human tumor susceptibility gene 101
protein in complex with a peptide ligand in explicit water.18

Here, the MMDSs comprise 200 different 10-ns molecular
dynamics simulations (2� 106 snapshots) of the complex for
which nuclear magnetic resonance data are available.18 The
trajectories obtained during the first 5 ns period of the
MMDSs reproduce B92% of the protein–protein nuclear
Overhauser effects and B85% of the protein–peptide nuclear
Overhauser effects (YP Pang and P Dasgupta, unpublished
data). Given this sampling efficiency, MMDSs could refine a
low-resolution protein domain, which is readily obtained
from homology modeling or threading, to a high-resolution
protein domain. For example, MMDSs refined a homology
model, provided by the Protein Structure Prediction Centre
(http://predictioncenter.org/caspR/), to a computer model
that was nearly identical to the corresponding crystal
structure (Protein Data Bank ID: 1XE1). Relative to the
1XE1 crystal structure, the alpha carbon root mean square
deviation of the computer model was 1.7 Å, whereas the
alpha carbon root mean square deviation of the homology
model was 4.6 Å (Figure 2, unpublished work of Pang).

In the context of this advanced performance, we applied
homology modeling and MMDSs to predict a 3D model of a
chymotrypsin-like cysteine proteinase (CCP) from a severe
acute respiratory syndrome-associated coronavirus.11,17 CCP
is an ideal drug target for treating severe acute respiratory
syndrome viral infection because it is required for viral
replication and transcription. Here, 200 different molecular
dynamics simulations of monomeric CCP in explicit water
(4.0 ns for each simulation with a 1.0 fs time step and
different initial velocities) were executed to refine the
homology model.11,17 Then, we screened 361,413 chemicals
against the CCP model refined by MMDSs and identified 12
chemicals for antiviral testing. Of the 12 chemicals tested in
cell-based inhibition assays, one inhibited the human severe
acute respiratory syndrome–coronavirus Toronto-2 strain
with a concentration of ligand that produces half of the

Figure 1 Kibbutz100, a homemade 1.1 teraflops supercomputer for virtual

screening and multiple molecular dynamics simulations.
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maximum response of 23 mM and four others exhibited
13–17% inhibition at a drug concentration of 32 mM.11 The
most potent inhibitor lead overlays well with a reported
substrate fragment (ATVRLQp1Ap1’) bound in the active site
of CCP (Figure 3)17. These results demonstrate that, given
target information at the gene level only, virtual screening can
identify chemicals that penetrate and rescue cells from viral
infection. It is noteworthy that this genome-to-drug-lead
approach leapfrogs the requirements for experimental
determination of protein target structure and cell-free assays
to confirm molecular interactions.

Interestingly, CCP exists in a homodimer in which only
one of the two monomers is active.19 Thus, simulation of
monomeric CCP may lead to a structure that is not
representative of the active CCP. In fact, many protein
targets are functional only in a multimeric form. With target
information at the gene level only, it is difficult to deduce the
precise multimeric form required for the function of the
protein target, let alone the challenge of simulating proteins
in their multimeric forms. This problem appears to mitigate
against the use of the genome-to-drug-lead approach.
However, information concerning ternary structure is not

required if virtual screening is searching for inhibitors (not
activators) of protein targets. Indeed, an inhibitor lead
identified from the inactive, monomeric CCP binds to the
monomeric CCP, and possibly to the dimeric CCP as well.
While binding to dimeric CCP can certainly inhibit CCP,
binding to monomeric CCP also can inhibit CCP because the
dimer is in equilibrium with the monomer and binding to
the monomer can convert the active dimeric CCP to the
inactive monomeric CCP. This explains why a 23 mM inhibitor
lead was successfully identified using the inactive monomeric
CCP in virtual screening.

