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ABSTRACT	 Objective: Epigenetic aberration plays an important role in the development and progression of hepatocellular carcinoma (HCC). 

However, the alteration of RNA N6-methyladenosine (m6A) modifications and its role in HCC progression remain unclear. We 

therefore aimed to provide evidence using bioinformatics analysis.

Methods: We comprehensively analyzed the m6A regulator modification patterns of 605 HCC samples and correlated them with 

metabolic alteration characteristics. We elucidated 390 gene-based m6A-related signatures and defined an m6Ascore to quantify 

m6A modifications. We then assessed their values for predicting prognoses and therapeutic responses in HCC patients.

Results: We identified 3 distinct m6A modification patterns in HCC, and each pattern had distinct metabolic characteristics. The 

evaluation of m6A modification patterns using m6Ascores could predict the prognoses, tumor stages, and responses to sorafenib 

treatments of HCC patients. A nomogram based on m6Ascores showed high accuracy in predicting the overall survival of patients. 

The area under the receiver operating characteristic curve of predictions of 1, 3, and 5-year overall survivals were 0.71, 0.69, and 

0.70 in the training cohort, and in the test cohort it was 0.74, 0.75, and 0.71, respectively. M6Acluster C1, which corresponded 

to hypoactive mRNA methylation, lower expression of m6A regulators, and a lower m6Ascore, was characterized by metabolic 

hyperactivity, lower tumor stage, better prognosis, and lower response to sorafenib treatment. In contrast, m6Acluster C3 was 

distinct in its hyperactive mRNA methylations, higher expression of m6A regulators, and higher m6Ascores, and was characterized 

by hypoactive metabolism, advanced tumor stage, poorer prognosis, and a better response to sorafenib. The m6Acluster, C2, was 

intermediate between C1 and C3.

Conclusions: HCCs harbored distinct m6A regulator modification patterns that contributed to the metabolic heterogeneity and 

diversity of HCC. Development of m6A gene signatures and the m6Ascore provides a more comprehensive understanding of m6A 

modifications in HCC, and helps predict the prognosis and treatment response.
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Introduction

Hepatocellular carcinoma (HCC) is highly malignant and is 

characterized by a high recurrence rate, drug resistance, and 

poor prognosis. Many biological alterations, known as cancer 

hallmarks, occur during cancer development and progression, 

including but not limited to metabolic, immunogenic, and 

proliferative changes. It is therefore essential to understand 

what drives these dysregulations and how to deal with them1-5.

How RNA modification promotes cancer development has 

recently drawn attention6. N6-methyladenosine (m6A) is 

the most abundant RNA modification in eukaryotic cells7,8. 

Three types of proteins are responsible for m6A modifica-

tion, i.e., writers, erasers, and readers, by adding, removing, or 

recognizing m6A-modified sites and altering important bio-

logical processes, respectively9,10. Many m6A regulators have 

been identified, including METTLs, WTAP, KIAA1429, and 

PC1F1 as writers; FTO, ALKBH5, and ALKBH3 as erasers; and 

YTHDFs, YTHDCs HNRNP, and IGF2BPs11,12 as readers13-21. 
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Abnormal modification patterns of m6A regulation have been 

linked to cancer hallmarks such as the epithelial-mesenchymal 

transition (EMT), invasion, metastasis, and drug resistance 

of various cancers22-28. Notably, a recent study revealed that 

m6A modification can regulate the tumor microenvironment 

(TME) and can be decisive in determining the response to 

PD-1 antibody22,29,30. Altered m6A regulation patterns have 

been reported in HCC. Dysregulations of m6A regulators, 

including YTHDF2, WATP, KIAA1429, and YTHDF1, have 

been shown to facilitate HCC growth and progression31-35. 

However, an overall description of the m6A modification pat-

terns in HCC is lacking, and how these patterns influence bio-

logical behaviors, especially whether there is a preferred bio-

logical process targeted by m6A regulation in HCC, remains 

elusive.

Metabolism alterations consist of important hallmarks and 

contribute to the heterogeneity of cancer. Such alterations 

are driven by a combination of genetic lesions and nonge-

netic factors. For example, pathway activation, TME, and 

even deoxidation and an acidic environment will alter cancer 

cell metabolism and facilitate its development and progres-

sion36,37. However, there has been no specific study focused 

on how m6A regulates cancer metabolism. A few studies of 

cancer cells or non-cancer cells have revealed that m6A is able 

to modulate metabolism. In colorectal carcinogenesis, meth-

yltransferase METTL3 is able to stabilize GLUT1, and further 

enhance glycolysis38. In the liver, m6A RNA methylation is 

important for circadian regulation of downstream genes and 

lipid metabolism, and METTL3 knockdown is able to increase 

lipid metabolism through upregulating PPARA39. Moreover, 

in skeletal muscle cells, an inverse correlation between m6A 

methylation level and cellular lipid droplets was found40. 

