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a b s t r a c t

Protein engineering or candidate therapeutic peptide optimization are processes in which the identifica-
tion of relevant sequence variants is critical. Starting from one amino-acid sequence, the choice of the
substitutions must meet the objective of not disrupting the structure of the protein, not impacting the
main functional properties of the starting entity, while also meeting the condition to enhance some
expected property such as thermal stability, resistance to degradation, . . . Here, we introduce a new
approach of sequence evolution that focuses on the objective of not disrupting the structure of the initial
protein by embedding a point to point control on the preservation of the local structure at each position
in the sequence. For 6 mini-proteins, we find that, starting from a single sequence, our simple approach
intrinsically contains information about site-specific rate heterogeneity of substitution, and that it is able
to reproduce sequence diversity as can be observed in the sequences available in the Uniref repository.
We show that our approach is able to provide information about positions not to substitute and about
substitutions not to perform at a given position to maintain structure integrity. Overall, our results
demonstrate that point to point preservation of the local structure along a sequence is an important
determinant of sequence evolution.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein or peptide engineering or design, as well as therapeutic
candidate peptide identification and optimization are processes in
which the identification of relevant sequence variants is critical.
Indeed, even not considering the insertion of un-natural amino-
acids, the choice of substitutions must face the objective of not dis-
rupting the structure of the protein, while meeting the condition to
enhance some expected property such as stability, resistance to
degradation, reduced immune response, among others. Ways to
identify such substitutions include experimental techniques such
as phage display [1], directed mutagenesis [2], and more recently
deep mutation scanning [3]. Due to progress in understanding
the determinants of protein folding and increasing amount of data
about related sequences, computational approaches to assist the
design have also been developed. Among these, the simulation of
sequence evolution along a phylogenetic tree has been the subject
of intense efforts during the past decades [4–7]. Such simulation
techniques are now able to deal with different rates of substitution
along sequences [8], consider co-evolution for some [9], and mod-
els to manage indels have emerged [4]. Apart from the fundamen-
tal goal of deciphering the rules underlying protein family
sequence evolution, these approaches also have implications for
enhanced sequence alignment for instance [10–12].

These techniques based on the analysis of sequences alone can
however reveal to be limited for protein engineering. In the context
of sequence optimization, the search for sequence variants might
escape the rules of natural evolution, and phylogenetic inference
is not always possible in the context of de novo protein design,
e.g. for the design of un-natural proteins. Finally, structural con-
straints, although implicitly contained along sequence evolution
might require more direct consideration. Explicit account for struc-
ture has led to the field of computational protein design, in which
the impact of candidate substitutions on the free energy of folding
of the protein is usually questioned to drive the process [13].
Indeed, various techniques to question the relationship between
the sequence space and the structure space, have been developed
in the perspective of protein design or engineering. These include
sophisticated protocols (see [14]), such as Rosetta-design [15], pro-
tocols based on the dead end elimination theorem (e.g. [16]), pro-
tocols focusing accurately on the relationship between evolution
and side chain-packing [17], coarse grained models (e.g. [18]), to
cite some, or a combination of the simulation of protein sequence
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evolution under the constraint of explicit structural context [19].
Of note, 3D based-techniques have led to successful applications
in protein design [20–22].

In the context of sequence optimization of therapeutic peptide/
protein candidates, a primary objective, beyond the goals of
enhancing peptide stability and bioactivity, is the preservation of
the 3D conformation among the sequence variants, not to disrupt
the geometry of the functional interactions with a target. Thus
means to identify which substitutions are likely to disrupt or to
preserve those interactions are highly desirable. In particular, it
is well-known that some sites of the protein sequence are much
more sensitive for this than others. For example, in protein folding,
a few key residues force the chain to adopt a rudimentary native-
like architecture [23]. In sequence evolution, the phylogenetic tree
is characterized by a few tree-invariant positions - detectable by
Evolutionary Tracing [24], and tree determinants [25] that corre-
spond to functionally important residues in the structure. There-
fore, it is essential to identify those key residues and delineate
the sequence space that preserves the 3D conformation in their
vicinity. Although protein design techniques coupled to molecular
simulations techniques can fulfill such a goal, such protocols are
hardly tractable to test the complete space of sequences that
rapidly growths with peptide size.