While virtual screening identified compounds that
inhibited CCP activity in cell-based assays, this approach
did not empirically validate model predictions by examining
direct molecular interactions in cell-free systems. However, a
screen using the same CCP model but contracted by 12%
(Figure 4) failed to identify the 23 mM inhibitor (Figure 5).11

Moreover, it identified two weak inhibitors that are
structurally very similar to the 23 mM inhibitor.11 These
observations demonstrate that the identification of a drug
lead is sensitive to a change of the structure used in virtual
screening, implying the interaction of the lead with CCP, and
thereby confirms the validity of virtual screening using the
inactive monomeric CCP. Further, it demonstrates that
leapfrogging the cell-free assay has the advantage of avoiding
identification of both toxic inhibitors and inhibitors that
have high affinities for CCP but cannot penetrate cells.

The best CCP inhibitor lead has a concentration of ligand
that produces half of the maximum response of only 23 mM,
which raises the question of its utility. Using the traditional
trial-and-error approach, it is certainly difficult to improve

Figure 2 Overlays of a crystal structure (green, Protein Data Bank ID: 1XE1)

with a homology model (yellow, CASP6 model T0196TS451_1) and with

a model refined from the homology model (red), respectively.

Figure 3 Overlay of the 23 mM inhibitor with a substrate fragment

(ATVRLQp1Ap1’) bound in the active site of CCP.
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the potency of a 100 mM lead by several orders of magnitude.
For this reason, the definition of a drug lead is commonly
defined as a chemical possessing an inhibitory potency less
than 50 mM. However, using MMDSs to guide structural
modification, we improved an inhibitor lead of a zinc
endopeptidase in botulinum neurotoxin serotype A from
15% inhibition at a drug concentration of 100 mM to 19%
inhibition at 2.5 mM.20 This demonstrates that the 23 mM

inhibitor is useful as a drug lead, especially because its
potency was determined by a cell-based assay. It also suggests
that a drug lead can be re-defined as a chemical possessing an
inhibitory potency less than 100 mM.

To further appreciate the value of drug leads obtained
from virtual screening, it is worth discussing the goal of
virtual screening because this goal may differ among research
groups and change over time. In 2000, our goal of virtual
screening was to identify a subset of chemicals enriched in
active inhibitors5 based on the gigaflops (109 floating point
operations per second) computing technology available then.
In 2006, we have the same goal, even though 3.8 teraflops
(3.8� 1012 floating point operations per second) computing
technology has become available. The goal has not changed
because terascale (1012 floating point operations per second)
computers remain insufficiently fast to identify drug
candidates. Drug discovery relies on organic/medicinal
chemists who have the tacit knowledge to create chemicals
as drug candidates with the aid of fast computers. We do not
anticipate that virtual screening can identify drug candidates
that are ready for preclinical studies. Rather, we expect that
virtual screening can offer drug leads as building blocks for
drug candidates. Virtual screening cannot create new
chemicals, but organic chemists can use leads as building
blocks to create new chemicals. That is the value of drug leads
obtained from virtual screening.

An unusually large computing resource was used to search
for CCP inhibitors. Would the genome-to-drug-lead ap-
proach be practical for a typical academic research labora-
tory? Indeed, it is practical for several reasons. First, the cost

of a 2.2 Ghz Intel Xeon processor was $800 in 2002, but is $79
in 2006; similarly a 1.0 teraflop computer was $400,000 in
2002, but can be built for less than $50,000 in 2006. Second,
to screen 23,426 chemicals (at a resolution of 1.0 Å
translation and 101 of arc rotation) for CCP inhibitors, our
in-house docking program EUDOC/BLEUDOK9 can reduce
wall-clock time from 242 min by using 396 Xeon processors
(2.2 GHz) on a Beowulf cluster to 13 and 7 min by using
2,048 and 4,096 PowerPC-440 processors (700 MHz) on IBM
Blue Genes/L supercomputers (Figure 6), respectively
(unpublished work of YP Pang, CJ Archer, JS Mcallister, TJ
Mullins, RG Musselman, AE Peters, KW Pinnow, BE Smith,
BA Swartz, and BP Wallenfelt, unpublished data). Third,
according to the US National Science Foundation’s petascale
science and engineering initiative, in 2010 petascale compu-
ters will be made available and the computing technology
used for the CCP inhibitor work will become trivial.