Collectively, these results indicate a novel mechanism for driv-

ing metabolic alterations in cancer.

In this study, we identified 3 distinct m6A modification 

patterns in HCC, with distinct expression levels of m6A reg-

ulators. We elucidated m6A gene signatures and defined an 

m6Ascore to quantify the m6A modification pattern and 

established its value in predicting prognosis and therapeutic 

responses of HCC patients.

Material and methods

HCC data source and preprocessing

Public gene expression data, copy number variation data, 

DNA methylation data, and clinical annotations were collected 

from The Cancer Genome Atlas (TCGA) database, the Gene-

Expression Ominibus (GEO), and the International Cancer 

Genome Consortium (ICGC). Patients without survival infor-

mation were excluded. In total, 4 cohorts were enrolled in this 

study: TCGA-LIHI (369 samples), ICGC-LIRI-JP (225 sam-

ples), GSE14520 (221 samples), and GSE109221 (67 samples). 

For RNA-seq data (TCGA and ICGC cohorts), fragments per 

kb of transcript per million mapped reads [FPKM-normalized, 

log2-transformed data were downloaded from respective web-

sites (https://icgc.org/, https://portal.gdc.cancer.gov/)] and then 

merged into one meta-cohort after removing the batch effect 

via the “sva” R package. Somatic mutation data were acquired 

from TCGA database. GEO microarray data were downloaded 

from the GEO website (https://www.ncbi.nlm.nih.gov/geo/) with 

the R package “geoquery.” The raw data in .CEL files were read 

and processed via the “limma” R package, and the gene expres-

sion levels were quantile-normalized (flowchart).

Unsupervised clustering for m6A regulators

Twenty-three m6A regulators were identified via word-min-

ing from PubMed, including 8 writers (METTL3, METTL14, 

RBM15, RBM15B, WTAP, KIAA1429, CBLL1, and ZC3H13), 

2 erasers (ALKBH5 and FTO), and 13 readers (YTHDC1, 

YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, 

IGF2BP3, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, and 

ELAVL1), which were included in this study. We chose the 

m6A regulators based on word-mining from published 

reports, mostly from PubMed, and identified m6A regula-

tors in HCC, including WTAP, YTHDF1, YTHDF2, YTHDF3, 

FTO, KIAA1429, YTHDF1, METTL3, METTL14, ALKBH5, 

YTHDC1, YTHDC2, and HNRNPA2B112,31-35,41,42, containing 

13 of the 23 m6A regulators that were included in our study. 

These regulators were comprised of writers, erasers, and read-

ers and were sufficient for the following analyses43,44. For a 

complete overall description of m6A regulators dysregulated 

in HCC, we included other m6A regulators that had not yet 

been linked to HCC, but had been linked to other cancers, e.g., 

breast cancer or gastric cancer.

Clustering was performed in the meta-cohort merged from 

TCGA-LIHC cohort and the ICGC-LIRI-JP cohort to avoid 

different data distribution between RNAseq and microarray 

derived data. R package “Nbcluster” was used to determine the 

optimum number of clusters, with the following: min.nc = 2, 

max.nc = 15, and method = “kmeans.” R package “Kmeans” 

was used to perform K-means clustering and decided the clus-

ter with: centers = 3, nstart = 25.

https://icgc.org/
https://portal.gdc.cancer.gov/
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Unsupervised clustering for metabolic 
subgroups in HCC

Gene set variation analysis (GSVA) enrichment scores for 50 

metabolism-associated pathways were used for clustering. The 

metabolism-associated pathways (Supplementary Table S3) 

were selected from gene sets (e.g., GOBP, KEGG, and Biocarta) 

downloaded from the molecular signature database (MsigDB) 

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The same  

procedures used to derive the m6Aclusters were used to per-

form the k-means clustering for the metabolic subgroups in 

HCC.

GSVA and functional annotation

To investigate the differences in biological process between 

m6Aclusters with m6A modification patterns, we performed 

GSVA enrichment analysis using the “GSVA” R package45. 

