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a b s t r a c t

Non-pharmaceutical interventions (NPIs) involving social-isolation strategies such as self-quarantine
(SQ) and social-distancing (SD) are useful in controlling the spread of infections that are transmitted
through human-to–human contacts, e.g., respiratory diseases such as COVID-19. In the absence of a safe
and effective cure or vaccine during the first ten months of the COVID-19 pandemic, countries around the
world implemented these social-isolation strategies and other NPIs to reduce COVID-19 transmission.
But, individual and public perception play a crucial role in the success of any social-isolation measure.
Thus, in spite of governments’ initiatives to use NPIs to combat COVID-19 in many countries around
the world, individual choices rendered social-isolation unsuccessful in some of these countries. This
resulted in huge outbreaks that imposed a substantial morbidity, mortality, hospitalization, economic,
etc., toll on human lives. In particular, human choices pose serious challenges to public health strategic
decision-making in controlling the COVID-19 pandemic. To unravel the impact of this behavioral
response to social-isolation on the burden of the COVID-19 pandemic, we develop a model framework
that integrates COVID-19 transmission dynamics with a multi-strategy evolutionary game approach of
individual decision-making. We use this integrated framework to characterize the evolution of human
choices in social-isolation as the disease progresses and public health control measures such as manda-
tory lockdowns are implemented. Analysis of the model illustrates that SD plays a major role in reducing
the burden of the disease compared to SQ. Parameter estimation using COVID-19 incidence data, as well
as different lockdown data sets from India, and scenario analysis involving a combination of Voluntary-
Mandatory implementation of SQ and SD shows that the effectiveness of this approach depends on the
type of isolation, and the time and period of implementation of the selected isolation measure during
the outbreak.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The end of 2019 was marked by the emergence of an unprece-
dented severe respiratory infection, COVID-19. COVID-19 is caused
by a newmember of the family of coronaviruses (SARS-CoV-2) that
is related to the SARS (Severe Acute Respiratory Syndrome) and
MERS (Middle Eastern Respiratory Syndrome) (Yin and
Wunderink, 2018; World Health Organization, 2020). The spread
of the virus worldwide has been rapid, with more than 32 million
infections and 980;000 COVID-19 deaths within the first 9 months
(i.e., from December to August, 2020). Among the countries hit the
most by COVID-19 pandemic as of September 2020 were the Uni-
ted States of America (with over 7.1 million confirmed cases and
205,000 deaths), India (with over 5:7 million confirmed cases and
92;000 deaths), and Brazil (with over 4.5 million confirmed cases
and 137;000 deaths) (Dong et al., 2020; World Health
Organization, 2020). Although case numbers have been declining
in some parts of the world, these staggering statistics indicate that
the COVID-19 pandemic is still a major health problem to many
parts of the world, especially since some countries are still experi-
encing exponential growth in the number of cases or a second
wave of the pandemic (Routley, 2020). Hence, it is important to
understand the transmission dynamics of the virus and the poten-
tial impact of various control and mitigation strategies in relation
to human behavior and adaptation during the pandemic.

As of mid September 2020, there was no effective drug or vac-
cine for COVID-19. Thus, the only prevention or control measures
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have been basic public health or non-pharmaceutical interventions
(NPIs) including social-isolation such as self-quarantine (SQ) of
suspected cases, e.g., requiring individuals who are suspected to
have been in contact with a confirmed COVID-19 case or exposed
to COVID-19 to stay away from others at home or in designated
facilities; and social-distancing (SD), e.g., shelter-in-place, commu-
nity lockdowns, closure of schools and non-essential businesses,
avoiding crowded gatherings, staying about six feet apart in public,
isolation (self and community) of confirmed cases, evacuation, etc.
Many countries already went through a strict lockdown phase
between March and May 2020, which contributed in reducing dis-
ease burden and pressure on healthcare systems. Some of these
countries, e.g., China, Italy, Germany, Spain, etc., managed to keep
their disease numbers low, as they started re-opening their econo-
mies after the first pandemic wave, while others, e.g., India, Mex-
ico, Russia, etc., were experiencing a surge in the number of
cases in the midst of re-opening (Gettleman, 2020). Irrespective
of the control measure that a country adopted, individual and col-
lective response to the measure, as well as timing of the measure
was important in disease containment.

Since the emergence of the virus from China, one research
direction has focused on the effective management and control
of transmission. This has been approached in different ways
including mathematical modelling. Specifically, many mathemati-
cal and computational models have been developed and used to 1)
understand the potential magnitude of the epidemic, 2) determine
key factors that characterize the severity of the outbreak, and 3)
assess the impact of NPIs such as quarantine, SD, contact-tracing,
face-mask use, etc., on the spread and burden of the virus
(Flaxman et al., 2020; Gumel et al., 2021; Ngonghala et al.,
2020a,b). Ferguson et al. (2020) assessed the impact of NPIs on
COVID-19 through an agent-based framework, while Ngonghala
et al. (2020) developed and used a deterministic model to investi-
gate the impact of NPIs on the burden of COVID-19 (quantified in
terms of hospitalizations and moralities). The Institute for Health
Metrics and Evaluation (2020) used a model to project the number
of COVID-19-related moralities in the entire US. Maier and
Brockmann (2020) observed that there was a robust sub-
exponential rise in the number of confirmed cases in Hubei
province of China according to a scaling law during the transient
episode of the epidemic. Tuite et al. (2020) used an age-
structured compartmental model to study COVID-19 transmission
in the population of Ontario, Canada. They investigated the impact
of different lockdown durations on the dynamics of COVID-19.
Some mathematical models including those by Ngonghala et al.
(2020a,b) and Dickens et al. (2020) demonstrated that late imple-
mentation and premature relaxation of lockdown measures may
trigger a resurgence of COVID-19 with a more devastating impact.
Some studies including those in Gumel et al. (2021), Iboi et al.
(2020) have studied the combined impact of an imperfect vaccine
and NPIs such as SD and face mask use in public on COVID-19,
while others have focused on the spatio-temporal spread of
COVID-19. In particular, spatio-temporal research on COVID-19
includes studies aimed at understanding the effects of temperature
on the early evolution of COVID-19 in Spain (Briz-Redón and
Serrano-Aroca, 2020) and China (Xie and Zhu, 2020; Shi et al.,
2020), the spatial dynamics of COVID-19 outbreak in China, USA,
and some European communities, (Kang et al., 2020; Karaye and
Horney, 2020; Mollalo et al., 2020), as well as predicting the spread
of COVID-19 in Italy (Gatto et al., 2020; Martellucci et al., 2020;
Giuliani et al., 2020).

Despite this theoretical elegance, very little research has
focused on the impact of human behavior in response to social-
isolation on the burden of the COVID-19 pandemic. Most of the
recent technical reports and papers discuss social distancing
behavior and optimal policy response to the COVID-19 pandemic
2

from several different foci (Alvarez et al., 2020; Chudik et al.,
2020; Gonzalez-Eiras and Niepelt, 2020; Jones et al., 2020;
Pindyck, 2020; Brotherhood et al., 2020; Toxvaerd, 2020). Others
compare purely selfish and impure altruistic private versus social
cost of contacts with heterogeneous age groups of healthy individ-
uals (Acemoglu et al., 2020; Farboodi et al., 2020). In most cases,
these studies use homogeneous SIR models to show how infected
individuals internalise the part of the infection externality due to
different altruistic preferences, or to what extent altruistic motives
narrow the gap between selfish and socially optimal behavior.
However, less research has focused on the evolution of SD or SQ
behavior as the pandemic progresses, especially in face of intermit-
tent mandatory lockdown approaches implemented by public
health authorities in different countries. This represents a missed
opportunity to advance a better understanding of interactions
between the health, social, and economic burden of the pandemic
from an individual and community decision-making perspective–
aspects which could lead to the design and implementation of bet-
ter disease mitigation measures. The risk–benefit profile of SD, for
example, depends on the cost of SD and the probability that an
individual is infected and becomes sick. Under a voluntary or
poorly enforced mandatory policy, these costs may destabilize
the effect of social-isolation. To date, approaches in most studies
assessing the effect of social-isolation on COVID-19 control are
ad hoc and do not take these individual-versus-group based risk–
benefit dynamics into account. The ability to predict how risk–ben-
efit profiles evolve will furnish public health authorities with
improved evidence-based decision-making abilities and enable
them to opt for an earlier switch to other control strategies or to
implement a mixed policy within a given time frame.

