

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Hydroxy-5-[(*E*)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl-3,10-diazahexacyclo[10.7.1.1^{3,7}.0^{2,11}.0^{7,11}.0^{16,20}]henicosa-1(20),12,14,16,18-pentaen-6one

Abdulrahman I. Almansour,^a Raju Suresh Kumar,^a Natarajan Arumugam,^a Hasnah Osman^b and J. Suresh^c*

^aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Physics, The Madura College, Madurai 625 011, India

Correspondence e-mail: ambujasureshj@yahoo.com

Received 24 October 2012; accepted 10 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.137; data-to-parameter ratio = 21.7.

In the title compound, $C_{40}H_{34}N_2O_2$, the central piperidine ring adopts a half-chair conformation and the fused pyrrolidine rings adopt twisted envelope (with the C atom bearing the methylphenyl ring as the flap atom) and envelope (with the C atom bound to the N atom, common to the pyridinone and pyrrolidine rings being the flap atom) conformations. The molecular structure features weak intramolecular $N-H\cdots O$ and $C-H\cdots O$ interactions. In the crystal, $O-H\cdots O$ hydrogen bonds generate a C(7) chain along the *b*-axis direction. $C-H\cdots O$ interactions also occur.

Related literature

For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For similar structures, see: Kumar *et al.* (2010, 2011, 2012). For the importance of pyrrolidine, see: Asano *et al.* (2000); Shorvon (2001); Watson *et al.* (2001); Winchester & Fleet (1992). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{40}H_{34}N_2O_2$ $M_r = 574.69$

Monoclinic, $P2_1/c$ a = 14.0679 (2) Å

b = 7.7245 (1) A	
c = 26.9686 (3) Å	
$\beta = 92.596 \ (1)^{\circ}$	
V = 2927.60 (7) Å ³	
Z = 4	

Data collection

Bruker Kappa APEXII	33520 measured reflections
diffractometer	8777 independent reflections
Absorption correction: multi-scan	6575 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.047$
$T_{\min} = 0.973, \ T_{\max} = 0.978$	
Refinement	

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.054 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.137 & \text{independent and constrained} \\ S = 1.02 & \text{refinement} \\ 8777 \text{ reflections} & \Delta\rho_{\max} = 0.48 \text{ e } \text{\AA}^{-3} \\ 404 \text{ parameters} & \Delta\rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.82	2.02	2.7828 (15)	155
$C1 - H1A \cdots O2^{ii}$	0.97	2.46	3.3040 (16)	145
C57−H57 <i>B</i> ···O1	0.96	2.59	3.3859 (18)	141
$N2-H2A\cdots O2$	0.92 (2)	2.27 (2)	2.8016 (18)	117 (2)

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Research Center, College of Science, King Saud University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2453).

References

- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). *Tetrahedron* Asymmetry, **11**, 1645–1680.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o3045.
- Kumar, R. S., Osman, H., Rahim, A. S. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o2881–o2882.
- Kumar, R. S., Osman, H., Almansour, A. I., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2094–o2095.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shorvon, S. (2001). Lancet, 358, 1885-92.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). *Phytochemistry*, 56, 265–295.
- Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.21 \times 0.15 \times 0.13 \text{ mm}$

T = 293 K

Acta Cryst. (2012). E68, o3375 [doi:10.1107/S160053681204648X]

2-Hydroxy-5-[(*E*)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl-3,10-diazahexacyclo[10.7.1.1^{3,7}.0^{2,11}.0^{7,11}.0^{16,20}]henicosa-1(20),12,14,16,18-pentaen-6one

Abdulrahman I. Almansour, Raju Suresh Kumar, Natarajan Arumugam, Hasnah Osman and J. Suresh

Comment

The pyrrolidine ring system has been the subject of research for more than three decades. Many natural and synthetic compounds with pyrrolidine moieties have received much attention because of their remarkable biological properties (Shorvon, 2001; Watson *et al.*, 2001; Asano *et al.*, 2000; Winchester *et al.*, 1992). Recognizing the importance of such compounds in drug discovery and as a part of our ongoing research in the construction of novel heterocycles, has prompted us to investigate the 1,3-dipolar cycloaddition of bisarylmethylidene pyridinones with azomethine ylide generated *in situ* from acenaphthenequinone and proline, we and report the crystal structure of the resulting pyrrolidine cyclo-adduct in this paper.