GSVA, which is based on a nonparametric and unsupervised 

method, is commonly used to estimate variations in the activ-

ities of pathways and biological processes in samples from an 

expression dataset. The KEGG, GOBP, and HALLMARK gene 

sets were downloaded from the MSigDB database to run the 

GSVA analysis. Adjusted values of P < 0.05 were considered 

statistically significant. The “clusterProfiler” R package was 

used to perform functional annotation for m6A gene signa-

tures or other genes with a cutoff value of FDR < 0.05.

Identification of differentially expressed genes 
(DEGs) between m6A distinct phenotypes

To identify m6A-related genes, we classified the patients into 

3 distinct m6A modification patterns based on the expression 

levels of 21 m6A regulators. The empirical Bayesian approach 

in the “limma” R package was used to determine DEGs 

between different modification patterns. The significance cri-

teria for determining DEGs was set at an adjusted value of P < 

0.05, log2 fold change > 1, or < −1.

Definition of m6A gene signatures and 
m6Ascores

We defined an m6Ascore to quantify the m6A modification 

pattern in HCC as follows. Univariate COX regression anal-

ysis was performed on the DEGs between 3 m6Aclusters with 

different m6A regulator modification patterns. Genes with sig-

nificant prognoses were extracted for further analysis and were 

named m6A gene signatures. We then divided the genes into 

2 groups according to the hazard ratio (HR) with a cut-off of 

HR = 1. Next, all genes were scaled between -1 to 1 to decrease 

the effect of gene expression values on the m6Ascore. We then 

defined the m6Ascore as the difference between the sum of the 

group with HR > 1 and the sum of group with HR < 1:

= − ∈ ∈∑ ∑6  
i j

m Ascore Xi Yj X Ci Y Cj

where Ci is the collection of scaled expression levels of m6A 

gene signatures with HR > 1, and Cj is the collection of scaled 

expression levels of m6A gene signatures with HR < 1.

Connection between m6A regulator 
modification pattern clusters and other 
molecular stratifications in HCC

Alluvial diagrams were used to show the connections between 

m6A modification patterns and other molecular stratifications 

in HCC, including metabolic subgroups, tumor-node-metas-

tasis (TNM) stage, iCluster, and iHCC. TCGA reported 3 inte-

grated HCC clusters (i.e., iCluster1 to iCluster3). These clusters 

included a poor prognosis subtype (iCluster1), which had a 

gene expression profile closely resembling that of the progeni-

tor cell subclass tumors, and a lower grade subtype (iCluster2), 

which included CTNNB1 mutations and less frequent micro-

vascular invasions. The third TCGA cluster, iCluster3, gener-

ated a TP53 signature associated with chromosomal instability 

and poor prognosis46. Bidkhori et al.47 reported metabolic net-

work-based stratification of HCC, with levels named iHCC1, 

iHCC2, and iHCC3. The iHCC1 and iHCC2 displayed upreg-

ulated metabolic biology, including glutamine metabolism, 

lipid metabolism and transport, and oxidative demethylation. 

The iHCC3 was not metabolically hyperactive, but it displayed 

upregulation of multiple processes associated with cell pro-

liferation, cell cycle progression and mitosis, development, 

chromosome segregation, cytoskeleton organization, immune 

responses, DNA replication, and recombination.

Statistical analysis

Correlation coefficients were computed as Pearson’s correla-

tions with R; survival analysis and Kaplan-Meier curves were 

generated with the “survival” R package, and log-rank tests 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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were performed to examine significance. We adopted a uni-

variate COX regression model to compute the HR of genes 

and a multivariate COX regression model to compute the 

HR of prediction factors, including m6Ascore and other clin-

ical traits with the “survival” R package. Receiver operating 

characteristic (ROC) curves and AUC values (area under the 

ROC curve) for the regression model were quantified using 

the “pROC” R package. All statistical P values were two-tailed, 

with P < 0.05 set as statistically significant. All data process-

ing was conducted using R 3.6.3 software (The R Project for 

Statistical Computing, Vienna, Austria).

Results

Landscape of the genetic variations in m6A 
regulators in HCC

A total of 23 m6A regulators, including 8 writers, 2 erasers, 

and 13 readers, were examined in TCGA-LIHC cohort. We 

summarized the differences in the expression levels of the 

m6A regulators between tumor and non-tumor liver tissues. 