This study attempts to understand the impact of the public per-
ception of humans to adhere to the control measures implemented
by governments to curtail the COVID-19 pandemic. In particular,
we develop an integrated epidemiological-game dynamic model
framework that couples the epidemiological characteristics of
COVID-19 and human behavior in choosing specific NPIs, and
parameterize the model with COVID-19 and social-isolation data
from India to: 1) assess the impact of personal decision to adopt
SQ or SD, and how these depend on different disease risk profiles,
and to some extent, public health communication through the
media, 2) investigate the impact and social costs associated with
different mitigation strategies in reducing disease incidence, and
3) compare the impacts of voluntary and mandatory involvement
in SQ and SD, and whether a combination of voluntary-mandatory
approaches is better to contain the disease in the community.
2. Materials and methods

2.1. The epidemiological model

2.1.1. Model derivation
The epidemiological model we consider here (see Fig. 1 for a

conceptual framework) is a slightly modified version of the model
in Ngonghala et al. (2020). The model splits humans into eight dis-
joint compartments representing quarantine and disease status.
These are the class of: susceptible humans S, exposed humans E,
infectious humans I, and recovered humans, R. The susceptible
and exposed populations are further subdivided into non-
quarantined and quarantined susceptible humans denoted by Su
and Sq, respectively, and non-quarantined and quarantined
exposed humans denoted by Eu and Eq, respectively. It should be
mentioned that quarantine can either be at home (SQ) or at a des-
ignated facility, although in the context of this study we are focus-
ing on SQ. The infectious human population is also subdivided into
infectious asymptomatic humans (those who transmit the virus



Fig. 1. Schematics for the model system (1) showing the flow of humans between
different classes. The human population is subdivided in non-quarantined suscep-
tible Su , quarantined susceptible Sq , non-quarantined exposed Eu , quarantined
exposed Eq , asymptomatic infectious Ia , (mild, severe, or critical) symptomatic
infectious Is , isolated (self or mandatory) Ii , and Recovered R. Parameters for the
epidemiological component of the model are described in the text. For the behavior
component of the model, x1 is the proportion of non-quarantined susceptible
humans who choose to self-quarantine (SQ), x2 the fraction of non-quarantined
susceptible humans who choose social-distancing (SD), and x3 ¼ 1� ðx1 þ x2Þ is the
proportion of non-quarantined susceptible humans who choose neither SQ nor SD.
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without showing symptoms after the incubation period) denoted
by Ia, infectious symptomatic humans Is (clinically ill individuals,
i.e., individuals who exhibit disease symptoms after the incubation
period), and isolated infectious humans (identified symptomatic
humans who are self-isolating or who have been placed in isolation
in a health care facility denoted by Ii. The total human population
at time t, is NðtÞ ¼ SuðtÞ þ SqðtÞ þ EuðtÞ þ EqðtÞ þ IaðtÞ þ IsðtÞþ
IiðtÞ þ RðtÞ. To keep track of the number of COVID-19 related
deaths, we use an additional class denoted by D.

Flow from the non-quarantined susceptible to the quarantined
susceptible class is at rate nux1, where x1 is the proportion of
non-quarantined susceptible humans who choose to SQ at time t,
while quarantined susceptible humans revert to the non-
quarantined susceptible class at per capita rate nq (1=nq is the aver-
age duration of quarantine). Transition from the non-quarantined
and quarantined susceptible classes (Su and Sq) to the exposed
classes (Eu and Eq) are through the forces of infection

ku ¼ ð1� �x2ÞbaIa þ bsðIs þ giIiÞ
N �xqðSq þ EqÞ ; kq ¼ /q

baIa þ bsðIs þ giIiÞ
N �xqðSq þ EqÞ

respectively, where 0 6 � 6 1 is the efficacy per day of SD in reduc-
ing disease transmission, 0 6 x2 6 1 denotes the fraction of non-
quarantined susceptible humans who choose SD at time
t;0 < gi < 1 is the reduction in transmission by isolated humans,
ba is the effective contact rate with asymptomatic humans, bs is
the effective contact rate with symptomatic humans, 0 6 xq 6 1
measures how effective quarantine is in preventing disease spread
by quarantined humans, and 1� /qð0 6 /q 6 1Þ is the efficacy of
quarantine in preventing quarantined susceptible humans from
being infected. In the context of this work, SD is broadly interpreted
to include shelter-in-place, lockdown, closure of schools and non-
essential businesses, avoiding crowds, maintaining a distance of
six feet from others in public, etc., while SQ involves quarantine
at home.

A proportion 1� q of the new infections join the exposed non-
quarantined class, while the other proportion q, join the quaran-
tined exposed class (q is the proportion of newly infected humans
who are quarantined at the time of exposure). Non-quarantined
exposed humans are either quarantined at rate au, progress to
3

the infectious asymptomatic class at rate fru after the incubation
period (ru is the average incubation period for non-quarantined
humans), or develop clinical COVID-19 symptoms at rate
ð1� f Þru after the incubation period, where f is the fraction of
non-quarantined exposed humans, who do not develop clinical
disease symptoms after the incubation period. Non-quarantined
exposed humans detected through diagnostic testing join the iso-
lated infectious class at rate s. Quarantined exposed humans
develop disease symptoms at rate rq after the incubation period
(rq is the average incubation period for quarantined humans).
Infectious asymptomatic humans are either detected (through
diagnostic testing) and isolated at per capita rate s or recover at
per capita rate ca (1=ca is the average duration of infection in
asymptomatic humans), while infectious symptomatic humans
are either isolated at per capita rate qs, recover at per capita rate
cs (1=cs is the average duration of infection in symptomatic
humans), or die from COVID-19 at per capita rate ds. Isolated
humans either recover from infection at per capita rate ci or die
from COVID-19 at per capita rate ds.

Based on the conceptual framework presented in Fig. 1 and the
state-variable and parameter descriptions, the epidemiological
model is given by the system of differential equations:

_Su ¼ nqSq � ðku þ nux1ÞSu;
_Sq ¼ nux1Su � ðkq þ nqÞSq;
_Eu ¼ ð1� qÞkuSu � ðau þ ru þ sÞEu;

_Eq ¼ qkuSu þ kqSq þ auEu � rqEq;

_Ia ¼ fruEu � ðca þ sÞIa;

ð1Þ

_Is ¼ ð1� f ÞruEu þ rqEq � ðds þ cs þ qsÞIs;
_Ii ¼ sðEu þ IaÞ þ qsIs � ðdi þ ciÞIi;
_R ¼ caIa þ csIs þ ciIi;

where the dots on the state variables denote differentiation with
respect to time. To keep track of the number of deaths, we introduce
a variable D for deaths, and the equation

_D ¼ dsIs þ diIi:
2.2. The behavior model

In developing the behavioral component of the model, we take
into account human choice to engage in behavior that limits their
contact with other humans and hence the possibility of spreading
or contracting the infection. These include SQ and SD, e.g., by
respecting shelter-in-place and community lockdown mandates,
closure of schools and non-essential businesses, avoiding crowded
environments, maintaining a safe distance from others in public,
etc. With this in mind, non-quarantined susceptible individuals
in the disease model (1), are players with three strategies: 1)
self-quarantine, 2) social-distance, or 3) opt not to self-
quarantine or social-distance. The payoff for choosing one of the
three options over the others depends on a certain cost that the
individual must pay. For example, the payoff for choosing SD is
that the individual will avoid becoming infected and the possibility
of death from the infection, while the cost the individual must
incur to achieve this is deprivation from the individual’s regular
activities. Here, we follow the approach of social-learning and
adaptation of strategy (Bauch et al., 2005; Bhattacharyya and
Bauch, 2010).