In the title compound, $C_{40}H_{34}N_2 O_2$, the piperidine ring (N1/C1—C4/C9) adopts a half-chair conformation [Q = 0.6188 (2) Å, $\theta = 142.52$ (2)°, $\varphi = 123.6$ (2)°; Cremer & Pople, 1975] which is in close agreement with those of the other related structures (Kumar *et al.* 2010; Kumar *et al.*2011; Kumar *et al.* 2012). The two fused pyrrolidine rings with atom sequences (N1/C4/C7—C9) and (N2/C4—C7), adopt a twisted envelope conformation (C9 atom as the flap) and an envelope conformation (C5 atom as the flap) respectively. The puckering parameters are Q = 0.4648 (15) Å, $\varphi = 325.20$ (19)° for the N1/C4/C7—C9) pyrrolidine ring and Q = 0.3918 (16) Å, $\varphi = 77.9$ (2)° for the (N2/C4—C7) pyrrolidine ring. In the structure, the aryl ring C22—C27 is not coplanar with the mean plane of the piperidone ring [torsion angle C1—C2 —C21—C22 is 5.77 (3)]°, which is due to non-bonded interactions between one of the *ortho* H atoms in the aryl ring and the equatorial H atom at the 2-position of the piperidone ring (H12A/H1A or H1B).

The molecular structure features weak intra-molecular N—H···O and C—H···O interactions. Intermolecular O2— H2···O1 bonds form an infinite one-dimensional chain parallel to the *b* axis, in a $C_1^{1}(7)$ motif (Bernstein *et al.*, 1995).

Experimental

A mixture of 3,5-bis[(E)-(2-methylphenyl)methylidene]tetrahydro-4(1*H*)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenylglycine (1 mmol) were dissolved in methanol (5 ml) and refluxed in a water bath for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from ethyl acetate. Yield 89%, melting point 212–213°C

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å and O— H = 0.82 Å. $U_{iso} = 1.2U_{eq}(C)$ for CH CH₂ groups and $U_{iso} = 1.5U_{eq}(C)$ for OH and CH₃ groups.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A packing diagram viewed roughly down the *a*-axis, showing the H-bond motif $C_1^{1}(7)$.

2-Hydroxy-5-[(*E*)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl- 3,10diazahexacyclo[10.7.1.1^{3,7}.0^{2,11}.0^{7,11}.0^{16,20}]henicosa- 1(20),12,14,16,18-pentaen-6-one

Crystal data

C₄₀H₃₄N₂O₂ $M_r = 574.69$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 14.0679 (2) Å b = 7.7245 (1) Å c = 26.9686 (3) Å $\beta = 92.596$ (1)° V = 2927.60 (7) Å³ Z = 4

