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Abstract

Maternally inherited Wolbachia (α-Proteobacteria) are widespread parasitic reproductive manipulators. A growing
number of studies have described the presence of different Wolbachia strains within a same host. To date, no
naturally occurring multiple infections have been recorded in terrestrial isopods. This is true for Armadillidium vulgare
which is known to harbor non simultaneously three Wolbachia strains. Traditionally, such Wolbachia are detected by
PCR amplification of the wsp gene and strains are characterized by sequencing. The presence of nucleotide
deletions or insertions within the wsp gene, among these three different strains, provides the opportunity to test a
novel genotyping method. Herein, we designed a new primer pair able to amplify products whose lengths are specific
to each Wolbachia strain so as to detect the presence of multi-infections in A. vulgare. Experimental injections of
Wolbachia strains in Wolbachia-free females were used to validate the methodology. We re-investigated, using this
novel method, the infection status of 40 females sampled in 2003 and previously described as mono-infected based
on the classical sequencing method. Among these females, 29 were identified as bi-infected. It is the first time that
naturally occuring multiple infections of Wolbachia are detected within an individual A. vulgare host. Additionally, we
resampled 6 of these populations in 2010 to check the infection status of females.
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Introduction

Wolbachia are endosymbiotic α-Proteobacteria, closely
related to the Rickettsia. Wolbachia are highly diversified and
are currently divided into 11 supergroups (A to F and H to L,
and supergroup G which is considered to be a recombination
between A and B) [1-4]. They are mainly maternally inherited
and infect a wide range of nematodes and arthropods [5-7].
Depending on both the bacterial lineage and the host, they may
induce very diverse effects on host reproduction such as
cytoplasmic incompatibility [8], male killing [9], thelytokous
parthenogenesis [10], or feminization of genetic males [11]. All
these manipulations enable the spread of Wolbachia by
decreasing the expected productivity of uninfected females, or
by distorting the sex-ratio in favour of infected females [12].
They can induce reproductive isolation, or even an alteration in
host reproductive ecology [13-15]. As a result, many Wolbachia

are considered to be parasites of reproduction and thus play a
determining role in the infected hosts' evolution.

In 2008, Duron et al. [16] proposed that at least a third of
arthropod species were infected by a diverse assemblage of
maternally inherited bacteria and an important number of
studies seems to indicate that, on both a population and
individual scale, many of these cases of multiple infections
involve different Wolbachia strains [17-19]. For instance, in the
ant Formica exsecta, there can be up to five strains of
Wolbachia within an individual host [12]. Thus, within a host,
various interactions are expected to occur between coexisting
symbionts and these will influence both the life history traits of
the host and the dynamics of symbiont spread [20]. Theoretical
predictions of either coexistence or exclusion of different
strains suggest that if there are two Wolbachia strains inducing
cytoplasmic incompatibility in a population with no co-infected
individuals, the strain with the higher relative fitness will drive
the other out of the population. However, in populations where
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co-infection in individual hosts is observed, uninfected, singly
infected and co-infected hosts can co-occur. Within these
populations, long-term persistence of co-infections may be
possible, during which time both the parasites and the hosts
are probably selected and evolve together to survive [21,22].
Moreover, Ironside et al. [23] proposed that the presence of
two co-occuring feminising parasites in natural populations of
Gammarus duebenii could be possible following either a recent
invasion of a new parasite, a horizontal transmission of one or
both parasites, or the spread of alleles for resistance to the
most dominant parasite in host populations.

In terrestrial isopods (Crustacea, Oniscidea), Wolbachia
induce cytoplasmic incompatibility in three species, Porcellio
dilatatus petiti [24], Porcellio dilatatus dilatatus [25] and
Cylisticus convexus [26] and feminization in many others,
including members of the genus Armadillidium, such as
Armadillidium vulgare [27] and Armadillidium nasatum [28]. In
A. vulgare, two distinct feminizing Wolbachia strains (wVulC
and wVulM) have been identified in various populations [29].
More recently, Verne et al. [30] showed that several natural
populations of A. vulgare presented a third Wolbachia strain
named wVulP. This latter strain showed evidence of
recombination events between wVulC and wVulM that have
occurred on the wsp gene [30]. Although multiple infections
within a given individual host have never been observed in situ,
the presence of different Wolbachia strains in the same
terrestrial isopod host populations and the existence of
recombination between feminizing strains suggest that co-
infections are possible and expected. To date, few studies
[31,32] have investigated the prevalence of Wolbachia in field
populations of A. vulgare. Based on the classical sequencing
method (amplification and sequencing of the wsp gene), these
studies have failed to detect the presence of multiple infections.
Indeed, in this case, only the main PCR product is generally
detected. Thus, this classical methodology seems not suitable
to detect multiple infections. Herein, we designed a novel
method to detect and discriminate the three different Wolbachia
strains known to infect A. vulgare. From the study of Verne et
al. [30], we inferred that several insertion or deletion events
have occurred within the wsp gene fragment. Thus, we
designed a new primer set and, after amplification, different
product sizes are expected with specific lengths for each
Wolbachia strain.