Let x1ðtÞ denote the fraction of non-quarantined susceptible
humans who choose to SQ at time t and x2ðtÞ denote the fraction
of non-quarantined susceptible humans who choose to SD at time
t. Then x3ðtÞ ¼ 1� ðx1ðtÞ þ x2ðtÞÞ is the fraction of non-quarantined
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susceptible humans who choose neither SQ nor SD. It is worth
mentioning that even though humans may choose any of the first
two strategies (i.e., x1 or x2), they may still become infected but
with a reduced probability. Hence, the perceived probability of
becoming infected will be non-zero. Now, the payoff for SQ
denoted by P1 is given by

P1 ¼ �½rq þ rsqwsqðmaIa þmsIs þmiIiÞ�; ð2Þ
where rq is the perceived cost of SQ, rsq is perceived risk of infection
during SQ, wsq is a probability depicting the perceived efficacy of SQ.
The payoff for SD P2, is given by

P2 ¼ �½rd þ rsdwsdðmaIa þmsIs þmiIiÞ�; ð3Þ
where rd is the perceived cost of SD, rsd is the perceived risk of infec-
tion during the SD, and the probability wsd, is the perceived efficacy
of SD. The parameters mj; j 2 fa; s; ig reflect the respective sensitiv-
ities to acquire infection from asymptomatic infectious, symp-
tomatic infectious, and isolated infectious individuals. The payoff
for adopting none of the two strategies (SQ or SD) denoted by P3,
is given by

P3 ¼ �½rnðmaIa þmsIs þmiIiÞ þ rdmdðdsIs þ diIiÞ�; ð4Þ
where rn is the perceived risk of infection, rd is the perceived risk of
death, md is the perceived sensitivity to the prevalence of death.
Generally, an individual’s perception about the cost and efficacy
of SQ is higher than the cost and efficacy of SD, so we assume that
rq � rd and wsq < wsd, while the perceived risk of infection in the
three strategies are opposite, i.e., rq � rd � rn. In this game theory
formulation, it should be noticed that the payoff for adopting any
of the three strategies depends implicitly on the strategy’s history
and relevant behavioral and epidemiological parameters. In partic-
ular, the current prevalence (and thus payoff) is partly determined
by the history of strategies in the population. Therefore, at any
given time point, individuals play not only against one another,
but also against behaviorally identical individuals from previous
time points. However, it may not be possible to derive a simple or
closed-form expression in terms of these quantities in practice.

We also assume that individuals sample and imitate others,
while deciding whether to adopt a SQ or a SD strategy against
COVID-19. In particular, the decision-making involves individuals
sampling others at some constant rate j, and then switching to
their strategy with a probability m that is proportional to the
expected gain or payoff, if the other person’s strategy provides a
higher payoff. For example, the resultant payoff for switching to
xi for players (i.e., non-quarantined susceptible individuals) either
in xj or xk is DGij ¼ Pi � Pj or DGik ¼ Pi � Pk. If both DGij and DGik are
positive, then switching to xi is worthwhile and the growth equa-
tion for xi is given by

_xi ¼ xjjximDGij þ xkjximDGik ð5Þ
¼ lðxjxiDGij þ xkxiDGikÞ; ð6Þ

where l ¼ jm is defined as imitation or sampling rate.

2.3. The coupled COVID-19 disease-human behavior model

The coupled COVID-19 disease-human behavior model is
obtained by putting together Eqs. 1 and (5). This leads to the sys-
tem of equations:
4

_Su ¼ nqSq � ðku þ nux1ÞSu;
_Sq ¼ nux1Su � ðkq þ nqÞSq;
_Eu ¼ ð1� qÞkuSu � ðau þ ru þ sÞEu;

_Eq ¼ qkuSu þ kqSq þ auEu � rqEq;

_Ia ¼ fruEu � ðca þ sÞIa;

ð7Þ

_Is ¼ ð1� f ÞruEu þ rqEq � ðds þ cs þ qsÞIs;
_Ii ¼ sðEu þ IaÞ þ qsIs � ðdi þ ciÞIi;
_R ¼ caIa þ csIs þ ciIi;

_x1 ¼ l½x1x2DG12 þ x1ð1� x1 � x2ÞDG13�;
_x2 ¼ l½x2ð1� x1 � x2ÞDG23 � x1x2DG12�:
3. Results

3.1. Analytical results

In this section, we compute the family of disease-free equilibria
and the control reproduction number of the model (7). The family
of disease-free equilibria of the model system (7) obtained by set-
ting the left hand-sides of the equations in the system to zero are
given by:

ðS�u; S�q; E�
u; E

�
q; I

�
a; I

�
s ; I

�
i ;R

�; x�1; x
�
2Þ ¼ ðNð0Þ� � S�q

� R�; S�q;0;0;0;0;0;R
�; x�1; x

�
2Þ;

ð8Þ
where 0 < S�u ¼ Nð0Þ� � S�q � R� 6 Nð0Þ;0 6 S�q;R

� < Nð0Þ;0 < S�uþ
S�q þ R� 6 Nð0Þ, and

S�q ¼ nu
nq
x�1S

�
u;

ðx�1; x�2Þ 2 ð0;0Þ; ð1;0Þ; ð0;1Þ; DG�
23

DG�
12þDG�

13þDG�
23
;

DG�
13

DG�
12þDG�

13þDG�
23

� �n o

¼ ð0;0Þ; ð1;0Þ; ð0;1Þ; rd
2rq

; 12

� �n o

The control reproduction number of the model tracks the average
number of secondary infections produced by one infectious human
in a population taking into account some control measures over
the time frame within which the infectious individual can spread
the disease. We apply the next generation matrix approach
Diekmann et al., 1990; van den Driessche and Watmough, 2002
to compute the reproduction number of the model system (7).
This involves constructing a matrix of new infections F, a matrix
of transitions V, and determining the spectral radius of the matrix
product FV�1. Following this approach, the matrices F;V, and
V�1 are

F ¼

0 0 ð1�qÞð1��x�2ÞbaS
�
u

S�uþð1�xqÞS�qþR�
ð1�qÞð1��x�2ÞbsS

�
u

S�uþð1�xqÞS�qþR�
ð1�qÞð1��x�2ÞgibsS

�
u

S�uþð1�xqÞS�qþR�

0 0 baðqð1��x�2ÞS
�
uþ/qS

�
qÞ

S�uþð1�xqÞS�qþR�
bsðqð1��x�2ÞS

�
uþ/qS

�
qÞ

S�uþð1�xqÞS�qþR�
gibsðqð1��x�2ÞS

�
uþ/qS

�
qÞ

S�uþð1�xqÞS�qþR�

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;
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V ¼

Au 0 0 0 0
�au rq 0 0 0
�fru 0 Aa 0 0

�ð1� f Þru �rq 0 As 0
�s 0 �s �qs Ai

0
BBBBBB@

1
CCCCCCA
; and

V�1 ¼

1
Au

0 0 0 0
au
rqAu

1
rq

0 0 0
fru
AaAu

0 1
Aa

0 0
ð1�f Þruþau

AsAu

1
As

0 1
As

0
ð1�f ÞqsruAaþfsruAsþsAaAsþqsauAa

AaAiAsAu
qs
AiAs

s
AaAi

qs
AiAs

1
Ai

0
BBBBBBBB@

1
CCCCCCCCA
;

where

Au ¼ au þ ru þ s; Aa ¼ ca þ s; As ¼ ds þ cs þ qs; Ai ¼ di þ ci: ð9Þ
The reproduction number of system (7), Rc , i.e., the spectral radius
of the matrix product FV�1 is:

Rc ¼ Ra þRs þRi; ð10Þ
where

Ra ¼ ð1�qÞf ð1��x�2ÞbaruS�u
½S�uþð1�xqÞS�qþR��AaAu

; Rs ¼ bsfð1��x�2Þfð1�qÞ½ð1�f Þruþau �þqAugS�uþ/qAuS�qg
½S�uþð1�xqÞS�qþR��AsAu

;