Here, we introduce a mid term strategy which does not rely on
sophisticated phylogenetic inference nor on explicit structure con-
sideration. We use the concept of structural alphabet [26], a dis-
crete model of local structure, to constrain a very simple protocol
for sequence evolution. Our previous works have demonstrated
the identification and use of the concept of structural alphabet,
and the fact that divergent profiles tend to correspond to divergent
structures, as illustrated by a fragment search strategy exploiting
this trend [27]. This is the first time that our structural alphabet
is applied to the effect of mutations of the same structure. We
show that it provides, at a limited computational cost, sequence
sampling consistent to that observed in the subset of the natural
sequences identified and that it provides information about critical
positions, ie. conserved positions not to substitute or position
specific disruptive amino-acids substitutions.
Fig. 1. JS as a function of RMSD, using as seed the fragment 151–154 � 4 amino
acids - of the GCC-box binding domain (PDB: 3GCC) with all fragments of 77 small
proteins.
2. Theory

2.1. Structural alphabet (SA)

A structural alphabet (SA) can be considered as a generalized
secondary structure in which each region of a protein can be asso-
ciated to one specific conformation, or ‘‘SA-letter” of the alphabet.
Thus, a structure can be transposed into an optimal string of SA-
letters expected to describes accurately enough the series of the
local conformations - two different strings should be able to distin-
guish between small conformational changes and hopefuly provide
a basis to regenerate the 3D conformation. Here, we use a struc-
tural alphabet made of 27 SA-letters that have been identified
using Hidden Markov Models [26]. Each SA-letter corresponds to
a fragment of four amino-acids of the protein, and is described
by four distance descriptors and the SA-letters overlap by three
amino-acids. Thus, the conformation of a protein of size L amino-
acids can be described by a string a SA-letters of size L-3.

Given the amino-acid sequence of L amino-acids, it is possible
to predict the probability that each series of 4 amino acid is asso-
ciated with each of the 27 SA-letters, i.e. a SA-profile of size 27(L-3)
values. In such profile, each of the 27 probabilities associated to
position l correspond to estimates of p(SA/aa), i.e. probabilities of
the SA letters given information of the amino-acids. Briefly, for a
given protein sequence, a sequence profile is first generated using
PSI-BLAST. It is then used to predict an SA-profile. This prediction is
performed by a Support Vector Machine (SVM) that was trained to
reproduce the SA-profiles extracted from known structures. Here,
we use a 20120 update of the SVM predictor that was described
in [28], learnt over a collection of proteins of size more than 80
amino acids. Of note, those profiles have been demonstrated effec-
tive for the de novo modeling of peptides, using different strategies
to exploit the information they contain [29].

Interestingly, the SA-profiles make a link between sequence and
structure, and their variations are likely to reflect how the substi-
tutions in the amino-acid sequence can impact the 3D structure
of the protein. They contain information specific of the structure,
the profiles of two proteins of dissimilar folds being dissimilar
and the profiles of tow proteins of similar fold being similar. We
have shown in a previous study [27] that using the Jensen Shannon
divergence (JS) as a measure of profile dissimilarity, it is possible to
identify, for low values of JS, protein fragments that have similar
conformations. Our purpose here is to use SA-profile divergence
as a control over the preservation of the structure of the target
after an amino-acid substitution, to ensure a position by position
preservation of the local conformation associated to the initial
amino-acid sequence. For the purpose of illustration, Fig. 1 shows
the relationship between the JS and the RMSD for a fragment of
4 amino acids taken from the structure of the GCC-box binding
domain (PDB[30]: 3GCC), positions 151–155 aligned with random
fragments of a collection of proteins. One clearly sees that small JS
value (resp. large JS values) tend to be associated with small RMSD
values (resp. large RMSD values). Note that there are a few cases
for which the RMSD is large while the JS is low, which is in agree-
ment with the well known observation that small fragment with
identical sequences can adopt different conformations [31]. Con-
versely some fragments come with a large JS value (different
sequences) and small RMSD values, again consistent with previous
observations. Importantly, in the present study, we do not consider
unrelated fragments, but we make evolve one specific sequence,
which is expected to prevent the occurrence of such singular
behaviors. Fig. 2 illustrates how a SA-profile can be affected by
one single mutation. Here, we present the impact of the A53T
mutation of the a-Synuclein, reported to impact the local confor-
mation around position 53 [32]. One clearly sees that just one sin-
gle substitution results in large differences in the SA-profile around