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.2 pixels mm⁻¹ ω and φ scans F(000) = 1216 $D_x = 1.304 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2000 reflections $\theta = 2-31^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.21 \times 0.15 \times 0.13 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.973$, $T_{max} = 0.978$ 33520 measured reflections 8777 independent reflections 6575 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.047$	$k = -10 \rightarrow 10$
$\theta_{\rm max} = 30.4^\circ, \ \theta_{\rm min} = 1.5^\circ$	$l = -38 \rightarrow 38$
$h = -20 \rightarrow 19$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
8777 reflections	and constrained refinement
404 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0605P)^2 + 1.2845P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.48 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
H2A	0.1618 (13)	-0.048 (3)	0.1407 (7)	0.021 (5)*
C1	-0.08779 (9)	0.3112 (2)	0.19923 (5)	0.0140 (3)
H1A	-0.0948	0.3696	0.2307	0.017*
H1B	-0.1485	0.2587	0.1897	0.017*
C2	-0.06395 (9)	0.4456 (2)	0.16030 (5)	0.0138 (3)
C3	0.03856 (9)	0.4691 (2)	0.14943 (4)	0.0130 (3)
C4	0.10336 (9)	0.31845 (19)	0.16240 (5)	0.0120 (3)
C5	0.20821 (9)	0.34675 (19)	0.15125 (5)	0.0123 (3)
Н5	0.2092	0.3925	0.1174	0.015*
C6	0.24693 (9)	0.1597 (2)	0.14945 (5)	0.0136 (3)
H6	0.2609	0.1174	0.1833	0.016*
C7	0.07621 (9)	0.15392 (19)	0.13098 (5)	0.0116 (3)
C8	-0.00249 (9)	0.06007 (19)	0.16306 (5)	0.0124 (3)
С9	0.07764 (9)	0.2551 (2)	0.21505 (5)	0.0139 (3)
H9A	0.1241	0.1725	0.2282	0.017*
H9B	0.0740	0.3515	0.2379	0.017*
C10	-0.08848 (9)	0.0412 (2)	0.12769 (5)	0.0135 (3)
C11	-0.06725 (9)	0.1136 (2)	0.08159 (5)	0.0133 (3)
C12	0.02524 (9)	0.18289 (19)	0.08079 (5)	0.0127 (3)
C13	0.05395 (10)	0.2586 (2)	0.03803 (5)	0.0167 (3)
H13	0.1141	0.3078	0.0367	0.020*
C14	-0.01019 (11)	0.2604 (2)	-0.00437 (5)	0.0202 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14	0.0096	0.3098	-0.0336	0.024*
C15	-0.10010 (10)	0.1918 (2)	-0.00362(5)	0.0196 (3)
H15	-0.1397	0.1938	-0.0322	0.024*
C16	-0.13281 (10)	0.1180 (2)	0.04057 (5)	0.0163 (3)
C17	-0.22466 (10)	0.0493 (2)	0.04838 (5)	0.0201 (3)
H17	-0.2712	0.0515	0.0228	0.024*
C18	-0.24517 (10)	-0.0208(2)	0.09376 (6)	0.0206 (3)
H18	-0.3058	-0.0645	0.0981	0.025*
C19	-0.17692(10)	-0.0282(2)	0.13393 (5)	0.0170 (3)
H19	-0.1917	-0.0790	0.1639	0.020*
C21	-0.12729 (9)	0.5353 (2)	0.13163 (5)	0.0152 (3)
H21	-0.1016	0.6046	0.1074	0.018*
C22	-0.23170(9)	0.5386(2)	0.13336 (5)	0.0159 (3)
C23	-0.27629(10)	0.5428 (2)	0.17870 (5)	0.0184 (3)
H23	-0.2399	0.5296	0.2081	0.022*
C24	-0.37414(10)	0.5663(2)	0.18048 (6)	0.0233(3)
H24	-0.4026	0.5730	0.2109	0.028*
C25	-0.42886(10)	0.5797(2)	0.13671 (6)	0.020 0.0257(4)
H25	-0 4944	0.5943	0.1376	0.031*
C26	-0.38589(10)	0.5714(2)	0.09141 (6)	0.0235(3)
H26	-0.4235	0.5781	0.0622	0.0235 (3)
C27	-0.28759(10)	0.5731 0.5533 (2)	0.08876 (5)	0.020
C28	-0.24307(11)	0.5535(2) 0.5548(3)	0.00070(5)	0.0240(3)
H28A	-0.24307 (11)	0.5402	0.0133	0.0240 (5)
H28R	-0.1979	0.4620	0.0135	0.036*
H28C	-0.2112	0.4020	0.0346	0.036*
C51	0.2112 0.26701 (0)	0.0033	0.0340 0.18202 (5)	0.030°
C51	0.20791(9) 0.28521(10)	0.4081(2)	0.18393(3) 0.23427(5)	0.0144(3)
U52	0.28521 (10)	0.4233 (2)	0.23427(3) 0.2476	0.0193(3)
C52	0.2372 0.24227(11)	0.5323	0.2470	0.023°
C33	0.34327(11) 0.2548	0.5541 (5)	0.20400 (0)	0.0243 (4)
H33	0.3340 0.29270 (11)	0.5050	0.2981	0.029°
C34	0.38370(11)	0.0813(2) 0.7522	0.24302 (0)	0.0242 (3)
H54	0.4210	0.7555	0.2039	0.029^{*}
055	0.30/10(10)	0.7212(2)	0.19578(0)	0.0215(3)
HSS	0.3942	0.8206	0.1830	0.026^{*}
C56	0.31087(9)	0.6156 (2)	0.16419 (5)	0.0162(3)
057	0.301/9 (10)	0.6591 (2)	0.10950 (5)	0.0214 (3)
H5/A	0.3332	0.7671	0.1037	0.032*
H57B	0.2357	0.6686	0.0993	0.032*
H57C	0.3307	0.5692	0.0908	0.032*
C61	0.33606 (9)	0.1507 (2)	0.11991 (5)	0.0140 (3)
C62	0.42569 (10)	0.1631 (2)	0.14398 (5)	0.0176 (3)
H62	0.4307	0.1691	0.1784	0.021*
C63	0.50781 (10)	0.1664 (2)	0.11694 (6)	0.0216 (3)
H63	0.5672	0.1750	0.1334	0.026*
C64	0.50103 (10)	0.1570 (2)	0.06563 (6)	0.0222 (3)
H64	0.5558	0.1591	0.0475	0.027*
C65	0.41180 (10)	0.1444 (2)	0.04118 (5)	0.0211 (3)
H65	0.4069	0.1382	0.0067	0.025*