Ri ¼ gibsfð1��x�2Þfð1�qÞ½ð1�f ÞqsruAaþsAsðfruþAaÞþqsauAa �þqqsAaAugS�uþ/qqsAaAuS�qg
½S�uþð1�xqÞS�qþR��AaAiAsAu

:

As in Ngonghala et al. (2020a,b), the reproduction number Rc , is the
sum of three terms associated with disease transmission by asymp-
tomatic infectious humans Ra, disease transmission by symp-
tomatic infectious humans Rs, and isolated infectious humans Ri.
Additionally, the reproduction number is a function of the equilib-
rium values of x�1 and x�2, and when S�q ¼ R� ¼ 0; Ra; Rs, and Ri

reduce to:

Ra ¼ ð1�qÞf ð1��x�2Þbaru

AaAu
; Rs ¼ ð1��x�2Þbsfð1�qÞ½ð1�f Þruþau �þqAug

AsAu
;

Ri ¼ ð1��x�2Þgibsfð1�qÞ½ð1�f ÞqsruAaþsAsðfruþAaÞþqsauAa �þqqsAaAug
AaAiAsAu

:

Using the parameter values in Table S1 in SI, the value of the basic
reproduction number is R0 ¼ 2:7. It should be mentioned that this is
computed for the scenario in which ðx�1; x�2Þ ¼ ð0;0Þ. Fig. 2 shows a
heat map of the reproduction number Rc , as a function of the equi-
librium proportion of non-quarantined susceptible humans who
choose SD and (a) the efficacy of social-distancing �, and (b)-(c)
the detection or isolation rate of exposed and asymptomatic infec-
tious individuals, s. Increases in the number of non-quarantined
susceptible humans who choose SD and the efficacy of SD will lead
to a decrease in the control reproduction number, and hence dis-
Fig. 2. Heap map of the reproduction number Rc , as a function of the equilibrium fraction
(s) when � ¼ 0:5, and (c) s when � ¼ 0:8.
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ease burden (Fig. 2(a)). However, for an appreciable decrease in dis-
ease burden and possible elimination, both x�2 and � must be high.
For example, if 84% of the population choose SD, then an efficacy
of at least 83% is required to contain the pandemic. Unfortunately,
it is difficult to achieve this high level of SD and efficacy in any com-
munity. Although combining SD with other measures is a better
approach to fight COVID-19 (see, for example, Ngonghala et al.,
2020), this study shows that the efficacy of SD must be high. Specif-
ically, containing the pandemic will be impossible for moderately
efficacious SD (e.g., � ¼ 0:5), even if high SD is combined with high
case detection (Fig. 2(b)). However, if the efficacy is increased to
80% and the detection rate is s ¼ 0:57, then at least 75% of the pop-
ulation is required to engage in SD in order to reduce the reproduc-
tion number below unity (Fig. 2(b)).
3.2. Numerical simulation results

In this section, we simulate the model system (7) to illustrate
the impact of human response to social-isolation (i.e., SQ and SD)
on the evolution of the COVID-19 outbreak. These simulations
are carried out using parameter values that are drawn either from
the literature, estimated from available information or through
educated guesses (Table 1 in the SI). Except otherwise stated, the
initial conditions used for the simulations are: Suð0Þ ¼ 0:99997;
Sqð0Þ ¼ 0; Euð0Þ ¼ 0; Eqð0Þ ¼ 0; Iað0Þ ¼ 0:00001; Isð0Þ ¼ 0:00001;
Iið0Þ ¼ 0:00001; Rð0Þ ¼ 0; D0 ¼ 0; x1 ¼ 0:04 and x2 ¼ 0:8. The
total population is assumed to be 100,000 for qualitative analysis
of the model. Also, we used COVID-19 and lockdown data from
India to estimate some of the key model parameters and to per-
form a scenario analysis to assess the impact of relaxation of lock-
down measures and extension or implementation of lockdown
measures at different time periods on the COVID-19 pandemic in
India.
3.2.1. Impact of self-quarantine (SQ) versus social-distancing (SD)
Different countries embarked on different types and stringency

levels of social-isolation measures to reduce the burden of the
COVID-19 pandemic. The type and stringency level of social-
isolation implemented by a country was determined primarily by
the availability of public health personnel, infrastructure, personal
protection equipment, and the state of the economy of the country.
In particular, public health authorities from many High Income
Countries (HIC) promoted SQ of suspected cases and ‘‘shelter-in-
place” or country-wide lockdown, whereas many Low and Middle
Income Countries (LMIC) preferred other less stringent forms of SD
(Gelfand et al., 2020; Germani et al., 2020; Walker et al., 2020;
Travaglino and Moon, 2020). Each of these strategies is associated
with a cost to individuals and whole communities. For example,
of humans who choose SD (x�2), and (a) the efficacy of SD (�), (b) case detection rate



Fig. 3. Time series plots of COVID-19 incidence from simulations of the model system (7) for different values of the perceived cost of (a) SQ (rq) for rd ¼ 0:0001, (b) SD (rd) for
rq ¼ 0:1, and (c) SQ and SD for rq ¼ 0:003; rd ¼ 0:0001 (red curve), rq ¼ 0:005; rd ¼ 0:0005 (magenta curve), rq ¼ 0:008; rd ¼ 0:001 (gold curve), rq ¼ 0:5; rd ¼ 0:0001 (green
curve), rq ¼ 0:003; rd ¼ 0:01 (blue curve). Observe that the perceived cost of SQ has relatively less impact on daily incidence peak compared to the perceived cost of SD. The
other initial conditions and parameter values used for the simulations are presented in Section 3.2 and Table S1 in SI.
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lockdown comes at a cost that includes loss of jobs and earnings.
This can lead be devastating, especially for low-income earners
and it can also impact the mental health and well-being of victims
negatively (Brooks et al., 2020). Self-quarantine is also associated
with a significant cost, e.g., isolation from contacts and routine
activities, which can also have a negative impact on an individual’s
mental health. This perceived cost for SQ adds up fast in LMICs
owing to additional quarantine-induced issues such as anxiety
and various forms of insecurity (European Centre for Disease
Prevention and Control, 2020). Hence, the choice of SD or SQ
depends on the perceived cost of the strategy. To assess the impact
of this perceived cost on the burden of COVID-19 (measured in
terms of the number of new daily cases, i.e., the daily incidence),
we simulate the model (7) for different values of the perceived cost
of SQ (rq) and SD (rd) (Fig. 3). The simulation results show that
small changes in the perceived cost of SD have a big impact on
the incidence (i.e., the new daily cases) of COVID-19 compared to
small changes in the perceived cost of SQ. In particular, decreasing
the perceived cost of SD from 0:01 (blue curve in Fig. 3(b)) to
0:0001 (red curve in Fig. 3(b)) will result in a drastic 71% decrease
in disease incidence when the pandemic peaks and an 86-day
increase in the time at which the pandemic peaks. On the other
hand, decreasing the perceived cost of SQ does not have any signif-
icant impact on the size of the pandemic peak. However, decreas-
ing the perceived cost of SQ leads to a delay in the time at which
Fig. 4. Simulation results of the model (7) showing the daily disease incidence as a func
terms of the initial proportion of the population who choose SQ (x1ð0Þ) with rq ¼ 0:1; rd ¼
proportion of the population who choose SD (x2ð0Þ) with rq ¼ 0:1; rd ¼ 0:0001, and
rq ¼ 0:1; rd ¼ 0:0001. Different fractions of initial populations enable individuals to imitat
values used for the simulations are presented in Section 3.2 and Table S1 in SI.
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the pandemic peaks (without decreasing the cumulative inci-
dence). For example, decreasing the perceived cost of SQ from
0:5 (blue curve in Fig. 3(a)) to 0:003 (red curve in Fig. 3(a)) will
result in a 97-day (i.e., 56%) increase in the time at which the pan-
demic peaks. This shows that SD is more effective in mitigating the
COVID-19 pandemic, especially if the perceived cost of SD is low. In
particular, if the perceived costs of both SQ and SD are high, then a
high number of daily cases will be recorded when the pandemic
peaks and the peak will occur earlier (blue curve in Fig. 3(c)) com-
pared to the case when the perceived costs of both SQ and SD are
low (red curve in Fig. 3(c)).