There was a remarkable upregulation of m6A regulators in 

tumor tissues compared with that in non-tumor liver tissues; 

furthermore, principle component analysis (PCA) confirmed 

a clear heterogeneity in the m6A regulator expression patterns 

between tumor and non-tumor liver tissues (Figure 1A, 1D). 

An investigation of copy number variation (CNV) showed a 

prevalent alteration of CNV in m6A regulators (Figure 1B). 

Regulators such as ZC3H13, METTL14, ALKNH5, FTO, 

YTHDC1, YTHDF2, and WTAP showed a majority of loss 

in alterations of CNV, while YTHDF3, CBLL1, IGF2BP1/3, 

HNRNPA2B1, KIAA1429, and YTHDF1 were mainly char-

acterized by gain alterations. However, these results did not 

fully explain the upregulation of m6A regulators (Figure 1A), 

because gain/loss changes in m6A regulator genes were evenly 

distributed. Notably, analyses of 450K DNA methylation data 

of HCCs revealed a hypomethylation state of most m6A reg-

ulators, including those with a loss alteration of CNV, such 

as METTL14, ALKBH5, and FTO, which might have been 

the cause of hyperexpression of m6A regulators (Figure 1C). 

Based on the expression of m6A regulators, we could easily 

distinguish tumor tissues from normal tissues (Figure 1D). 

The expression patterns of m6A regulators were highly corre-

lated with each other, as visualized in the cyclized plot show-

ing correlations > 0.5 or < -0.3 (Figure 1E). Univariate COX 

regression model analyses showed that most m6A regulators 

were risk factors for a poorer prognosis, except for METTL14, 

ZC3H13, YTHDC2, and FMR1, which were protective factors 

for HCC (with HR < 1). At the genome stability level, only a 

few somatic mutations were detected in the m6A regulator-en-

coding genes in HCC, because only 41 out of 357 TCGA-

LIHC cohort samples carried mutations. The most mutated 

m6A regulator gene was KIAA1429, with a percentage of 

1% (Figure 1F). These results emphasized the highly diverse 

nature of the m6A regulator expression landscape in HCC, 

and showed that this variability had important effects on HCC 

prognosis and progression.

The m6A methylation modification patterns in 
HCC

A meta-HCC cohort consisted of 605 samples from TCGA-

LIHC cohort and the ICGC-LIRI-JP cohort, and was used 

to make full use of the available data. Notably, only 20 of 23 

m6A regulators were included in the clustering process, where 

IGF2BP families were removed as a result of data restriction. 