C66	0.33007(10)	0 1409 (2)	0.06832 (5)	0.0176(3)	
H66	0.2708	0.1319	0.0518	0.021*	
N1	-0.01604 (8)	0.17311 (17)	0.20624 (4)	0.0136 (2)	
N2	0.16681 (8)	0.06105 (18)	0.12630 (4)	0.0148 (2)	
01	0.06835 (7)	0.60208 (15)	0.13039 (4)	0.0166 (2)	
O2	0.03037 (7)	-0.09871 (14)	0.18344 (3)	0.0162 (2)	
H2	0.0298	-0.1727	0.1616	0.024*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0134 (5)	0.0153 (7)	0.0134 (6)	0.0008 (5)	0.0025 (4)	-0.0012 (5)
C2	0.0136 (5)	0.0135 (7)	0.0143 (6)	-0.0004 (5)	0.0016 (4)	-0.0029 (5)
C3	0.0138 (5)	0.0159 (7)	0.0092 (5)	-0.0001 (5)	0.0002 (4)	-0.0025 (5)
C4	0.0118 (5)	0.0132 (7)	0.0108 (5)	0.0000 (5)	0.0002 (4)	-0.0006 (5)
C5	0.0117 (5)	0.0135 (7)	0.0119 (5)	0.0002 (5)	0.0002 (4)	-0.0007 (5)
C6	0.0121 (5)	0.0158 (7)	0.0127 (5)	0.0008 (5)	-0.0003 (4)	0.0000 (5)
C7	0.0116 (5)	0.0122 (7)	0.0109 (5)	0.0004 (5)	0.0007 (4)	-0.0009 (5)
C8	0.0134 (5)	0.0130 (7)	0.0109 (5)	-0.0002 (5)	0.0014 (4)	0.0005 (5)
C9	0.0143 (5)	0.0166 (7)	0.0109 (5)	-0.0003 (5)	0.0005 (4)	-0.0016 (5)
C10	0.0137 (5)	0.0126 (7)	0.0142 (6)	0.0008 (5)	0.0003 (4)	-0.0016 (5)
C11	0.0148 (5)	0.0131 (7)	0.0121 (5)	0.0010 (5)	0.0004 (4)	-0.0024 (5)
C12	0.0146 (5)	0.0121 (7)	0.0115 (5)	0.0012 (5)	0.0006 (4)	-0.0021 (5)
C13	0.0171 (6)	0.0188 (8)	0.0143 (6)	-0.0002 (6)	0.0027 (5)	-0.0002 (6)
C14	0.0259 (7)	0.0240 (9)	0.0109 (6)	0.0033 (7)	0.0018 (5)	0.0017 (6)
C15	0.0239 (7)	0.0224 (8)	0.0122 (6)	0.0059 (6)	-0.0034 (5)	-0.0011 (6)
C16	0.0173 (6)	0.0162 (7)	0.0151 (6)	0.0025 (6)	-0.0021 (5)	-0.0039 (6)
C17	0.0159 (6)	0.0220 (9)	0.0218 (7)	0.0012 (6)	-0.0048 (5)	-0.0062 (6)
C18	0.0147 (6)	0.0216 (8)	0.0255 (7)	-0.0025 (6)	0.0006 (5)	-0.0049 (6)
C19	0.0169 (6)	0.0167 (7)	0.0175 (6)	-0.0023 (6)	0.0038 (5)	-0.0022 (6)
C21	0.0137 (6)	0.0158 (7)	0.0163 (6)	0.0006 (6)	0.0020 (4)	-0.0006 (6)
C22	0.0138 (6)	0.0144 (7)	0.0197 (6)	0.0007 (6)	0.0016 (5)	-0.0003 (6)
C23	0.0178 (6)	0.0180 (8)	0.0198 (6)	0.0013 (6)	0.0033 (5)	0.0000 (6)
C24	0.0186 (6)	0.0236 (9)	0.0282 (7)	0.0004 (6)	0.0080 (5)	-0.0007 (7)
C25	0.0138 (6)	0.0261 (9)	0.0373 (9)	0.0003 (6)	0.0031 (6)	0.0000 (7)
C26	0.0167 (6)	0.0239 (9)	0.0293 (8)	-0.0004 (6)	-0.0043 (5)	0.0018 (7)
C27	0.0163 (6)	0.0163 (8)	0.0215 (7)	0.0008 (6)	-0.0004 (5)	0.0009 (6)
C28	0.0237 (7)	0.0296 (10)	0.0187 (7)	0.0060 (7)	0.0003 (5)	0.0008 (7)
C51	0.0117 (5)	0.0157 (7)	0.0158 (6)	-0.0001 (5)	0.0009 (4)	-0.0035 (5)
C52	0.0183 (6)	0.0236 (8)	0.0165 (6)	-0.0053 (6)	0.0004 (5)	-0.0009 (6)
C53	0.0227 (7)	0.0336 (10)	0.0170 (6)	-0.0058 (7)	-0.0006 (5)	-0.0054 (7)
C54	0.0197 (6)	0.0270 (9)	0.0256 (7)	-0.0039 (7)	-0.0016 (5)	-0.0110 (7)
C55	0.0174 (6)	0.0176 (8)	0.0296 (8)	-0.0025 (6)	0.0007 (5)	-0.0030 (7)
C56	0.0127 (5)	0.0156 (7)	0.0203 (6)	0.0012 (6)	0.0015 (5)	-0.0012 (6)
C57	0.0201 (6)	0.0212 (8)	0.0227 (7)	-0.0030 (6)	-0.0003 (5)	0.0056 (6)
C61	0.0123 (5)	0.0129 (7)	0.0167 (6)	0.0017 (5)	0.0001 (4)	0.0000 (5)
C62	0.0157 (6)	0.0200 (8)	0.0169 (6)	0.0008 (6)	-0.0013 (5)	0.0001 (6)
C63	0.0126 (6)	0.0255 (9)	0.0265 (7)	0.0003 (6)	-0.0011 (5)	-0.0006 (7)
C64	0.0159 (6)	0.0252 (9)	0.0260 (7)	0.0004 (6)	0.0064 (5)	-0.0039 (7)
C65	0.0205 (6)	0.0260 (9)	0.0172 (6)	0.0006 (7)	0.0038 (5)	-0.0035 (6)