Fig. 2. SA-profiles of the a-Synuclein, wild type (top) and A53T mutation (bottom). Each column corresponds to the probability distribution of the 27 letters. SA-letters are
sorted from most helical (red) to most extended conformations (green). Details of the probability distributions around position 53 are provided as insets. Of note, SA letters
correspond to fragments of 4 amino-acids. Thus the A53 position is associated with HGVA, GVAT VATV and ATVA fragments, facing the H, G, V and A columns, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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position 53, not affecting, as could be expected other parts of the
profile (JS values of more than 0.13). Note that in our SA model,
the probability distributions correspond in fact to overlapping frag-
ments of 4 amino acids. Thus, one amino acid contributes to 4 con-
secutive probability distributions.
3. Methods

3.1. Sequence evolution

Fig. 3 presents an overview of the procedure. The protocol to
simulate sequence evolution is similar to a Monte Carlo procedure.
Starting from the sequence of a target protein, it will generate sub-
stitution events that are accepted or not, simulating a randomwalk
in the sequence space. For each substituted sequence, a SA-profile
is predicted and compared to the SA-profile generated with the ini-
Fig. 3. Flowchart of a simulation.
tial sequence. Acceptation of substitutions is performed according
to the expected structural divergence as measured by JS.

The core simulation of sequence evolution is made according to
the scheme proposed by PSeqGen [33] or CS-PseqGen [34]. The JTT
substitution matrix is used to allow for different rates of substitu-
tions depending on the type of amino acids. Since we are interested
in the substitution events disregarding any molecular clock or any
phylogenetic model, evolutionary time is considered as infinite,
meaning each step results in selecting a substitution, similarly to
a Monte Carlo inspired process. Site-specific rate heterogeneity is
not considered either, since in the context of protein design, it is
largely unknown. Substitution acceptance is controlled as detailed
below. In total, simulations are defined by an initial sequence and a
number of substitutions to generate.

Acceptance or reject of the substitutions is controlled by the
estimation of the expected impact of a substitution on the preser-
vation of the local structure of the target, i.e. on the dissimilarity of
the SA-profiles before and after substitution, using JS as follows:

JS SAPref ; SAPcur
� �

< JScut�off : accept; reject otherwise

where SAPref corresponds to the SA-profile of the initial sequence,
SAPcur to the SA-profile of the current sequence and the JScut-off value
corresponds to the value above which the divergence is considered
as too large to guarantee structure preservation. Varying the value
of this cut-off can be assimilated to varying the temperature of
the Monte-carlo.

SA-profiles associated with an amino-acid sequence of size L
consist in L-3 probability distributions, each of 27 values. For each
pair of distributions belonging to SAPref

l , SAPcur
l , , where l varies from

1 to L-3, we use JS(l) as a mesure of the dissimilarity. As mentioned
above, a particular position l in the sequence contributes to the SA-
profiles of four positions (l .. l + 3), which requires to check the JS at
those four positions. For sake of simplicity, we measure the JS for
all of the L-3 positions, and to combine the L-3 JS values, we
consider:

JS SAPref ; SAPcur
� � ¼ maxðJS lð Þ; l ¼ 1 :: L� 3Þ

where the maximum stands to ensure that, given a cutoff value, for
no profile the deviation is more than this value.

Of note, the observed variability over independent simulations
is, in our experience, rather weak and is not discussed any further
here. Also note that for each substitution event, we perform a full
SVM prediction which requires itself a psi-blast and thus simula-



Fig. 4. Evolution of the sequence identity to the initial sequence as a function of the
number of substitution events. Gray: control without the use of the JS constraint
(JS = 1.) Black: JS = 012, accepted sequences. Blue: JS = 12, all sequences. Green:
JS = 0.08, accepted sequences. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tions of 3000 substitution events take between one and two days
each on a standard workstation.

3.2. Amino-acid profile divergence

Once simulations performed, one needs means to analyze the
diversity of the sequence generated. To estimate the number of
amino acids occurring at a given position l in the sequence, we
use the number of equivalent amino-acids defined as:

Neq lð Þ ¼ 1=pmax lð Þ
where pmax(l) corresponds to the maximum of the occurrence prob-
abilities associated with the 20 amino-acids at position l in the
sequence. These values are averaged over the L positions of the
sequence to get an estimate of the diversity over all positions.