In this paper, we tested the methodology by performing
experimental mono-, bi-, and tri-injections of different
Wolbachia strains in Wolbachia-free A. vulgare hosts. Using
this new method, we also re-investigated the work of Verne et
al. [32] on the prevalence of Wolbachia strains in several
natural populations sampled in 2003. Additionally, we
resampled 6 of these populations in 2010 to follow the
dynamics of Wolbachia strains' prevalence over time. With this
new genotyping method, we reveal for the first time the
occurrence of multiple infections of Wolbachia within individual
A. vulgare hosts originating from natural woodlice populations.

Materials and Methods

Ethic Statement
All experimental procedures and animal manipulations did

not require an ethics statement.

Authorizations for field sampling
No specific permissions were required for the 7 sampled

locations which are public sites. No specific permissions were
required for our activities. We confirm that the field studies did
not involve endangered or protected species.

A novel method to detect and genotype Wolbachia
strains in Armadillidium vulgare

In order to discriminate the three Wolbachia strains known to
infect A. vulgare, we designed a new primer pair able to amplify
products whose lengths are specific to each Wolbachia strain.
To this end, we aligned wsp sequences of each Wolbachia
strain (about 600 bp) found in A. vulgare (wVulC, GenBank
accession number: DQ778095; wVulM, GenBank accession
number: DQ778097; wVulP, GenBank accession number:
DQ778096). Primer 3® software [33] was used to design
forward (5’TGGTGCAGCATATGTAAGCAA3’) and reverse
(5’AAAACTTTGTGTGCGCCTTT3’) primers able to amplify a
shorter PCR product (about 250 bp) which includes the
variable region. PCRs were performed using a Trio-
Thermoblock (BiometraGmBH) in a final volume of 12 μL [0.05
μL Taq polymerase (5 U/μL) (Promega), 2.5 μL of Taq buffer
(5X), 0.5 μL of dNTP (8.3 mM), 0.5 μL of each primer (10 µM)
and 1 μL of DNA template]. PCR cycling profile included an
initial denaturing step of 5 min at 95°C, followed by 35 cycles of
30 s at 95°C, 30 s at 55°C, 1 min at 72°C, and a final step of 5
min at 72°C. The forward primer
5’TGGTGCAGCATATGTAAGCAA3’ was end-labelled with
fluorescent phosphoramidite (6-FAM). The PCR products were
run with the internal size standard GeneScan™- 500 ROX™ on
an ABI PRISM 3130xl® automated sequencer. Allele sizes
were scored using Genemapper® (Applied Biosystems).

Validation of the method by experimental mono- and
multi-injections of Wolbachia strains in A. vulgare