C66	0.0148 (6)	0.0221 (8)	0.0158 (6)	0.0006 (6)	-0.0002 (5)	-0.0023 (6)	
N1	0.0140 (5)	0.0158 (6)	0.0109 (5)	-0.0001 (5)	0.0009 (4)	-0.0016 (5)	
N2	0.0119 (5)	0.0143 (6)	0.0183 (5)	0.0006 (5)	0.0005 (4)	-0.0024 (5)	
01	0.0160 (4)	0.0152 (5)	0.0188 (5)	0.0001 (4)	0.0024 (3)	0.0014 (4)	
02	0.0228(5)	0.0121 (5)	0.0137 (4)	0.0018 (4)	0.0008(4)	0.0007 (4)	

Geometric parameters (Å, °)

C1—N1	1.4750 (18)	C21—C22	1.4720 (18)
C1—C2	1.524 (2)	C21—H21	0.9300
C1—H1A	0.9700	C22—C23	1.3997 (19)
C1—H1B	0.9700	C22—C27	1.4113 (19)
C2-C21	1.3451 (19)	C23—C24	1.3916 (19)
C2—C3	1.4956 (17)	C23—H23	0.9300
C3—01	1.2303 (18)	C24—C25	1.384 (2)
C3—C4	1.510(2)	C24—H24	0.9300
C4—C5	1.5343 (17)	C25—C26	1.389 (2)
C4—C9	1.5598 (18)	C25—H25	0.9300
C4—C7	1.565 (2)	C26—C27	1.3950 (19)
C5—C51	1.5146 (19)	C26—H26	0.9300
C5—C6	1.546 (2)	C27—C28	1.505 (2)
С5—Н5	0.9800	C28—H28A	0.9600
C6—N2	1.4757 (18)	C28—H28B	0.9600
C6—C61	1.5173 (18)	C28—H28C	0.9600
С6—Н6	0.9800	C51—C52	1.3997 (19)
C7—N2	1.4730 (17)	C51—C56	1.405 (2)
C7—C12	1.5192 (18)	C52—C53	1.391 (2)
С7—С8	1.6082 (18)	С52—Н52	0.9300
C8—O2	1.4131 (17)	C53—C54	1.384 (3)
C8—N1	1.4747 (17)	С53—Н53	0.9300
C8—C10	1.5133 (18)	C54—C55	1.388 (2)
C9—N1	1.4718 (17)	C54—H54	0.9300
С9—Н9А	0.9700	C55—C56	1.399 (2)
С9—Н9В	0.9700	С55—Н55	0.9300
C10—C19	1.3721 (18)	C56—C57	1.512 (2)
C10-C11	1.4073 (18)	С57—Н57А	0.9600
C11—C12	1.4082 (18)	С57—Н57В	0.9600
C11—C16	1.4083 (18)	С57—Н57С	0.9600
C12—C13	1.3703 (18)	C61—C66	1.3921 (18)
C13—C14	1.4241 (19)	C61—C62	1.3951 (18)
С13—Н13	0.9300	C62—C63	1.3940 (19)
C14—C15	1.372 (2)	С62—Н62	0.9300
C14—H14	0.9300	C63—C64	1.385 (2)
C15—C16	1.417 (2)	С63—Н63	0.9300
С15—Н15	0.9300	C64—C65	1.395 (2)
C16—C17	1.421 (2)	C64—H64	0.9300
C17—C18	1.380 (2)	C65—C66	1.3910 (19)
C17—H17	0.9300	С65—Н65	0.9300
C18—C19	1.416 (2)	C66—H66	0.9300
C18—H18	0.9300	N2—H2A	0.93 (2)