The comparison of the two profiles made of L distributions of 20
probabilities is a difficult issue. Here, we simply consider the cor-
relation coefficient of the two vectors made of the L. 20 values,
which we found more intuitive than criteria such as the average
JS or the average dot product over the L positions.

3.3. Test sets

To assess the performance of our procedure, we have chosen 6
peptides and mini-proteins of known structure, not intrinsically
disordered, and of varied topologies. Table 1 provides details on
their size, secondary structure, and sequence. Such small sized pro-
teins have the advantage of not belonging to the range of size used
to learn the SVM. We emphasize, however, that although we assess
the protocol on such small proteins, the procedure is very general
and applicable to larger proteins, as illustrated Fig. 2 for the a-
Synuclein, a protein of 140 amino acids.

As a reference for ‘‘naturally observed” sequence variation, we
have considered the sequence variants made of the homologs of
these targets found either in the Protein Data Bank, or in the Uni-
prot repository. For the later case, since our aim here is to estimate
the acceptable substitutions in terms of amino-acids, we have
build profiles considering entries of the Uniref 90 subset, to discard
too identical sequences. The procedure was as follows:

1/ search uniref90 using blastp [35]
2/ retrieve the entries of the hits
3/ perform a multiple alignment of the hits using clustal omega

[36]
4/ identify the region of the alignment matching the query and

extract the corresponding profiles

4. Results and discussion

4.1. Sequence divergence depends on the JS cut-off value

Fig. 4 depicts, for the transactivation domain of CRE-BP1/ATF-2
(PDB: 1bhi), the evolution of the JS and of the sequence identity as
a function of the number of substitution events. As could be
expected, one observes a fluctuation of JS between low and large
values (top inset, red) whereas JS of the accepted sequences
Table 1
Name: the name of the protein. PDB: PDB identifier of the structure. s2: secondary struct

Name PDB s2

Transactivation domain of CRE-BP1/ATF-2 1bhi a2
N-terminal leucine-repeat region of hepatitis delta antigen 1by0 a
C-terminal UBA domain of the human homologue of RAD23A 1dv0 a3
Bomain X of measle phosphoprotein 2k9d a3
FAF-1 UBA Domain 3e21 a3
first WW domain of Nedd4-2 1wr3 b3
remains under the limit imposed of 0.12 (top inset, black). Interest-
ingly, one also observes that the sequence identity of the
sequences generated, when compared to the initial sequence,
rapidly decreases down to values close to only 10–20% (black),
which corresponds to the twilight zone in terms of homology.
Small discrepancies are observed between the sequences accepted
and those generated, on average, as can be observed for instance
around step 200. A control simulation using the same procedure,
but not applying any JS constraint shows that rapidly, sequence
diverge in a random manner (gray).

Varying the value of the JS cut-off impacts, as expected, the
degree of divergence of the sequences. Indeed, lower value of JS
cut-off results (JS cut-off 0.08, green) in exploring sequences with
higher sequence identities, given that a more strict control on the
impact of substitutions on the predicted local conformations
results in rejecting more substitutions.

Similar behaviors are observed for the other targets of the test
set, and are summarized in Table 1 that reports, for all targets,
the lowest sequence identity reached during the simulations. Over-
all, the results show that the procedure is able to reach explore
sequences diverging down to close to 10–20% sequence identity.

4.2. Constrained simulated sequence evolution intrinsically embeds
site-specific rate heterogeneity of substitution

Fig. 5 presents, for 1bhi, a logo representation of the distribu-
tion of the 20 amino-acids per site. Fig. 5B-D present logos corre-
ure topology. L: size (amino-acids). Seq.: amino acid sequence.