We next characterized the m6A regulator modification pat-

tern in HCC. After k-means clustering, we identified 3 clusters 

with distinct m6A expression patterns, i.e., m6Aclusters C1−

C3 (Figure 2A). The expression levels of the m6A regulators 

varied among the clusters. In general, clusters C1 and C3 had 

the lowest and highest m6A regulator expression levels, respec-

tively. Clusters C1 and C2 mostly differed in their levels of m6A 

readers, such as YTHDCs and YTHDFs, while clusters C1 and 

C3 mostly differed in their levels of writers, such as WTAP and 

METTL13 (Figure 2B). We calculated the GSVA enrichment 

scores of the 3 clusters based on the mRNA methylation gene 

signatures in GOBP, to evaluate how m6A regulator expression 

patterns affected mRNA methylation. Cluster C1 and C3 had 

the lowest and highest mRNA methylation enrichment scores, 

respectively (Figure 2C), confirming that the differences in 

m6A regulator expression levels in the m6Aclusters affected the 

mRNA methylation levels. PCA analysis confirmed the robust-

ness of the existence of these 3 patterns by showing that the 3 

clusters could be categorized into 3 distinct groups (Figure 2A, 

2D). Next, we determined how the m6A expression patterns 

affected the prognosis. We found that patients in the 3 clusters 

differed in overall survival (OS). Patients in clusters C1 and C2 

had relatively better prognoses compared with those in cluster 

C3 (Figure 2E). These results indicated that there were differ-

ent modification patterns of m6A RNA methylation in HCC, 

and that these patterns had prognostic value.
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Figure 1  Expression and genetic landscapes of m6A regulators in hepatocellular carcinoma (HCC). A. Expression levels of m6A regulators 
in tumors and para-tumor normal tissues in HCC. All values are log2-transformed, fragments per kilobase of transcript per million mapped 
reads-normalized counts. B. Copy number variation frequency of 23 m6A regulators in The Cancer Genome Atlas (TCGA) cohort. C. Beta value 
of DNA methylation of 23 m6A regulators in TCGA cohort. D. Principle component analysis plot of the m6A regulator expression levels in tum-
ors and para-tumor normal tissues. E. Cyclized plot showing the interaction between m6A regulators in HCC. Arcs represent Pearson’s correla-
tions with R > 0.5 or R < -0.3, and the boldness of the arcs represents the Pearson’s correlation R value; the vertex color represents the hazard 
ratio of each m6A regulator on overall survival, and the circle size is relative to the hazard ratio. F. Somatic mutations in m6A regulator genes 
in TCGA cohort. Each column represents a patient with an m6A regulator mutation, and the upper panel shows the tumor mutation burden.

Metabolic characteristics are distinct between 
m6A modification patterns

It is widely accepted that m6A regulators play roles in a 

variety of biological functions, including dysregulated cell 

death and proliferation, tumor malignancy, and immune 

modifications. To compare the biological functions affected 

by m6A regulator modification patterns among these clus-

ters, we performed GSVA enrichment analysis with MsigDB 

gene sets. As shown in Figures 3 and Supplementary Figure 

S1, compared with the C3 cluster, clusters C1 and C2 were 

active in metabolic processes such as adipogenesis, fatty acid 
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metabolism, and other carbohydrate or amino acid meta-

bolic processes. In contrast, cluster C3 was enriched in meth-

ylation processes, regulation of the cell cycle, and prolifer-

ation processes (Figure 3A and 3B). We also computed the 

differentially-expressed genes (DEGs) among clusters and 

functionally annotated them. Consistently, KEGG annota-

tion for the DEGs between clusters C1, C2, and C3 revealed 

similar outcomes to previous findings (Figure 3C). In the 

top 30 terms, we found an accumulation of terms related 

to metabolic pathways and cell cycles. To further compare 

metabolic biology processes, we compared the GSVA enrich-

ment scores of metabolism-associated gene sets between 

the m6Aclusters, and found that cluster C1 was hyperactive 

in carbohydrate, lipid, and amino acid metabolism, while 
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cluster C3 was hypoactive (Figure 3D, 3E, and 3F). These 

observations indicated that m6A regulators negatively regu-

lated the metabolic state in HCC. These results also revealed 

a distinct metabolic pattern in HCC, which was related to 

m6A modification patterns. Compared with clusters C1 and 

C2, cluster C3, which showed hypoactive metabolism, was 

more closely associated with hyperactivity in the cell cycle 

and proliferation functions.

Metabolic reprogramming is a well-established hallmark 

of cancer. In HCC, metabolism, especially lipid metabolism is 

associated with OS48. To characterize the association between 

m6A modification patterns and metabolic alterations in HCC, 
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we first word-mined PubMed for the target genes of m6A reg-

ulators in HCC or HCC-derived cell lines, which yielded 17 

direct targets (Supplementary Table S1). A full annotation is 

shown in Supplementary Table S2. Gene annotation revealed 

an enrichment of terms related to metabolic homeostasis and 

cell division. The metabolism-related terms, among which 
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carbohydrate metabolism and cholesterol metabolic processes 

ranked at the top, are shown as Supplementary Figure S2. 

These results indicated that m6A regulators had a role in alter-

ing metabolic processes in HCC.

Next, we stratified the HCC samples based on the GSVA 

enrichment scores of 50 metabolism-associated biological pro-

cesses mined from GO, KEGG, and BIOCARTA gene signatures 

centered on 4 major metabolic processes, i.e., carbohydrate 

(glucose) metabolism, lipid metabolism, amino acid meta-

bolism, and other metabolism (Supplementary Table S3). 

Using the same k-means clustering method, we identified 3 

clusters with different metabolic patterns in HCC (Figure 

4A). By comparing the Euclidean distances of each major 

metabolic process in the 3 clusters, we found that lipid 

metabolism was the most highly altered metabolic process 

(Figure 4B). Moreover, clusters 1 and 3 had the lowest and 
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highest enrichment scores for lipid metabolism, respectively. 