3.2.2. Influence of initial players
The population of initial players playing each strategy in the

beginning of the outbreak always influences the game and hence
dynamics of SD and disease outbreak. To investigate this, we use
different initial values of x1 for SQ and x2 for SD, where different
initial values for x1 (respectively, x2) reflect different fractions of
members of the community who have adopted SQ (respectively,
SD). The results depicted in Fig. 4 indicate that variation in the ini-
tial proportion of individuals adopting SQ are less impactful to the
incidence pattern, e.g., the outbreak size, especially for low values
of x1ð0Þ (Fig. 4(a)). In particular, if the initial proportion of individ-
uals who adopt SQ increases from 0:02 to 0:60, a 15% decrease in
the daily incidence is recorded on the day the pandemic peaks
tion of time for two disease control strategies: (a) self-quarantine (SQ) quantified in
0:0001, and x2ð0Þ ¼ 0:1, (b) social-distancing (SD) quantified in terms of the initial

x1ð0Þ ¼ 0:04, and (c) SQ and SD measured in terms of (x1ð0Þ) and (x2ð0Þ) with
e others more and choose their strategies. The other initial conditions and parameter



Fig. 5. Simulations of the model (7) to assess the effects of the sampling or imitation rate (l) of others choices of social-isolation on the: (a) daily incidence of COVID-19, and
(b) cumulative incidence of COVID-19. The initial values of x1 and x2 are x1ð0Þ ¼ 0:2 and x2ð0Þ ¼ 0:5 and the other initial conditions are presented in Section 3.2. The other
parameter values used for the simulations are presented in Table S1 in SI.
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(green curve in Fig. 4(a)). A further increase by 0:20, i.e., an increase
from 0:02 to 0:80 will lead to a 40% reduction in the daily inci-
dence on the day the pandemic peaks (blue curve in Fig. 4(a)).
On the contrary, variation in the initial proportion of individuals
who adopt SD has a more significant impact on disease compared
to SQ (Fig. 4(b)). Specifically, the more the initial proportion of the
population that adopts SD (from the onset of the outbreak), the
higher the possibility of more people adopting the SD strategy. This
will lead to a lower disease burden (i.e., lower cumulative inci-
dence, as well as a lower and delayed pandemic peak size). For
example, if the initial proportion of individuals who adopt SD
increases from 0:02 to 0:60, the number of new daily COVID-19
cases decreases by approximately 55% on the day the pandemic
peaks (green curve in Fig. 4(a)). This represents a 40% additional
decrease in daily incidence on the day the pandemic peaks com-
pared to the same 0:02 to 0:60 increase in the initial proportion
of individuals who adopt SQ (green curves in Fig. 4(a) and (b)). Fur-
thermore, if the initial proportion of individuals who adopt SD
increases from 0:02 to 0:80, the number of new daily COVID-19
cases decreases by approximately 71% on the day the pandemic
peaks (blue curve in Fig. 4(b)). This represents a 31% additional
decrease in daily incidence on the day the pandemic peaks com-
pared to the same 0:02 to 0:60 increase in the initial proportion
of individuals who adopt SQ (blue curves in Fig. 4(a) and (b)). On
the other hand, if the initial proportion of individuals who adopt
SQ increases from 0:02 to 0:60 and the initial proportion of individ-
uals who adopt SD is maintained at 0:02, then approximately 45%
of the number of new cases on the day the pandemic peaks will be
Fig. 6. Surface plot of the (a) peak incidence and (b) cumulative incidence as functions of
noted that there is a nonlinear relationship between the peak incidence and the paramet
and wsq . For example, the cumulative incidence increases as the perceived efficacy of SD w
almost no impact on the cumulative incidence. Initial conditions are presented in Section
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averted (green curve in Fig. 4(c)), while if the initial proportion of
individuals who adopt SD increases from 0:02 to 0:60 and the ini-
tial proportion of individuals who adopt SQ is maintained at 0:02,
then approximately 64% of the number of new cases on the day the
pandemic peaks will be averted (blue curve in Fig. 4(c)). This,
shows that SD is more important in reducing the number of
COVID-19 cases and in delaying and/or slowing down the
transmission of COVID-19. Heatmaps depicting the impact of SD
and SQ on the daily incidence peak and symptomatic cases is pre-
sented in Fig. S1 in SI. The public health implication of this result is
that public health authorities should promote SD through various
media outlets to enable individuals to sample and possibly
adopt SD.

3.2.3. Impact of sampling or imitation rate
Media coverage and social networking play an important role in

individual decision-making during SD. We carried out simulations
to assess the impact of the rate at which people sample the behav-
iors/decisions of others on the burden of the outbreak measured in
terms of the daily and cumulative incidence (Fig. 5). The results
indicate that increasing the sampling rate does not have much
impact on the daily outbreak pattern, but it leads to a decrease
in the cumulative incidence. This is reasonable since sampling will
increase the number of people who switch to both strategies (i.e.,
SQ and SD) proportionately at higher rates, which in turn, leads
to faster decay of infection in the community. This signifies the fact
that more sampling can bring about a reduction in the burden of
COVID-19. The public health implication of this result is that
the perceived efficacy of SD ðwsdÞ and the perceived efficacy of SQ ðwsqÞ. It should be
ers wsd and wsq , a well as between the cumulative incidence and the parameters wsd

sd , decreases (or as the probability of infection increases), while the efficacy of SQ has
3.2 and the other parameters used for the simulations are presented in Table S1 in SI.



Fig. 7. A tornado plot with PRCCs depicting the significant dependence of daily
incidence on behavioral parameters. Using Latin Hypercube Sampling (LHS) McKay
et al., 2000, 1000 samples were drawn from uniform distribution of the parameter
ranges without replacement: rq ¼ ½0:004;0:3�; rsq ¼ ½0:03;0:5�; rsd ¼ ½0:08;0:3�; rn ¼
½0:03;0:09�; rd ¼ ½0:001;0:1�, mi ¼ ½0:4;0:82�;ma ¼ ½0:72;0:75�;md ¼ ½0:7;0:8�;ms ¼
½0:007;0:01�;l ¼ ½9;50�;wsq ¼ ½0:08;0:5� and wsd ¼ ½0:0001;0:09�. The initial
conditions are Suð0Þ ¼ 0:76; Sqð0Þ ¼ 0; Euð0Þ ¼ 0; Eqð0Þ ¼ 0; Iað0Þ ¼ 0:00001;
Isð0Þ ¼ 0:00001; Iið0Þ ¼ 0:00001; Rð0Þ ¼ 0;D0 ¼ 0; x1 ¼ 0:04 and x2 ¼ 0:2. The span
of the time series considered in this PRCC analysis is [1,360].
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widespread media coverage on SQ and SD mitigation strategies can
educate and influence more people to adopt the right strategy.

3.2.4. Efficacy of social-isolation
Simulations of the model (7) were also carried out to investigate

the influence of the perceived efficacy of SD ðwsdÞ and SQ ðwsqÞ on
the incidence peak size (Fig. 6(a)) and cumulative incidence of
COVID-19 (Fig. 6(b)). Higher values of wsd and wsq correspond to
lower efficacy of the respective strategies (SD and SQ) and hence,
a higher disease burden. Our simulations show that both the inci-
dence peak size and cumulative incidence of COVID-19 increase
with increasing perceived efficacy of SD values, but does not vary
significantly with changes in the perceived efficacy of SQ. In partic-
ular, high values of wsd can produce a huge and intense outbreak.
This suggests that it is more feasible to adopt SD as a strategy to
combat COVID-19 compared to SQ. Furthermore, combining both
SD and SQ strategies is more effective in combating the pandemic
than using only a single strategy.