A relatively small database of 361,413 chemicals was used
to identify CCP inhibitors. However, this success of
identifying CCP inhibitor leads from a relatively small library
of chemicals does not address the feasibility of docking
targets with 200 billion chemicals. In that context, data
storage is a common problem in bioinformatics. Do we have
enough disk space to store 200 billion chemicals to be
screened as discussed in the previous section? The answer is
yes. The average disk space to hold one chemical with a
molecular weight in a range of 380–420 is 973 bytes,
according to the database designed by this author. A well-
designed database of 200 billion chemicals is estimated to

Figure 4 Overlay of CCP’s catalytic triad in the original model and the

slightly contracted model that was generated by averaging without RMS fit.
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Figure 5 Chemicals identified by virtual screening using the original model

and the slightly contracted model.

Figure 6 Enabling breakthrough science with IBM Blue Genes/L.
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take 200 terabytes (2� 1014 bytes) of disk space. The cost of
200 terabytes of disk space is $100,000 in 2006 and will
decrease significantly by 2010.

In summary, given advances in protein structure predic-
tion and the change in computing speed, from gigascale in
the past, to terascale in the present, and to petascale in the
near future, it is clear that the genome-to-drug-lead approach
is feasible and has broad application in drug discovery.

IMPACT ON CLINICAL PHARMACOLOGY AND THERAPEUTICS

The potential impact of the genome-to-drug-lead approach
on clinical pharmacology and therapeutics is the increase in
the number of drug candidates that can be identified and
moved from the laboratory into clinical trials. However, the
impact goes further. The genome-to-drug-lead approach
permits the docking of one drug candidate against an array of
human proteins to predict drug interactions and toxicity, and
effectively address individual variations of a drug target
caused by single-nucleotide polymorphism for personalized
medicine. A slight modification of the genome-to-drug lead
approach can dock the computer-identified drug candidate
against human serum albumin to predict protein binding
and, by extension the distribution, of drug candidates.

CONCLUSION

A large number of drug targets and a paucity of organic/
medicinal chemists in academia pursuing drug discovery
research have created a ‘‘target-rich and lead-poor’’ imbal-
ance. Skilled organic/medicinal chemists are expensive and
take time to train and it is difficult to engage more academic
organic/medicinal chemists in drug research to remediate this
imbalance in the short term. Virtual screening can success-
fully identify drug leads against experimentally determined
drug target structures. Given current terascale computers,
and petascale computers in the near future, virtual screening
can be expanded to screen chemicals against target structures
predicted from genes by computers, a paradigm termed
‘‘genome-to-drug-lead’’. This approach can reduce the
formidable manpower requirements for more chemists to
search experimentally for lead compounds, help resolve the
imbalance between disease targets and therapeutic agents,
and, ultimately, enrich the drug development pipeline to
move discoveries from the laboratory into patients.

ACKNOWLEDGMENTS
The author’s work described here was supported by the Defense

Advanced Research Projects Agency (DAAD19-01-1-0322), the US Army

Research Office (DAAD19-03-1-0318), the US Army Medical Research

Acquisition Activity (W81XWH-04-2-0001), the National Institutes of Health

(5R01AI054574-03 and 5R01GM061300-06), the IBM Blue Gene Life

Sciences Center of Excellence, the Mayo Clinic-IBM Center of Excellence,

the High Performance Computing Modernization Program of the US

Department of Defense, the San Diego Supercomputing Center, the

University of Minnesota Supercomputing Institute, the Compaq Medical

Sciences Group, the Jay and Rose Phillips Family Foundation, and the

Mayo Foundation. The opinions or assertions contained herein belong to

the author and are not necessarily the official views of the US Army, the

US Department of Defense, or the National Institutes of Health.

CONFLICT OF INTEREST

The author declared no conflict of interest.