In order to validate the methodology, Wolbachia-free female
A. vulgare were injected with one, two or three strains of
Wolbachia. The Wolbachia inoculates were obtained from host
lineages, originating from 3 natural French populations that
have been maintained in our laboratory for many years (the
Méry-sur-Cher population harbours the wVulM Wolbachia
strain; the St Cyr population harbours the wVulC strain; and the
Poitiers population harbours the wVulP strain). One woodlouse
lineage (from Nice, France) is Wolbachia-free and was used as
a recipient for the experimental injections. Inoculates were
obtained from the ovaries of 5 individuals from each woodlice
line. The ovaries were crushed in 1 mL of Ringer buffer. The
resulting suspensions were filtered through a 1.2 µm pore
membrane to obtain inoculates. Using Quantitative-PCR, we
estimated the Wolbachia concentrations for each inoculate to
be 1.43 x 107, 1.15 x 107 and 3.24 x 107 wsp copy numbers/µL
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for wVulC, wVulM and wVulP, respectively. Wolbachia-free
females of A. vulgare (Nice line) were injected with 1 µL of
inoculate containing either no Wolbachia (negative control),
one of the three Wolbachia strains (wVulM, wVulC or wVulP),
or an equal mix of either two different strains (wVulM/wVulC,
wVulM/wVulP, wVulC/wVulP) or three Wolbachia strains
(wVulM/wVulP/wVulC), using a 10 µL Hamilton needle adapted
with a 1 mm glass capillary. Five females were injected for
each treatment. They were placed at 20°C, at a light-to-dark
photoperiod of 18:6, and dissected 28 days later in order to
isolate their ovaries from which we extracted DNA using the
protocol described in Kocher et al. [34]. Moreover, DNA from
each inoculate was also extracted. We amplified all of these
DNA samples with the newly designed primer pair in order to
compare and verify, on an ABI PRISM 3130xl® automated
sequencer, the sizes of the amplified fragments. This PCR
reaction was carried out in the same conditions as above and
was qualified as the 'novel genotyping method' for Wolbachia
strain detection in A. vulgare.

Field study
In 2003, Verne et al. [32] sampled 7 populations in the West

of France. In these populations, the classical sequencing
method revealed that, among 124 analyzed females, 40 were
mono infected by Wolbachia (i.e. 7 females were infected by
wVulM, 5 females by wVulP and 28 by wVulC) (Table 1). We
used our novel genotyping method in order to re-investigate the
infection status of these females [32]. Moreover, in order to
estimate the evolution dynamics of the different Wolbachia
strains in natural populations of A. vulgare, we resampled, in
2010, 6 of the 7 populations previously analyzed in Verne et al.
[32]. We collected 85 females, extracted the DNA from ovaries
following the protocol described above and then characterized
the infection status using the novel genotyping method (Table
1).

Results

Validation of the methodology
Both primers designed from the alignment of Wolbachia

strain wsp sequences gave specific amplified fragments for
each strain. Thus, we obtained amplification products of 233,
239 and 246 base pairs for wVulM, wVulP and wVulC,
respectively. PCR amplification of the inoculate obtained from
the Wolbachia-free females (Nice line) gave no amplification
product. Results from the injection experiments showed
patterns in accordance with the number and the size of injected
strains. Whatever strain, one peak was observed on
Genemapper® when inoculate was made up of only one strain.
Two peaks were observed for doubly injected individuals, and
three peaks were observed for the individuals injected by
inoculate containing the three strains (Figure 1). No peak was
observed when the individuals were injected by Wolbachia-free
inoculate.

Wolbachia prevalence and dynamics of infection in
natural populations

The results obtained using the novel genotyping method
showed a very high prevalence of bi-infected individuals.
Indeed, in 2003, classical sequencing analysis revealed 40
mono-infected females [32] whereas, from the same females,
the novel genotyping method identified only 11 females as
being mono-infected (i.e. 27.5%) and 29 females as being
infected by both the wVulC and wVulM strains (i.e. 72.5%).
Among the 11 mono-infected females, 4 harboured wVulM
(observed in Poitiers, Beauvoir-sur-Niort and Granzay-Gript), 1
wVulC (observed in Poitiers) and 6 wVulP (observed in
Ensoulesse and Poitiers).

In the comparative sampling carried out in 2010, 51 females
on the 85 analyzed were infected by Wolbachia (Table 1).
Among these, our method reveals that 35 individuals were
mono-infected (12 wVulC and 23 wVulP) and 16 individuals
were bi-infected (12 wVulC/wVulM and 4 wVulP/wVulC). No
females harboured the wVulM strain alone (Table 1). We
detected no bi-infections involving wVulP and wVulM,
regardless of both the population and the sampling year.

