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ABSTRACT: Oxidative isocyanide-based multicomponent reac-
tions (oxidative IMCRs) are very useful tools for the rapid
construction of molecular diversity starting from readily available
and stable substrates. Despite all their benefits, such multi-
component reactions are underdeveloped and strictly limited to 3-
component processes. Indeed, in the presence of several reaction
partners, the oxidation event needs to be rigorously chemo-
selective, which becomes incredibly more intricate as the number
of reactive components increases. Nonetheless, we could overcome this significant pitfall and reach the first oxidative Ugi-type 4-
IMCR by capitalizing on a very mild and green TEMPO-catalyzed electro-oxidation process. Employing alcohols as aldehyde
surrogates and in the notable absence of any supporting electrolyte, this transformation proved to be extremely chemoselective in the
presence of an amine and was compatible with a wide range of alcohols, amines, isocyanides, and carboxylic acids.
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■ INTRODUCTION

Multicomponent reactions (MCRs) are now established as
very efficient tools for the rapid and efficient preparation of
elaborated chemicals, starting from relatively simple building
blocks.1 Inasmuch as they meet many of the criteria dictated by
green chemistry,2−5 this sustainable strategy has found many
applications ranging from the production of fine chemicals to
various uses in material sciences.1,6−11 Isocyanide-based
processes (IMCRs) have partaken substantially to the
blossoming of this field. Since Passerini and Ugi demonstrated
that the ambivalent reactivity of isocyanides could be
successfully harnessed in multicomponent processes,12,13

IMCRs have not ceased to bring stimulating develop-
ments.1,6−11,14−21 Nevertheless, one of the major impediments
of IMCRs is that, because often relying on the use of Csp2O
or Csp2N partners, such reactions largely rely on the use of
carbonyl/imine derivatives, which may reveal themselves to be
unstable enough to impede their preparation and, accordingly,
their use.
To circumvent this problem, the concept of generating the

adequate carbonyl/imine electrophiles by means of the in situ
oxidation of the corresponding alcohol/amine emerged.22,23 As
the first milestone in oxidative IMCRs, Zhu et al. succeeded in
performing an alcohol-based 3-component Passerini reaction
by employing 2-iodoxybenzoic acid (IBX) as the stoichio-
metric oxidant (Scheme 1, eq (a)).24 Whereas a catalytic
version of this multicomponent process was later reported,25,26

more attention was subsequently paid to oxidative 3-
component Ugi−Joullie-́type IMCRs, in which an amine or
an aniline derivative serves as the imine/iminium precursor
(Scheme 1, eq (b)).27−41

Despite all of these significant achievements, neither
catalytic nor stochiometric methods could be applied to
related 4-component processes so far. This significant pitfall
probably results from the problematic, yet compulsory,
chemoselective oxidation required by the presence of an
additional reactant. In particular, the 4-component Ugi
coupling based on the use of alcohols remains an unsolved
challenge, with the amine partner being also prone to
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oxidation. In fact, alcohol-based Ugi-type processes could only
be performed via a one-pot two-step sequence, wherein the
stoichiometric or catalytic oxidation of an alcohol to its
aldehyde form is achieved first, followed by the subsequent
addition of the other three components.42−45

In this specific context, we recently began to study the
synergistic merger of electrosynthesis with IMCRs. Performing
an anodic oxidation, direct or indirect, is particularly appealing
as it avoids the use of stoichiometric oxidants by employing
perfectly sustainable reagents: electrons and protons.46−51

Moreover, such oxidation methods are typically very mild,
giving better chances to reach better chemoselectivity. After
establishing the proof of concept via the development of an
electrochemical oxidative Ugi−Joullie ́ reaction,41 we now
report the first alcohol-based oxidative Ugi reaction, thanks
to an indirect anodic oxidation process (Scheme 1, eq (c)).