3.2.5. Sensitivity of behavior-related parameters
To assess the impact of uncertainty and variability in behavior-

related parameters to model outputs such as the daily incidence,
and to identify parameters that impact model outputs significantly,
Fig. 8. Time series plots of daily incidence from simulations of the model (7) for different
(SD), and (b) mandatory SD strictness levels with voluntary SQ. The dashed blue and the s
and SD measure and a mandatory SQ and SD measure on disease incidence. The initial co
and Table S1 in SI.
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we use the Latin Hypercube Sampling and Partial Rank Correlation
Coefficients (PRCCs) techniques (Marino et al., 2008; Blower and
Dowlatabadi, 1994) to carry out a global uncertainty and sensitiv-
ity analysis. The results depicted in Fig. 7 show that all risk-related
parameters (rq; rd; rsq, and rsd) are positively correlated with disease
incidence as reflected in the time series simulations. The results
also show that the perceived cost of SD, rd, has the greatest impact
on disease incidence compared to the other risk-related parame-
ters. Also, wsd has relatively more significant impact on disease
incidence than wsq, which is in agreement with the results in
Fig. 6. Furthermore, the results show that the sampling rate, l,
does not have a significant impact on the incidence, which is in
conformity with the results presented in Fig. 5. In summary, the
global uncertainty and sensitivity analysis results suggest that
the perceived risks of social-isolation have variable, but significant
impact on the dynamics of COVID-19 incidence.
3.2.6. Mandatory vs. Voluntary self-quarantine (SQ) and social-
distancing (SD)

Both SQ and SD have been useful in reducing the burden of the
COVID-19 pandemic in many countries. Whether these measures
are implemented voluntarily by individuals or imposed by the gov-
ernment is important for the success of control program that relies
on these measures. Here, we simulate the model (7) to assess the
impact of implementing both measures through a mandatory and
voluntary approach on the transmission dynamics of the disease.
For this purpose, we reduce our 3-strategy model framework to a
2-strategy framework by restricting one of the strategy-variable
(xi; i 2 f1;2g) to be constant implying a mandatory implementa-
tion of that specific social-isolation mechanism. The results of
our analysis are presented in Fig. 8, with dashed blue curves
depicting the pattern of disease outbreak when both strategies
are voluntary (i.e., when individuals choose to adopt both SQ and
SD voluntarily), and solid red curves depicting epidemic patterns
when both strategies are mandatory (i.e., when both SQ and SD
are imposed by the government). As expected, the size of the pan-
demic peak is very high when individuals are allowed to decide
whether to implement both strategies or not compared to when
the strategies are imposed by the government. This is because
whether an individual adopts a strategy or not depends on the
probability of infection and the severity of the spread, which is
generally lower at the beginning of the outbreak. Thus, fewer indi-
viduals adopt both strategies voluntarily and consequently this
leads to increased transmission or an increase in the size of the
outbreak. In particular, there is a drastic (approximately 85%)
reduction in the size of the pandemic peak when SD and SQ is
values of: (a) mandatory self-quarantine (SQ) levels with voluntary social-distancing
olid red curves in both plots depict the respective impacts a combined voluntary SQ
nditions and parameter values used for the simulations are presented in Section 3.2
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mandatory (green curves in Fig. 8(a) and (b)) compared to when
both strategies are voluntary (green dashed blue curves in Fig. 8
(a) and (b)). On the other hand if SQ is mandatory, while SD is vol-
untary, then increasing the stringency of SQ does not impact the
size of the pandemic peak significantly. However, the time at
which the peak occurs is prolonged. On the contrary, if SQ is volun-
tary while SD is mandatory, then increasing the coverage or strin-
gency of SD reduces the size of the pandemic peak significantly. In
particular, if SD is mandatory, and the coverage or stringency of SD
is increased from 0:05 (red curve in Fig. 8(b)) to 0:75 (cyan curve in
Fig. 8(b)), the size of the pandemic peak is reduced by approxi-
mately 40%, while the time at which the peak occurs increases
by approximately 60%. This suggests that as a single mandatory
measure, mandatory SD is more effective than mandatory SQ in
minimizing the burden of the COVID-19 pandemic.

Additional simulations were carried out to assess the impact of
alternating implementation of the mandatory and voluntary
social-isolation measures on the burden of the pandemic. This
entails imposing a mandatory strategy for some time period,
switching the same strategy to voluntary for the next time period,
and then switching back to mandatory, etc. We implement each of
the strategies (SQ and SD) as Voluntary-Mandatory-Voluntary-Man
datory, within certain fixed periods of time by keeping the end
point of the chosen strategy’s variable (xi) constant for mandatory
implementation or the initial population for voluntary implemen-
tation. Fig. 9 shows the effect of such an implementation sepa-
rately for SD (Fig. 9(a) and (c)) and SQ (Fig. 9(b) and (d)). We
also show the counterfactual by comparing the relative impacts
of such implementing such an alternating Voluntary-Mandatory-V
oluntary-Mandatory strategy. Simulations of the model (7) with a
Mandatory-Voluntary combination approach illustrates that reduc-
ing cumulative incidence is not always helpful. For example, Fig. 9
(a) and (b) shows that implementing this alternating combination
Fig. 9. Simulations of the model (7) depicting the daily and cumulative disease incide
isolation: SD ((a) and (c)), and SQ ((b) and (d)). The time points for strategy-switching imp
dotted lines, and are used to compare the effect in absence of further implementation. Th
Section 3.2 and Table S1 in SI.
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approachmay reduce the incidence peak size, but at the same time,
the duration of the outbreak may increase. This might trigger an
increase in the cumulative incidence. Fig. 9(c) and (d) shows that
SQ is instrumental in reducing the cumulative incidence by this
alternating combination approach (Fig. 9(c)), while SD implemen-
tation results in an increase in cumulative incidence (Fig. 9(d)).
This is due to the fact that the efficacy of SQ is higher than that
of SD, while the probability of infection is lower.

We also simulate the model (7) to explore the effects of timing
of the alternative implementation of the Mandatory-Voluntary
approach to social-isolation under five different scenarios describ-
ing different implementation time points. Our results show that
there are significant qualitative and quantitative differences in
the pandemic outbreak size and the time that elapses before the
pandemic peaks for each of the two social-isolation mechanisms
(Fig. 10). In particular, early implementation of mandatory SD is
important in reducing disease transmission (Fig. 10(a)). This is
not exactly the same case with SQ, where the peak size is lower,
if mandatory SQ is implemented later in the course of the
outbreak (Fig. 10(b)). This is because the efficacy of SQ is higher
than that of SD.
4. Data, implementation and parameter estimation

In this section, we use different COVID-19 related data sets
from India obtained from various sources including Roser et al.
(2020) to estimate key behavioral and COVID-19 transmission
related parameters of the model (7). These parameters include
the community transmission rate bi; i 2 fa; sg, risk-related param-
eters rq; rd, and rd, behavioral parameters l;wsq, and wsd, and
reporting probability. Daily incidence data of COVID-19 for India
for the period from January 22 to July 20, 2020 (Fig. S2 in SI)
nce under alternating combinations of Mandatory-Voluntary approaches of social-
lementation in each case is day 30;80, and 130. The counterfactual is represented by
e initial conditions and parameter values used for the simulations are presented in



Fig. 11. Model fit to the confirmed new daily COVID-19 cases in India for the period
from February 16 to July 20, 2020. Filled black circles represent the actual
confirmed daily COVID-19 cases, while the solid red curve represents the prediction
of the new daily cases from the model (7). The other parameters that are not
estimated here are presented in Table S1 in SI.