Discussion

Multi-infections in A. vulgare
The experimental injections of different Wolbachia strains

performed in the present study revealed that genotyping allows
an evident discrimination of the three strains in A. vulgare
which are characterized by specific amplified fragment sizes.
This methodology is also very efficient to reveal multi-infections
in A. vulgare from both experimental strain injections and
individuals sampled in the field. Verne et al. [32] reported only
mono-infected females based on sequencing analyses. Here,
using the novel genotyping method to reanalyze the same
samples, it would appear that multiple infections in A. vulgare
are rather common with high proportions of bi-infected females
(72.5%). Although co-infection of different Wolbachia strains in
a single individual is commonly found in arthropods [18,35-38],
this is the first time that doubly infected individuals have been
observed in natural population of terrestrial isopods. This result
is not really surprising as several recent studies have
suggested that horizontal transfers of Wolbachia in A. vulgare
may explain both the discordance between A. vulgare and
Wolbachia phylogenies [32] and the presence of the
recombinant strain wVulP [30]. Indeed, for recombination to
occur, two strains need to be in close contact. Such proximity is
possible if an individual host is infected by several strains.
Previous studies have reported that haemolymph contact,
predation and parasitism are possible routes for horizontal
transfers of Wolbachia in A. vulgare [39-41]. Haemolymph
contacts may be more frequent than previously thought, due to
the fact that woodlice populations are often densely populated,
and because of the abundance of injured individuals as a result
of predations [42,43] or incidents during molting [39]. Thus, a
given Wolbachia strain could spread through a population
through such horizontal transfers and infect individuals already
infected by another Wolbachia strain.
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In 2003, all of the bi-infected females contained both the
wVulC and wVulM strains but no bi-infections involving the

wVulP strain was observed. This result is consistent with the
prevalence of these strains in natural populations. Indeed, the

Figure 1.  Chromatograms obtained from experimental injections of the different Wolbachia strains.  Chromatograms are
obtained respectively when inoculate was made up of: A) no Wolbachia strain; B) wVulM strain; C) wVulP strain; D) wVulC strain; E)
wVulM and wVulP strains; F) wVulM and wVulC strains; G) wVulP and wVulC strains; H) wVulM, wVulP and wVulC strains. Size
markers appear in red. Wolbachia appear in blue. The fragment sizes for wVulM, wVulP and wVulC are 233, 239 and 246 bp
respectively.
doi: 10.1371/journal.pone.0082633.g001
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Wolbachia strains wVulC and wVulM were more frequently
observed in situ than the wVulP strain [32,40].

The Co-infection: a transition phase?
In theory, the co-existence of several feminizers within the

same individual is unstable at equilibrium [44]. When two
feminizing Wolbachia strains are in competition within the same
host, the strain with the higher fitness is fixed [45]. Based on
our results, it is difficult to give any firm conclusions concerning
the evolution of Wolbachia strain prevalence between 2003
and 2010 , but we can expect that the wVulC strain will
progressively replace the wVulM in the near future. Indeed,
according to Cordaux et al. [29], wVulM is considered as a
resident strain, with a transmission rate to the offspring lower
than that of wVulC, this last strain being considered as an
invasive strain. Recent experimental studies from challenged
woodlice reveal that wVulC has a higher development rate than
wVulM within the host tissue, suggesting that wVulC strain
could be the most virulent and dominant strain (Johnson,
unpublished data).

The wVulP Wolbachia strain is considered to be a recent
strain resulting from the recombination of wVulC and wVulM
[30]. According to evolutionary theory, it is expected that this
strain would have a higher fitness than the others, leading to an
increase in its prevalence in natural populations.. A follow up of
the A. vulgare populations and their Wolbachia infection status
could allow us to verify this hypothesis.

Conclusion

One of the main problems in the detection and
characterization of different Wolbachia strains in A. vulgare
was the absence of a rapid, inexpensive screening tool. Herein,

we describe a novel PCR-based approach allowing the
discrimination between wVulC, wVulM and wVulP on the basis
of different amplification sizes by genotyping. For the first time,
our study reports the presence of multiple Wolbachia strain
infections in natural populations of A. vulgare, suggesting that
such multiple infections are much more frequent than
previously thought. Whether the presence of two different
Wolbachia strains in a single individual is the result of
horizontal transfer, hybrid introgression or co-divergence, as
has recently been shown in other species complexes, awaits
investigation although elements here support the idea of
horizontal transfers. Additionally, three species closely related
to A. vulgare, A. tunisiense, A. pelagicium, A. nasatum have
showed amplification pattern corresponding to mono infected
individuals suggesting that this technique could be efficient to
check the infected status in several isopods species.

The method presented here offers new perspectives in the
detection of multiple infections in natural populations of A.
vulgare and related species and will also be invaluable in
studies of infection dynamics after micro-injections of several
strains in Wolbachia-free female hosts.
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