С19—Н19	0.9300	O2—H2	0.8200
N1—C1—C2	114.20 (10)	C18—C19—H19	120.7
N1—C1—H1A	108.7	C2—C21—C22	128.81 (13)
C2—C1—H1A	108.7	C2—C21—H21	115.6
N1—C1—H1B	108.7	C22—C21—H21	115.6
C2—C1—H1B	108.7	C23—C22—C27	119.23 (13)
H1A—C1—H1B	107.6	C23—C22—C21	121.02 (13)
C21—C2—C3	116.37 (12)	C27—C22—C21	119.51 (12)
C21—C2—C1	125.87 (12)	C24—C23—C22	121.09 (14)
C3—C2—C1	117.52 (12)	С24—С23—Н23	119.5
O1—C3—C2	122.21 (13)	С22—С23—Н23	119.5
Q1—C3—C4	121.78 (12)	C25—C24—C23	119.56 (14)
C2—C3—C4	116.00 (12)	C25—C24—H24	120.2
C3-C4-C5	114.87 (12)	C23—C24—H24	120.2
C3-C4-C9	106.86 (10)	C_{24} C_{25} C_{26}	119.97 (14)
$C_{5} - C_{4} - C_{9}$	119 19 (10)	C_{24} C_{25} H_{25}	120.0
$C_3 - C_4 - C_7$	111 75 (10)	$C_{26} - C_{25} - H_{25}$	120.0
$C_{5} - C_{4} - C_{7}$	102 88 (10)	$C_{25} = C_{25} = C_{25}$	121.44 (14)
C9-C4-C7	102.00(10) 100.20(11)	$C_{25} = C_{26} = C_{26} = H_{26}$	119.3
$C_{51} - C_{5} - C_{4}$	119 13 (11)	$C_{25} = C_{26} = H_{26}$	119.3
$C_{51} - C_{5} - C_{6}$	114 20 (11)	C_{26} C_{27} C_{27} C_{27}	119.5
C4-C5-C6	102 49 (11)	$C_{26} = C_{27} = C_{28}$	119.89 (13)
C_{1} C_{2} H_{2}	102.49 (11)	$C_{20} = C_{27} = C_{28}$	117.07(13) 121.42(12)
C4-C5-H5	106.7	$C_{22} = C_{21} = C_{20}$	109 5
C4-C5-H5	106.7	$C_{27} = C_{28} = H_{28R}$	109.5
N2 C6 C61	112.81 (11)	$H_{28A} = C_{28} = H_{28B}$	109.5
$N_2 = C_0 = C_0 I$	112.01(11) 103.45(10)	1120A - C20 - 1120D	109.5
102 - 00 - 03	103.43(10) 111 10(12)	$H_{28A} = C_{28} = H_{28C}$	109.5
$N_{2} C_{6} H_{6}$	100.8	$H_{28R} = C_{28} = H_{28C}$	109.5
$N_2 = C_0 = H_0$	109.8	1128D - C28 - 1128C	109.5 118.67 (13)
C5 C6 H6	109.8	$C_{52} = C_{51} = C_{50}$	110.07(13)
$C_{3} = C_{0} = 110$	109.8 111.75 (10)	$C_{52} = C_{51} = C_{5}$	120.07(13) 121.18(12)
$N_2 = C_7 = C_{12}$	111.73(10) 104.53(10)	$C_{50} = C_{51} = C_{51}$	121.10(12) 121.65(15)
$N_2 = C_7 = C_4$	104.33(10) 117.16(12)	$C_{55} = C_{52} = C_{51}$	121.05 (15)
C12 - C7 - C4	117.10(12) 116.40(12)	C51 C52 H52	119.2
$N_2 - C_7 - C_8$	110.49(12) 102.71(10)	$C_{51} - C_{52} - H_{52}$	119.2
$C_{12} - C_{7} - C_{8}$	103.71(10) 102.41(10)	$C_{54} = C_{53} = C_{52}$	119.38 (13)
$C_4 - C_7 - C_8$	103.41(10) 104.08(10)	C52 C52 H53	120.2
02 - C8 - N1	104.98 (10)	C52—C53—H53	120.2
02 - 08 - 010	115.30 (12)	C53-C54-C55	119.42 (15)
NI-C8-C10	115.24 (11)	C53-C54-H54	120.3
02C8C7	112.30 (10)	C55-C54-H54	120.3
NI = C = C / C = C = C = C = C = C = C = C	105.94 (11)	$C_{54} = C_{55} = C_{56}$	121.76(16)
$U_1 U = U \delta = U / \delta \delta = 0$	104./4(10) 102.26(10)	C54—C55—H55	119.1
N1 = C9 = U0A	103.30 (10)	C30-C33-H33	119.1
NI = C9 = H9A	111.1	$C_{55} = C_{56} = C_{57}$	118.88 (13)
C4 - C9 - H9A	111.1	$C_{22} - C_{20} - C_{20} / C_{20} / C_{20} - C_{20} / C$	118.99 (14)
NI-C9-H9B	111.1	US1-US6-US7	122.07 (13)
С4—С9—Н9В	111.1	C30-C57-H57A	109.5