■ RESULTS AND DISCUSSION
At the onset of this work, we decided to study the model
oxidative Ugi reaction between tert-butylisocyanide 1a (1.5
mmol, 1 equiv), benzylamine 2a (1.1 equiv), acetic acid 3a
(2.5 equiv), and methanol 4a (3 equiv). TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy) was chosen as the redox
mediator to promote the oxidation of methanol into
formaldehyde (Table 1).52,53

In initial reaction conditions, employing an undivided cell,
TEMPO (10 mol %), Et4NBF4 (1 equiv) as supporting
electrolyte in acetonitrile (0.5 M), with a nickel plate cathode
and a carbon graphite anode, we were pleased to observe the
desired 4-component IMCR adduct 5a in 70% isolated yield
after 2.7 F/mol of electricity (Table 1, entry 1). This result was
very encouraging as, despite the presence of benzylamine 2a,
this oxidation method allowed the desired selective oxidation

of methanol 4a, without interfering with the concomitant
multicomponent coupling. Moreover, it showcased the
synthetic utility of this strategy, with which it became possible
to avoid the use of toxic formaldehyde in Ugi processes.
Therefore, we embarked on the optimization of the reaction

conditions. Whereas lowering the reaction concentration was
detrimental (Table 1, entry 2), using dichloromethane as
solvent or changing the cathode material to nickel foam or
stainless steel had little influence over the reaction efficiency
(Table 1, entries 3−6). On the other hand, substituting the
graphite anode by other electrode materials gave lower yields
(Table 1, entries 7 and 8). We then evaluated the influence of
the starting quantities of acetic acid and methanol. Lowering
them up to 1.5 equiv resulted in a noticeable diminution of
yields, whereas increasing them did not significantly improve
the formation of 5 (Table 1, entries 9−12). Pleasingly, this
reaction was equally efficient when employing only 5 mol % of
TEMPO (Table 1, entry 13), whereas the use of 20 mol % had
no positive impact (Table 1, entry 14). The fact that some
product was obtained without TEMPO indicated that direct
anodic oxidation of methanol may happen, although with lesser
efficiency (Table 1, entry 15). Most interestingly, likely
because of the intrinsic conductivity of the reaction mixture,
this electro-oxidative Ugi reaction could be achieved in the
absence of any supporting electrolyte, using either 10 or 5 mol
% of TEMPO (Table 1, entries 16 and 17). In the latter
reaction conditions, which we kept for the rest of our study,
the desired 4-IMCR adduct 5 was isolated in satisfying 74%
yield, equaling a fair 55% Faraday yield.
We then investigated the scope of this new oxidative IMCR

(Scheme 2). The tolerance to various isocyanides was surveyed
first (Scheme 2, red box). Employing benzylamine, acetic acid,
and methanol, this reaction was amenable for the use of diverse
alkyl- or benzyl-substituted isocyanides 1b−e. The correspond-
ing multicomponent adducts 5−8 were obtained in good yields
ranging from 74 to 83%. Using less nucleophilic and/or more
sterically demanding partners such as methyl isocyanoacetate
1f or 2,6-xylyl isocyanide 1g resulted in a small decrease of
reaction efficiency. Nevertheless, the desired Ugi products 9
and 10 were isolated in acceptable 55 and 52% yields,
respectively. Of note, this electrochemical multicomponent
reaction could be transposed to gram-scale, demonstrating its
genuine synthetic utility and versatility. Indeed, while this
scope evaluation was realized on a typical 1 mmol scale,
starting from 5.0 mmol of isocyanide 1b straightforwardly
yielded 1.08 g of adduct 6 (75% yield).
Next, different amine partners were evaluated (Scheme 2,

orange box). Replacing benzylamine 2a with primary amines
such as methylamine 2b or n-butylamine 2c had no
detrimental impact over the reaction efficiency. A similar
trend was also observed when employing bulkier α,α-di- or
α,α,α-trisubstituted primary amines, such as cyclohexylamine
2d and tert-butylamine 2e, provided that 5% (v/v) of water
was added to ensure the homogeneity of the reaction mixture.
In these cases, 13 and 14 were obtained in respectable 78 and
88% yields. More elaborated amine partners could also be used
successfully; allylamine 2f, methoxyethylamine 2g, and 3,4-
dimethoxyphenyl ethylamine 2h all afforded the desired Ugi
adducts 15−17 in good yields, up to 87%.
Several carboxylic acids 3b−k were also tested (Scheme 2,

green box). Aliphatic acids were well-tolerated in this reaction,
as witnessed by the good yields which were obtained when
butyric acid 3b and pivalic acid 3c were employed (83 and