Accordingly, we termed clusters 1, 2, and 3 as the lipid meta-

bolism low group (LML), the lipid metabolism intermediate 

group (LMI), and the lipid metabolism high group (LMH), 

respectively, (Figure  4A). Comparison of the GSVA enrich-

ment scores of different biological processes among these 3 

metabolic clusters showed similar differentially enriched bio-

logical processes to those observed in the m6Aclusters. More 

specifically, in the hypermetabolic LMH and LMI clusters, 

the differentially enriched biological processes were mostly 

related to metabolism, while for the hypometabolic LML 

cluster, cell cycle-related biological processes were enriched 

(Supplementary Figure S3). Furthermore, to validate the dif-

ferences in the m6A regulator modification patterns among 

the metabolic subgroups, we compared the m6A regulator 

expression levels and enrichment scores of mRNA methyl-

ation between the metabolic subgroups. This comparison 

revealed that the LML cluster had the highest expression level 

of m6A regulators and the highest mRNA methylation enrich-

ment score, while the LMH cluster had the lowest m6A regu-

lator expression level and the lowest methylation enrichment 

score (Figure 4C, 4D). These observations indicated a negative 

correlation between m6A methylation and metabolic activ-

ity. Prognosis analyses showed a poorer OS in LML patients 

(Figure 4E). Collectively, these results showed that there was 

a close relationship between the m6A regulator modification 

pattern and metabolic processes in HCC.

Generation and functional annotation of 
m6A gene signatures and definition of the 
m6Ascore

To further investigate the potential biological behaviors related 

to m6A regulator modification patterns, we generated m6A 

gene signatures and defined the m6Ascore using the follow-

ing procedure. First, we identified the DEGs among the 3 

m6Aclusters, then we discarded genes with univariate COX 

regression analysis P values > 0.05, leaving 390 genes as m6A 

signature genes. Univariate COX analysis of the DEGs is shown 

in Supplementary Table S4. Next, all m6A signature genes were 

normalized between -1 to 1, and the difference between the sum 

of the m6A signature genes with HR > 1 and the sum of the 

m6A signature genes with HR < 1 was calculated as the m6As-

core. The m6A gene signature reflected the intergroup differ-

ences among the m6Aclusters, because expression of the m6A 

gene signatures perfectly delineated 3 m6Aclusters within HCC; 

furthermore, the m6Ascore was highly correlated to the mRNA 

methylation enrichment score (Figure 5A, annotation panel).

Functional annotation of the m6A gene signatures showed 

remarkable enrichments in biological processes related to 

methylation and metabolism (Supplementary Figure S4B, 

S4C). To further investigate how the m6A gene signatures 

altered biological functions, we calculated Pearson’s corre-

lations between the m6Ascore and the GSVA enrichment 

scores of 7,980 biological processes in the GOBP database. 

The excluded mRNA-related biological processes with the 

highest correlations with m6Ascore are shown in Figure 5B. 

These results showed that metabolic processes were strongly 

and negatively correlated with m6Ascore (Figure 5B, 5C), 

while cell cycle-related processes were positively correlated 

(Figure 5B). Overall, these results suggested significant roles 

for m6A regulators in metabolic regulation.

Characteristics of clinical and therapeutic 
traits in m6Ascore clusters

We divided the HCC samples into an m6Ascore high cluster 

and an m6Ascore low cluster using the median m6Ascore as 

the cutoff. We then constructed an alluvial diagram to better 

visualize the patient attributes in existing HCC stratification 

methods (Figure 5D), which included a metabolic gene net-

work-stratified method (iHCC) and a multi-platform inte-

grative molecular subtype (iCluster)46. This analysis showed 

that m6Acluster C3 robustly corresponded with the LML clus-

ter, higher m6Ascores, stage iii/iv, iHCC3, and iCluster 1, as 

generated by other stratification methods. We compared the 

m6A regulator expression levels between the m6Ascore low 

and m6Ascore high groups to ensure that the scoring system 

reflected the m6A regulator modification pattern in HCC 

(Figure 5E, 5F). This analysis revealed clear hyperexpres-

sion of m6A regulators and elevated mRNA methylation in 

the m6Ascore high group compared with these values in the 

m6Ascore low group.

Next, we further established the value of the m6Ascore in 

predicting patient outcomes, to investigate the connection 

between m6Ascores and clinical demographics. To test the 

m6Ascore in an alternative approach, we applied survival 

analysis in the meta cohort and validated it in a microarray-

derived cohort (GSE14520). By using the median m6Ascore of 

each cohort as cutoffs, we divided the patients into an m6As-

core low group and an m6Ascore high group. The m6Ascore 

low patients had better OS compared with m6Ascore high 
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patients in both the training cohort and in an independent 

validation cohort (GSE14520) (Figure 6A, 6B). We also tested 

whether m6Ascores could be used as an independent prog-

nostic biomarker for HCC. A multivariate COX regression 

model including age, m6Ascore, and stage confirmed m6As-

core as a robust and independent prognostic marker for eval-

uating patient outcomes (HR = 1.33~2.55, Supplementary 

Figure S5A). Moreover, a nomogram integrating the m6Ascore 

(high vs. low), stage, and age was constructed (Figure 6C). The 

point totals were calculated by adding up all points assigned 

to each factor. This nomogram was accurate in predicting OS. 