Н9А—С9—Н9В	109.1	С56—С57—Н57В	109.5
C19—C10—C11	119.56 (12)	Н57А—С57—Н57В	109.5
C19—C10—C8	131.59 (12)	С56—С57—Н57С	109.5
C11—C10—C8	108.84 (11)	Н57А—С57—Н57С	109.5
C10-C11-C12	113.44 (12)	Н57В—С57—Н57С	109.5
C10—C11—C16	123.08 (12)	C66—C61—C62	118.77 (12)
C12—C11—C16	123.47 (13)	C66—C61—C6	120.88 (12)
C13—C12—C11	118.88 (12)	C62—C61—C6	120.24 (12)
C13—C12—C7	131.88 (12)	C63—C62—C61	120.72 (13)
C11—C12—C7	109.24 (11)	С63—С62—Н62	119.6
C12—C13—C14	118.67 (13)	С61—С62—Н62	119.6
C12—C13—H13	120.7	C64—C63—C62	120.04 (13)
C14—C13—H13	120.7	С64—С63—Н63	120.0
C15—C14—C13	122.37 (13)	С62—С63—Н63	120.0
C15—C14—H14	118.8	C63—C64—C65	119.74 (13)
C13—C14—H14	118.8	С63—С64—Н64	120.1
C14—C15—C16	120.16 (13)	С65—С64—Н64	120.1
C14—C15—H15	119.9	C66—C65—C64	120.01 (13)
C16—C15—H15	119.9	С66—С65—Н65	120.0
C11—C16—C15	116.39 (13)	С64—С65—Н65	120.0
C11—C16—C17	116.23 (13)	C65—C66—C61	120.73 (13)
C15—C16—C17	127.38 (13)	С65—С66—Н66	119.6
C18—C17—C16	120.37 (13)	C61—C66—H66	119.6
C18—C17—H17	119.8	C9—N1—C8	103.62 (10)
C16—C17—H17	119.8	C9—N1—C1	108.17 (12)
C17—C18—C19	122.17 (13)	C8—N1—C1	116.07 (10)
C17—C18—H18	118.9	C7—N2—C6	111.07 (11)
C19—C18—H18	118.9	C7—N2—H2A	108.8 (11)
C10—C19—C18	118.53 (13)	C6—N2—H2A	111.1 (11)
C10—C19—H19	120.7	C8—O2—H2	109.5
N1-C1-C2-C21	149.63 (14)	C12—C11—C16—C15	2.2 (2)
N1—C1—C2—C3	-24.42 (17)	C10-C11-C16-C17	1.9 (2)
C21—C2—C3—O1	26.7 (2)	C12-C11-C16-C17	-177.20 (14)
C1-C2-C3-O1	-158.71 (13)	C14-C15-C16-C11	-2.5 (2)
C21—C2—C3—C4	-152.30 (13)	C14—C15—C16—C17	176.78 (16)
C1—C2—C3—C4	22.32 (17)	C11—C16—C17—C18	-1.6 (2)
O1—C3—C4—C5	1.50 (18)	C15—C16—C17—C18	179.11 (16)
C2—C3—C4—C5	-179.52 (11)	C16—C17—C18—C19	-0.3 (3)
O1—C3—C4—C9	136.12 (13)	C11—C10—C19—C18	-1.5 (2)
C2—C3—C4—C9	-44.91 (15)	C8—C10—C19—C18	177.39 (15)
O1—C3—C4—C7	-115.20 (14)	C17—C18—C19—C10	1.9 (2)
C2—C3—C4—C7	63.77 (14)	C3—C2—C21—C22	179.94 (14)
C3—C4—C5—C51	72.82 (15)	C1—C2—C21—C22	5.8 (3)
C9—C4—C5—C51	-55.89 (19)	C2-C21-C22-C23	41.3 (2)
C7—C4—C5—C51	-165.51 (12)	C2-C21-C22-C27	-144.41 (17)
C3—C4—C5—C6	-160.01 (11)	C27—C22—C23—C24	-1.9 (2)
C9—C4—C5—C6	71.28 (15)	C21—C22—C23—C24	172.40 (15)
C7—C4—C5—C6	-38.34 (12)	C22—C23—C24—C25	2.3 (3)