& 2007 American Society for Clinical Pharmacology and Therapeutics

1. Venter, J.C. et al. The sequence of the human genome. Science 291,
1304–1351 (2001).

2. Banks, R.E. et al. Proteomics: new perspectives, new biomedical
opportunities. Lancet 356, 1749–1756 (2000).

3. Burley, S.K. et al. Structural genomics: beyond the Human Genome
Project. Nat. Genet. 23, 151–157 (1999).

4. Chait, E.M. Drug discovery – contemporary small molecule drug
discovery – Tutorial: stacking the deck in favor of drug-like leads. Genet.
Eng. News 22, 34–37 (2002).

5. Perola, E. et al. Successful virtual screening of a chemical database for
farnesyltransferase inhibitor leads. J. Med. Chem. 43, 401–408 (2000).

6. Miller, M.A. Chemical database techniques in drug discovery. Nat. Rev.
Drug Discov. 1, 220–227 (2002).

7. Sousa, S.F., Fernandes, P.A. & Ramos, M.J. Protein–ligand docking:
current status and future challenges. Proteins 65, 15–26 (2006).

8. Hattotuwagama, C.K., Davies, M.N. & Flower, D.R. Receptor–ligand
binding sites and virtual screening. Curr Med Chem 13, 1283–1304
(2006).

9. Pang, Y.-P., Perola, E., Xu, K. & Prendergast, F.G. EUDOC: A computer
program for identification of drug interaction sites in macromolecules
and drug leads from chemical databases. J. Comp. Chem. 22, 1750–1771
(2001).

10. Bradley, P., Misura, K.M. & Baker, D. Toward high-resolution de
novo structure prediction for small proteins. Science 309, 1868–1871
(2005).

11. Dooley, A.J., Shindo, N., Taggart, B., Park, J.G. & Pang, Y.-P. From genome
to drug lead: identification of a small-molecule inhibitor of the SARS
virus. Bioorg. Med. Chem. Lett. 16, 830–833 (2006).

12. Caves, L.S.D., Evanseck, J.D. & Karplus, M. Locally accessible
conformations of proteins – multiple molecular dynamics simulations of
crambin. Protein Sci. 7, 649–666 (1998).

13. Smith, L.J., Daura, X. & van Gunsteren, W.F. Assessing equilibration
and convergence in biomolecular simulations. Proteins 48, 487–496
(2002).

14. Snow, C.D., Nguyen, N., Pande, V.S. & Gruebele, M. Absolute comparison
of simulated and experimental protein-folding dynamics. Nature 420,
102–106 (2002).

15. Zagrovic, B., Snow, C.D., Shirts, M.R. & Pande, V.S. Simulation of folding
of a small alpha-helical protein in atomistic detail using worldwide-
distributed computing. J. Mol. Biol. 323, 927–937 (2002).

16. Oelschlaeger, P., Schmid, R.D. & Pleiss, J. Modeling domino effects in
enzymes: molecular basis of the substrate specificity of the bacterial
metallo-beta-lactamases IMP-1 and IMP-6. Biochemistry 42, 8945–8956
(2003).

17. Pang, Y.-P. Three-dimensional model of a substrate-bound SARS
chymotrypsin-like cysteine proteinase predicted by multiple molecular
dynamics simulations: catalytic efficiency regulated by substrate
binding. Proteins. 57, 747–757 (2004).

18. Pornillos, O., Alam, S.L., Davis, D.R. & Sundquist, W.I. Structure of the
Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6
protein. Nat. Struct. Biol. 9, 812–817 (2002).

19. Chen, H. et al. Only one protomer is active in the dimer of SARS 3C-like
proteinase. J. Biol. Chem. 281, 13894–13898 (2006).

20. Park, J.G. et al. Serotype-selective, small-molecule inhibitors of the zinc
endopeptidase of botulinum neurotoxin serotype A. Bioorg. Med. Chem.
14, 395–408 (2006).

34 VOLUME 81 NUMBER 1 | JANUARY 2007 | www.nature.com/cpt

STATE ART