Table 1. Optimization of the Reaction Conditions

entry variation from above yield (%)a

1 none 68 (70)b

2 tBuNC (0.5 mmol), [0.17 M] 39

3 DCMc as solvent 75
5 Ni foam as cathode 69
6 stainless steel as cathode 68
7 Ni as anode 54
8 stainless steel as anode 53
9 MeCO2H (1.5 equiv) 57
10 MeCO2H (3.5 equiv) 69
11 MeOH (1.5 equiv) 59
12 MeOH (6 equiv) 74
13 TEMPO (5 mol %) 70 (72)b

14 TEMPO (20 mol %) 67
15 no TEMPO 40
16 no electrolyte 78 (74)b

17 no electrolyte, TEMPO (5 mol %) 76 (74)b

18 no electricity NRd

aNMR yields using 1,3,5-trimethoxybenzene as an internal standard.
bIsolated yield. cDichloromethane. dNo reaction.
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71%). This oxidative multicomponent process also appeared to
be compatible with various aromatic and heteroaromatic acids
3d−i, as well as acrylic acids 3j,k, with which the
corresponding coupling products 20−27 were isolated likewise
with satisfactory yields (68−81%).
We next questioned if this unconventional oxidative IMCR

was specific for the use of methanol (Scheme 2, blue box). A
wide range of alcohol partners was also compatible with this
electro-oxidative process. Different aliphatic alcohols 4b−h led
straightforwardly to the corresponding Ugi adducts 28−34 in

reasonable yields (53−69%). On the other hand, 2-phenyl-
ethanol 4i and benzyl alcohol 4j, possibly less nucleophilic due
to the presence of the aromatic ring, afforded only little of the
desired products 35 and 36. Halogen-, alkene-, and alkyne-
substituted alcohols 4k−o also proved to be suitable reaction
partners. The corresponding multicomponent coupling prod-
ucts 37−41 were isolated in 40−64% yields.
Based on our previous work and literature,14−21,41,52−54 we

propose that TEMPO is oxidized at the graphite anode to
generate the corresponding oxoammonium species TEMPO+.

Scheme 2. Scope of the Electrochemical Oxidative Ugi Reactiona

aReaction conditions: isocyanide 1 (1.5 mmol, 1 equiv), amine 2 (1.65 mmol, 1.1 equiv), carboxylic acid 3 (3.75 mmol, 2.5 equiv), and alcohol 4
(4.5 mmol, 3 equiv) in acetonitrile (3 mL, [0.5 M]) at room temperature; graphite as working electrode, Ni as counter electrode, constant current
electrolysis (i = 14.5 mA, j = 5 mA cm−2) for 7.5 h, 2.7 F mol−1. *Gram-scale reaction starting from 5.0 mmol isocyanide 1b (1.08 g of
multicomponent adduct 6 was obtained). **Water 5% (v/v) was added.

Scheme 3. Mechanistic Proposal
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The latter would, in turn, promote the selective oxidation of
the alcohol partner into the corresponding aldehyde, leaving
the amine partner untouched. At this stage, we surmise that the
presence of the carboxylic acid is critical for chemoselectivity.
Indeed, it probably ensures the protection of the amine via an
acid/base equilibrium in favor of the non-nucleophilic
ammonium carboxylate form, thereby preventing it to interact
with TEMPO+. Then, the newly formed aldehyde, as in a
classical 4-component Ugi reaction, would generate the
corresponding iminium, electrophilic enough to react with
the isocyanide. The resulting nitrilium cation would be trapped
by the remaining carboxylate anion, and after 1,5-acyl transfer,
the multicomponent product would be formed. To complete
the catalytic cycle, either through comproportionation or direct
anodic oxidation,54 TEMPO+ would be regenerated and, to
keep the electroneutrality of the global system, proton
reduction would occur at the nickel cathode.

■ CONCLUSION
In conclusion, we have developed the first oxidative 4-IMCR
by implementing a very chemoselective TEMPO-catalyzed
electrochemical process. This alcohol-based Ugi-type reaction
allows the use of unstable/toxic aldehydes to be avoided (such
as formaldehyde) and is compatible with a wide range of
alcohols, amines, isocyanides, and carboxylic acids. A small
library of the corresponding Ugi adducts (37 examples) was
rapidly obtained, showcasing the synthetic utility of this
approach for the rapid construction of high molecular diversity
in a sustainable manner. Further studies concerning this
promising synergistic merger of electrosynthesis with IMCRs is
currently underway and will be reported in due course.
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