C51—C5—C6—N2	166.72 (10)	C23—C24—C25—C26	-0.7 (3)
C4—C5—C6—N2	36.46 (12)	C24—C25—C26—C27	-1.4(3)
C51—C5—C6—C61	-71.98 (14)	C25—C26—C27—C22	1.7 (3)
C4—C5—C6—C61	157.77 (10)	C25—C26—C27—C28	-176.57 (17)
C3—C4—C7—N2	149.97 (11)	C23—C22—C27—C26	-0.1 (2)
C5—C4—C7—N2	26.21 (13)	C21—C22—C27—C26	-174.49 (15)
C9—C4—C7—N2	-97.13 (11)	C23—C22—C27—C28	178.19 (16)
C3—C4—C7—C12	25.69 (15)	C21—C22—C27—C28	3.8 (2)
C5—C4—C7—C12	-98.08 (12)	C4—C5—C51—C52	63.48 (18)
C9—C4—C7—C12	138.59 (11)	C6—C5—C51—C52	-57.98 (16)
C3—C4—C7—C8	-87.65 (12)	C4—C5—C51—C56	-119.80 (14)
C5—C4—C7—C8	148.58 (10)	C6—C5—C51—C56	118.73 (14)
C9—C4—C7—C8	25.25 (12)	C56—C51—C52—C53	0.2 (2)
N2-C7-C8-O2	1.91 (16)	C5—C51—C52—C53	177.00 (14)
C12—C7—C8—O2	125.13 (11)	C51—C52—C53—C54	1.3 (2)
C4—C7—C8—O2	-112.11 (12)	C52—C53—C54—C55	-1.2 (2)
N2-C7-C8-N1	115.97 (12)	C53—C54—C55—C56	-0.3 (2)
C12—C7—C8—N1	-120.81 (11)	C54—C55—C56—C51	1.8 (2)
C4—C7—C8—N1	1.96 (13)	C54—C55—C56—C57	-175.45 (14)
N2-C7-C8-C10	-121.77 (12)	C52—C51—C56—C55	-1.7 (2)
C12—C7—C8—C10	1.45 (14)	C5-C51-C56-C55	-178.49 (13)
C4—C7—C8—C10	124.21 (11)	C52—C51—C56—C57	175.45 (13)
C3—C4—C9—N1	71.24 (13)	C5—C51—C56—C57	-1.3 (2)
C5—C4—C9—N1	-156.48 (12)	N2-C6-C61-C66	33.4 (2)
C7—C4—C9—N1	-45.38 (13)	C5—C6—C61—C66	-82.26 (17)
O2—C8—C10—C19	57.4 (2)	N2-C6-C61-C62	-150.62 (14)
N1—C8—C10—C19	-63.8 (2)	C5—C6—C61—C62	93.74 (16)
C7—C8—C10—C19	-179.77 (16)	C66—C61—C62—C63	0.3 (2)
O2—C8—C10—C11	-123.63 (13)	C6—C61—C62—C63	-175.75 (15)
N1—C8—C10—C11	115.22 (13)	C61—C62—C63—C64	-0.2 (3)
C7—C8—C10—C11	-0.75 (15)	C62—C63—C64—C65	0.1 (3)
C19—C10—C11—C12	178.83 (14)	C63—C64—C65—C66	-0.1 (3)
C8—C10—C11—C12	-0.32 (17)	C64—C65—C66—C61	0.3 (3)
C19—C10—C11—C16	-0.4 (2)	C62—C61—C66—C65	-0.4 (2)
C8—C10—C11—C16	-179.54 (13)	C6—C61—C66—C65	175.66 (15)
C10-C11-C12-C13	-179.37 (14)	C4C9N1C8	48.13 (13)
C16—C11—C12—C13	-0.2 (2)	C4—C9—N1—C1	-75.60 (12)
C10-C11-C12-C7	1.34 (17)	O2—C8—N1—C9	88.49 (12)
C16—C11—C12—C7	-179.45 (13)	C10-C8-N1-C9	-145.81 (12)
N2-C7-C12-C13	-54.6 (2)	C7—C8—N1—C9	-30.52 (13)
C4—C7—C12—C13	66.0 (2)	O2—C8—N1—C1	-153.10 (11)
C8—C7—C12—C13	179.16 (16)	C10-C8-N1-C1	-27.41 (16)
N2-C7-C12-C11	124.59 (13)	C7—C8—N1—C1	87.88 (13)
C4—C7—C12—C11	-114.86 (13)	C2-C1-N1-C9	52.05 (14)
C8—C7—C12—C11	-1.68 (15)	C2-C1-N1-C8	-63.82 (15)
C11—C12—C13—C14	-1.5 (2)	C12—C7—N2—C6	124.29 (12)
C7—C12—C13—C14	177.57 (15)	C4—C7—N2—C6	-3.38 (14)
C12—C13—C14—C15	1.2 (2)	C8—C7—N2—C6	-116.76 (13)
C13—C14—C15—C16	1.0 (3)	C61—C6—N2—C7	-140.82 (12)

C10—C11—C16—C15	-178.67 (14)	C5—C6—N2—C7	-20.68 (14)	
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
02—H2…O1 ⁱ	0.82	2.02	2.7828 (15)	155
C1—H1 <i>A</i> ···O2 ⁱⁱ	0.97	2.46	3.3040 (16)	145
С57—Н57В…О1	0.96	2.59	3.3859 (18)	141
N2—H2 <i>A</i> …O2	0.92 (2)	2.27 (2)	2.8016 (18)	117 (2)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) –*x*, *y*+1/2, –*z*+1/2.