Fig. 10. Simulations of the model (7) depicting the outbreak pattern of the COVID-
19 pandemic under combinations of Mandatory-Voluntary approaches for (a) social-
distancing (SD), and (b) self-quarantine (SQ) at different time points (presented in
the Fig. legends). The initial conditions and parameter values used for the
simulations are presented in Section 3.2 and Table S1 in SI.
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was drawn from various sources including the World Health
Organization (WHO) website (World Health Organization, 2020),
the John Hopkins COVID-19 dashboard (Dong et al., 2020;
World Health Organization, 2020), and Worldometer (2020).
COVID-19 testing numbers in India have been extremely variable
throughout the COVID-19 period. This variability has a big influ-
ence on the case detection rate (s) in the model (7). Hence, we
include testing related data obtained from Roser et al. (2020) in
the parameter estimation (Fig. S3 in SI). During the COVID-19
pandemic, many countries including India implemented social-
isolation through a voluntary-mandatory approach, i.e., a volun-
tary approach was first adopted for some period (specifically
around the onset of the pandemic) before switching to a manda-
tory approach for a while, and then returning to the voluntary
approach. For example, strict countrywide lockdown was imple-
mented in India on March 23, 2020 and then either continued
or relaxed under different circumstances such as workplace,
transport, schools, markets, etc. Implementation of social-
isolation and strictness in measure during COVID related lock-
down in India is presented in Fig. S6 in SI (data obtained from
Roser et al., 2020). The stringency of the lockdown measures
implemented by the Indian government changed over time in
response to the burden of the pandemic (Fig. S4 in SI). At the time
this study was carried out, there was no data or direct informa-
tion at the individual level on how individual perception of the
risk of infection changes and how individuals reacted to the lock-
down and social-isolation measures implemented during the
COVID-19 outbreak. We used data on the proportion of visitors
in recreation centers, parks, grocery stores, workplaces, etc., as
proxies to such individual level perceptions (Fig. S5 in SI). Also,
we used detailed information including dates and strictness level
of lockdown to train our model for the specific case of India. We
used all these data to train our model in our parameter estima-
tion. The detailed methodology and parameter estimation process
is presented in the SI. As depicted in the model fit Fig. 11, the
model (7) captures the pattern of exponential growth shown in
the case data nicely. The estimated parameter values are pre-
sented in Table S2 in SI, while the other model parameters which
are not estimated here, were drawn from the literature
(Ngonghala et al., 2020). For this parameter regime, the value of
the basic reproduction is approximately 2:7.
10
5. Scenario analysis using the estimated model parameter
values

We perform different what-if scenario analyses with the param-
eter values estimated using COVID-19 incidence and control data
from India. Our analyses are based on three different scenarios,
each of which evaluates the impact of strict implementation of
mandatory lockdown relative to individual voluntary implementa-
tion of social-isolation to reduce the community transmission of
COVID-19: (I) relaxation of strict lockdown, (II) extension of the
strict lockdown period, and (III) initiation of lockdown at different
dates. Our analysis show that relaxing the strict mandatory SQ or
stay-at-home measure from March 23 to May 6, 2020 would have
triggered an increase in the daily incidence of COVID-19 in India by
approximately 68:8% (Fig. 12 (a)), whereas relaxing only the SD
measure would have increased the daily disease incidence by only
13%. Relaxing both the mandatory SQ and lockdownwill result in a
catastrophic explosion in the daily number of cases. This indicates
that strict mandatory social-isolation was very useful in curbing
the transmission of COVID-19 in India.

Additional simulations were carried out to assess the effects of
extending the strict mandatory countrywide lockdown in India
beyond May 6, 2020 (Fig. 12 (b)). Here we extend both the SQ
and SD. Extending the strict lockdown for another 15, 30, 45, and
60 days would have reduced the daily incidence peak of
COVID-19 in India by approximately 35%; 67%; 74%, and 83%,
respectively, (Fig. 12(b)). On the other hand, the precise time at
which lockdown is implemented in the course of the pandemic
can have a significant impact on the burden of the pandemic.
Hence, we also carried out simulations to investigate the effects
of implementation of lockdown at different time points on the
daily incidence of COVID-19 in India (Fig. 12(c)). The result of the
simulation (c) indicates that implementation of the lockdownmea-
sure on March 1, 2020 and maintaining strict lockdown for one and
half months does not play a role in reducing the daily incidence of
the disease, rather it increases the daily incidence approximately
36%. Similarly, implementation of a lockdown mandate on March
15, 2020 would have resulted in a 7% increase in the number of
new daily cases. In contrast, imposing strict lockdown measures
on March 30, 2020 (or April 10, 2020) would have triggered a
10% (or 26%) decrease in the number of new daily COVID-19 cases
in India. This scenario analysis indicates that mandatory strict
lockdown is useful in reducing COVID-19 transmission in India.
However, an optimal design of lockdown measure that takes into
account the type of lockdown, initiation date of the lockdown,



Fig. 12. Simulations of the model (7) to assess three COVID-19 control-related scenarios. (a) Scenario I: Mandatory strict lockdown is relaxed (i.e., it is voluntary) from March
23 to April 19, 2020. SQ and SD are relaxed separately and together. (b) Scenario II: Mandatory strict lockdown is extended from May 6 by several days, e.g., 15, 30, 45, and
60 days. (c) Scenario III: Mandatory strict lockdown is implemented on different dates, e.g., March 1, 15, 30, and April 10, 2020. For more explanation, see the text.
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and the duration of the lockdown measure are important in mini-
mizing the burden of the COVID-19 pandemic in India.

6. Discussion and concluding remarks

As the COVID-19 pandemic emerged in late 2019 and started
crippling health systems and economies around the world, govern-
ments of various countries were confronted with deciding on
which NPI to implement in order to strike a balance between
reducing the burden of the pandemic (e.g., reducing the transmis-
sion of the disease and consequently the number of hospitaliza-
tions and deaths), while not over running down their economies.
Irrespective of the choice of intervention measure, human decision
(at the individual and community level) has a direct impact on the
success of the measure as it can influence the outbreak size and
duration of the pandemic. In this study, we developed a hybrid
epidemiological-evolutionary game theory model to assess the
impact of human response to social-isolation (i.e., SQ and SD) on
the evolution of the COVID-19 pandemic burden. The model is
set up such that an individual can choose to SQ (at home or at a
designated quarantine facility), or social-distance (by avoiding
crowds, maintaining a distance of 2 meters from others, respecting
community shelter-in-place and lockdown measures, using a face
mask in public, etc.), or opt not to adopt any of these NPIs. A cost
(that an individual must pay) is associated with choosing each of
these three strategies. While SD reduces disease transmission, SQ
helps in depleting the susceptible population, and hence reduces
the disease burden by reducing the available population to be
infected.

We computed the reproduction number of the model and used
the expression to assess the impact of SD on containing the pan-
demic. Parameters like the efficacy of SD, and the detection rate
of exposed asymptomatically infectious individuals play crucial
roles in reducing the basic reproduction number. Our analysis indi-
cates that for a substantial reduction in disease burden and possi-
ble elimination, both the efficacy of SD and the proportion of
individuals who choose to social-distance should be high and that
containing the pandemic will be impossible for moderately effica-
cious SD even if high SD is combined with high exposed and
asymptotically infectious case detection. The numerical value of
the basic reproduction number computed using both parameters
from the literature and the estimated parameter values using data
from India fall within the range of reported basic reproduction
numbers for COVID-19 (Hellewell et al., 2020; Ngonghala et al.,
2020a,b).