The AUC values for predicting 1, 3, and 5-year OS in the meta 

cohort were 0.71, 0.69, and 0.70, respectively, and in GSE14520 

they were 0.74, 0.75, and 0.71, respectively (Figure 6D, 6E). In 

addition to survival, comparisons of other clinical traits showed 

that patients in the m6Ascore high group were younger and 

had higher stages (both stage T and TNM stage) (Figure 6F, 6G 

and 6H). These results confirmed that m6Ascore reflected both 

clinical and prognostic traits.

Next, we specifically examined the ability of the m6Ascore 

to predict the efficacy of sorafenib treatment. A total of 67 

patients from the STORM cohort and 17 patients from TCGA 

cohort under sorafenib treatment were included in this analy-

sis. In TCGA cohort, no significant differences were observed 

between the progressive disease (PD) and partial recession/sta-

ble disease (PR/SD) groups or between the m6Ascore high and 

m6Ascore low groups, probably due to the limited sample size; 

however, a weak tendency for PD patients and m6Ascore high 

patients to have a poorer OS was observed (Supplementary 

Figure S5B, S5C). Surprisingly, we found that m6Ascore low 

patients showed a higher response rate to sorafenib compared 

with m6Ascore high patients (Figure  6I, 6J). These results 

indicated that although m6Ascore high patients may had a 

higher response rate to sorafenib, this difference might not 

have affected the OS.

Discussion

Increasing evidence supports a close link between m6A regu-

lators and metabolic processes, including lipid39,49-51 and glu-

cose metabolism38,52-54 in cancer and non-cancerous diseases. 

However, most of these studies focused on a single regulator, 

and the overall influence of m6A regulators on metabolism 

has not been fully established. Identification of the roles of 

m6A modification patterns in metabolic alterations in HCC 

will improve our understanding of the roles of m6A regulators 

and the metabolic heterogeneity of HCC, providing novel 

opportunities for developing effective therapies.

Overall, a significantly different expression pattern between 

tumor and para-tumor normal tissues was identified. Tumor 

tissues had a much higher expression of m6A methyltrans-

ferases than normal tissues, which is highly consistent with gas-

tric cancer, breast cancer, glioma, colon cancer, and pancreatic 

cancer55. The expression difference was not caused by somatic 

mutations or copy number variations; unlike leukemia, clear 

cell renal cell carcinoma, and colorectal cancer, whose dysreg-

ulations of m6A methyltransferases may be caused by somatic 

mutations56-58. In HCC, these genes are rarely mutated, indi-

cating that the expression alteration was not caused by somatic 

mutation. Regarding CNV, gain or loss alterations are preva-

lent among m6A regulators, which indicated that CNV might 

affect the expression in some ways. However, gain/loss was dis-

tributed equally among regulators, and the data were not con-

vincing enough to conclude that CNV caused the upregulation 

of m6A regulators in HCC. Notably, we found a demethylation 

state of most m6A regulators, which may partially explain the 

expression difference between tumor and normal tissues.

In the present study, by focusing on 20 m6A regulators, we 

defined 3 distinct m6A modification patterns in HCC that cor-

related with different metabolic states. Cluster C1 comprised 

the lowest expressed m6A regulators and lowest mRNA meth-

ylation level, and correlated with the highest metabolic activ-

ity. Cluster C2 was associated with intermediately expressed 

m6A regulators and intermediate mRNA methylation, and 

correlated with moderate metabolic activity. Cluster C3 was 

associated with the highest expression levels of m6A regulators 

and highest mRNA methylation, and correlated with the low-

est metabolic activity. Among all major metabolic categories, 

lipid metabolism was the most heterogeneous in HCC and had 

the strongest correlation with m6Ascore, suggesting that lipid 

metabolism was the most likely target of m6A regulators in 

HCC. Prognosis analyses show that C1 patients have the long-

est OS, while C3 patients have the shortest, which is consist-

ent with a previous finding that lipid-metabolic active HCC 

patients have better prognoses and lower tumor grades46,47.