We carried out numerical simulations to assess the impact of
human behavior-related parameters on the burden of COVID-19
(measured in terms of the daily number of cases). Our results
show a strong dependence between the number of daily cases
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of COVID-19, behavioral parameters, and COVID-19 transmission
potential. Both SD and SQ of suspected disease cases have been
widely used for controlling respiratory infections for a long time
(Cetron and Simone, 2004; Goh et al., 2006; Ngonghala et al.,
2020). Our study shows that SD is more effective in mitigating
the burden of the COVID-19 pandemic than SQ. This is due to
the fact that SD limits the transmission rate by reducing the num-
ber of effective contacts in the population, while SQ reduces the
number of new infections by depleting the susceptible pool. It
should be mentioned that SD reduces the size of the peak of
the pandemic and also delays the time at which the peak occurs,
thereby protecting healthcare systems from being overwhelmed,
while pharmaceutical interventions, e.g., antiviral drugs and vac-
cines, are being developed. Individuals opt for SD over SQ, if the
perceived cost of the strategy of SD is less than that of SQ. This
points to the fact that public health interventions should be direc-
ted towards implementing and sustaining SD, as this not only
delays the onset of community transmission, but also reduces
the cumulative incidence at lower individual cost. This result is
consistent with findings in a number of studies including that
in Ngonghala et al. (2020), which also highlighted the fact that
SD is a better measure for combating COVID-19 than SQ. In
advancing these interventions to contain the pandemic, it is
important to educate the public on the need to social-distance,
and to consider public acceptance of SD measures. This will go
a long way to contribute to the success of SD in reducing the bur-
den of the COVID-19 pandemic. On the other hand, during an
ongoing pandemic like COVID-19, the flexibility to move and tra-
vel without respecting SD strictly is equivalent to acting against
important precautionary principles.

While SD and SQ play crucial roles in reducing the burden of
COVID-19 (Ferguson et al., 2020), it is important to understand
the influence of the perceived efficacy of these two strategies,
and the respective impacts of these efficacy on disease dynamics.
We account for this by varying the reduced probability of becom-
ing infected, while SD ðwsdÞ in the range (0,1) and the reduced prob-
ability of becoming infected while self-quarantining ðwsqÞ in the
range (0,1). Our results show that ðwsdÞ has a significant impact
on the cumulative incidence of COVID-19, while ðwsqÞ does not.
This suggests that it is more feasible to contain the COVID-19 pan-
demic by adopting SD compared to SQ. From a public health point
of view, SD through community shelter-in-place and mask man-
dates, avoiding crowded environments, wearing face masks in pub-
lic, respecting basic personal hygiene, etc., has a huge impact on
reducing the spread of the disease. Hence, it is essential to under-
stand the reaction of the public towards SD, and educate individu-
als and communities on the importance and effectiveness of SD in
minimizing the transmission of COVID-19, as well as encourage
them to adopt SD.
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Our behavior-prevalence model analysis also suggests that the
cumulative incidence of the disease decreases with increasing
sampling rate, i.e., the rate at which individuals sample others
choices before deciding whether to adopt a choice (Fig. 5(b)). Thus,
more sampling can bring down the burden of COVID-19. The public
health implication of this result is that widespread media coverage
on COVID-19 control and mitigation strategies can educate and
influence more people to adopt the right strategy.

Due to the absence of safe and effective vaccines or treatments
for COVID-19 by the time this study was carried out, SD and SQ
were two important NPIs that the governments of many countries
used to reduce the burden of the COVID-19 pandemic. These mea-
sures played a critical role in delaying the time at which the pan-
demic will peak (‘‘flatten the epidemic curve”) in many countries.
This is important in preventing healthcare systems from becoming
overwhelmed or overcrowded, while allowing time for govern-
ments and health care providers to put together the required
resources for fighting the pandemic, or for pharmaceutical compa-
nies to develop vaccines and antiviral drugs. Thus, the timing of
these measures is very important. For example, China was able
to manage the pandemic more effectively because of its early
and rapid implementation of such measures (Silva, 2020). Studies
in Ngonghala et al. (2020a,b) have also suggested that early imple-
mentation of NPIs including SD and mask-use in public is effective
in reducing the burden of the COVID-19 pandemic. However,
whether these measures are implemented voluntarily by individu-
als or mandated by government plays a major role in the success of
these measures in mitigating the burden of the pandemic. Our
study indicates that sequentially switching between voluntary
and mandatory implementation of lockdown is a better approach
in combating COVID-19 compared to implementing only voluntary
or only mandatory social-isolation. This will contribute to mini-
mizing the number of daily cases and also save the country from
substantial economic depression. However, optimality of a sequen-
tial voluntary vs. mandatory approach will be based on when it
was implemented and the stringency condition. Overall, our simu-
lations suggest that a combination of Mandatory-Voluntary
approach of social-isolation may be useful for reducing disease
transmission and for decreasing the cumulative incidence depend-
ing on the type of intervention, when, and for how long the mea-
sure was implemented.

To validate our model and execute a scenario analysis, we
trained the model system with various data sets (e.g., COVID-19
incidence data, information on lockdown, the perceived probability
of infection, government stringency condition, etc.) that pertain to
India. Through an interactive approach, we estimated values for
some of the behavioral and COVID-19 transmission parameters.
The estimated parameter values suggest that the relative propor-
tion of asymptomatically infectious individuals accounts for higher
COVID-19 transmission than symptomatically infectious individu-
als in India. This is in line with results in Moghadas et al. (2020),
Ngonghala et al. (2020), Tindale et al. (2020). This comes as no sur-
prise, since the asymptomatic infectious individuals are not clini-
cally ill and so they mingle freely with others in the community
as opposed to the clinically sick, i.e., the symptomatically infectious,
who are self-isolating or isolated at hospitals or other designated
facilities. We performed several scenario analyses, e.g., extending
the period of strict lockdown, initiating the lockdown mandate
early, and relaxing strict lockdownmeasures. The analysis indicates
that mandatory strict lockdown is useful in reducing COVID-19
transmission in India. However, an optimal design of lockdown
measures that takes into account the type of lockdown, initiation
of lockdown, and the duration of the lockdown measure is impor-
tant in minimizing the burden of the COVID-19 pandemic in India.

A number of simplifying assumptions were considered in deriv-
ing the epidemiological and behavior models (1) and (5), respec-
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tively. For the epidemiological model, demographic processes
(vital dynamics), i.e., births, deaths, or migrations, are excluded
from the dynamics, which is realistic for a new disease such as
COVID-19 since the time scale of the disease is shorter than that
of human demographic processes. Also, a homogeneously mixing
population is considered, i.e., any individual in the population
has the same chance or probability of interacting with any other
individual in the population. However, it should be mentioned that
accounting for heterogeneities such as age-structure, preferential
mixing, risk structure (e.g., with or without pre-existing health
conditions), socio-economic status of individuals and sub-
populations, etc., might alter the results described in this paper.
Additionally, it is assumed that the time spent in each compart-
mental class is exponentially-distributed. Furthermore, it is
assumed that COVID-19 confers long-lasting immunity against
re-infection, i.e., individuals who have acquired COVID-19 and
recovered from it acquire natural protective immunity from the
disease. It should be mentioned that there is currently not enough
data to determine the level and duration of natural immunity to
COVID-19. For the behavioral component of the model (7), it is
assumed that the risk profile for a specific behavior is the same
for all age groups, which is not realistic in general. An age-
specific modelling framework may be more suitable to consider
since not only different disease transmission probabilities will be
accounted for, but also variable risk profiles for different age
groups.

In addition to the above limitations, further extensions to the
framework described here include accounting for the socio-
economic impact of COVID-19 on various populations. To this
effect, a coupled COVID-19-human behavior-economic model is
under study and will be reported in a separate manuscript. With
the availability of highly efficacious vaccines against COVID-19,
and with the scepticism surrounding human choice to accept to
be vaccinated or not, it is important to consider the impact of this
vaccine and human choice on the COVID-19 pandemic. On the
other hand, the risk perception and decision-making towards SQ
or SD relates to an individual’s age and culture (Kim and
Crimmins, 2020), e.g., an older person might prefer SQ, while a
teenager might opt for nothing or at best SD. This age-dependent
variability in decision-making among individuals will create
heterogeneity in the model structure and can result in interesting
dynamics and more realistic predictions. Additionally, methods
described in Glennan (2005), Wu et al. (2013) and Chang et al.
(2020) can be used to distinguish between behavioral and mechan-
ical adequacy of the mechanisms represented by the model and to
analyze the robustness of the model outcomes through a
sensitivity analysis, which distinguishes robustness of the model
from the robustness of the model outcomes.
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