While analyzing the data, we observed an interesting phe-

nomenon in a variety of solid tumors, e.g., breast cancer, 

lung cancer, and ovarian cancer, where lipid metabolism was 

hyperactive, while in the liver cancer it was relatively hypo-

active26,27,59-62. Moreover, hypoactive lipid metabolism was 

associated with a worse prognosis and advanced tumor stage, 

indicating that lipid metabolism played an anti-cancer role. 
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This conclusion is confusing, because it is a prevalent opinion 

that lipid metabolism is pro-cancerous and is able to improve 

cancer progression. However, our finding was confirmed by 

other studies47,48. It is widely accepted that liver cells are the 

most hypermetabolic somatic cells. The metabolic level of the 

liver consists of two parts. Hepatocytes not only participate in 

their own cellular metabolism, but they also process foreign 

nutrients. We speculate that carcinogenesis and progression of 

HCC cells are accompanied by a gradient loss of metabolic 

abilities and a gain of other biological abilities such as cell 

division and DNA replication. This conclusion was consistent 

with our findings that LML cluster HCC was dominant in bio-

logical processes such as cell cycle or cell division, while LMH 

and LMI cluster HCC was dominant with metabolic process 

featured by liver cells (i.e., low-density lipoprotein remode-

ling, and intestinal cholesterol absorption). This is an interest-

ing and novel theory, which requires confirmation.

By elucidating m6A gene signatures and defining the 

m6Ascore, we could more precisely correlate the mRNA tran-

scriptomics differences to modification patterns of 3 m6A 

regulators. Functional annotation of these signatures showed 

enrichment in metabolism (especially lipid metabolism), which 

further established that m6A modification patterns shaped the 

metabolic state of HCC. For quantitation, we defined a scor-

ing system, i.e., the m6Ascore, to evaluate the influence of m6A 

modification patterns on HCC. The output of this scoring sys-

tem correlated with mRNA methylation levels, m6A regulator 

expression levels, and metabolic states, supported by the obser-

vation that the C1 cluster had the lowest score and the C3 cluster 

had the highest score, as well as by the differences in the expres-

sion levels of m6A regulators between m6Ascores of low and 

high HCC. Integrated analyses also showed that the m6Ascore 

was an independent prognostic biomarker in HCC, and clin-

ical traits (e.g., higher TNM stage and younger age) were sig-

nificantly correlated with higher m6Ascores. Collectively, these 

results showed that the m6Ascore was a reliable and robust tool 

for evaluating m6A modification patterns in HCC.

We determined the value of the m6Ascore in predicting 

patient responses to sorafenib therapy. In the STORM cohort, 

patients with high m6Ascores had a stronger response to 

sorafenib treatment, when compared with those of patients 

with low m6Ascores. However, no significant difference was 

observed in sorafenib-treated patients in TCGA cohort, which 

might be due to limited data. We also observed that HCC with 

high m6Ascores also had a high PR/SD percentage, when com-

pared with that of HCC with low m6Ascores. This result indi-

cated that the m6A modification pattern might have affected 

drug resistance in HCC. Further research on these aspects, 

especially on the mechanism linking the m6A modification 

pattern and sorafenib response, is urgently needed.

This study had some limitations. First, although many studies 

have revealed a positive relationship between m6A methyltrans-

ferases and mRNA m6A methylation63-67, the data still require 

validation by experiments such as m6Aseq, LC-MS, or MeRIP 

seq. However, due to data restriction, such validation was not 

possible in this study. Second, data using the GSVA enrichment 

score of metabolic associated pathways to evaluate the metabolic 

state were suggestive, but not definitive. Some metabolic path-

ways, such as fatty acid synthesis and fatty acid oxidation, might 

have inverse effects on oncogenesis. Due to their high overlap-

ping genes, their GSVA enrichment scores may be similar. Hence, 

studies evaluating the effects of m6A regulators on key metabolic 

enzymes are urgently needed. Finally, due to the limitation of 

treatment response data, the response rate to sorafenib treatment 

was not convincing enough, and required further validation.

Conclusions

Our findings provided new insight into the roles of m6A 

regulators in regulating biological processes and influencing 

the metabolic heterogeneity of HCC. Moreover, our results 

also led to novel concepts for improving patient responses to 

sorafenib treatment and for increasing treatment precision.
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