L Seq.

b 38 MSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFG
27 RKKLEELERDLRKLKKKIKKLEEDNPW
47 GSQEKEAIERLKALGFPESLVIQAYFACEKNENLAANFLLSQNFDDE
44 VIRSIIKSSRLEEDRKRYLMTLLDDIKGANDLAKFHQMLVKIIM
45 GSMDREMILADFQACTGIENIDEAITLLEQNNWDLVAAINGVIPQ
36 GSPPLPPGWEEKVDNLGRTYYVNHNNRSTQWHRPSL



Fig. 5. Logo representations of the accepted sequence variants of 1bhi. A: control simulation, JS = 1. B: JS = 0.12. C, D, subsets of sequence of B for JS = 0.10, 0.08, respectively.
E: homologs of known structure deposited in the PDB. F: homologs identified in uniref90.
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sponding to subsets of sequences obtained from a simulation of
3000 events driven by a JS cut-off of 0.12, using as second step fil-
ters JS cut-off values of 0.12, 0.10 and 0.08, respectively. The size of
the subsets is of 892, 256 and 29 sequences, respectively. As a ref-
erence, Fig. 5A presents the results of an unconstrained simulation
of 892 events, i.e. a size identical to the subset depicted Fig. 5B.
Fig. 5E and 5F correspond to the logos obtained from the PDB
(13sequencesonly) and uniref90 (323 sequences), using blastp
(see methods).

A first observation is that compared to the unconstrained simu-
lation , that leads to a rather flat profile, the logo profiles differ lar-
gely. In Fig. 5B, positions 6, 14, 18 and 31, associated with amino
acids P, C, F and H, respectively, appear more conserved than other
positions (Neq < 1.3). Interestingly, considering lower JS cut-off val-
ues (Fig. 5C-D), the number of positions with Neq < 1.3 increases to
encompass progressively also positions 7, 19, 22. According to the
design of our procedure, this suggests that these amino acids are
probably critical to maintain the local conformation at these posi-
tions. Looking at the structure of 1bhi (Fig. 6), one notes that these
positions are located at the extremities of secondary structure ele-
ments. Positions 9, 14, 27 and 31 correspond to the cysteines and
histidines involved in the coordination of the zinc ion (not present
in the structure).

Looking at the profile generated using homologues of the PDB
(Fig. 5E), only positions 9, 14, 18, 20, 22, 27 and 31 are associated
with Neq values<1.3. Despite the weak number of sequences, those
positions match rather well the results of the simulation. Note that,
since we could not identify homologues with known structure for
all 6 cases, we do not discuss the PDB profiles for the other targets.

Looking at the distributions obtained for uniref90, one observes
that not only positions 6–7, 14, 18, 22 and 31 are conserved, but in
fact positions 6–7, 9, 11–14, 16–18, 21–24, 27, and 29–37. Apart
from C-ter residues 32–37 that are involved in the functional inter-
action with kinases, as reported by ELM [37], those residues corre-



Fig. 6. Example of 1bhi. Simulations using JS = 0.12. The amino acids at the
conserved positions (Neq < 1.3) are depicted in green. Amino acids conserved in the
uniref90 profiles are depicted in blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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spond to amino acids located at the interface between the sec-
ondary structure elements, most being involved in long range
interactions stabilizing the overall conformations. Hence, the
observed heterogeneity obtained from simulations constrained
by JS seems to effectively contain information about key residues
that are required for the preservation of the secondary structure
elements.
4.3. Sequence divergence is target dependent

We now consider all proteins of the test set. Table 2 reports for
all targets the number of sequences accepted for different JS cut-off
values, and the average Neq values of the profiles. Note that all sim-
ulations have been performed using JS of 0.12. For JS values below
0.12, the numbers correspond to the subsets of the simulated
sequences matching the JS condition. It is striking that the num-
bers depend on each target, meaning target sequence/topology
has an impact on the simulated evolution.

If, for a JS-cutoff value of 0.12, the observed variation in the
number of sequences is rather limited (acceptance rate of substitu-
tion events between 22 and 43%), larger variations are observed for
lower JS cut-off values. For instance for 0.08, the number of
sequence varies between 405 and 27 (acceptance rate between
Table 2
. #: Number of sequences accepted at the given JS value, and the associated Neq. Simulation
values observed among homolog sequences of uniref90. JSu: JS values for which simulate
simulations (section 4.4). JSu2: JSu for the second stage simulations. r: Correlation coefficie

1bhi 1by0 1dv0

JS # Neq # Neq # Neq
0.12 892 3.12 836 1.98 1048 3.0
0.10 256 2.89 632 2.00 566 3.
0.08 58 2.20 405 1.98 178 2.8
0.06 6 1.13 172 1.85 29 2.0
0.04 0 – 46 1.75 4 1.0
uniref90 323 1.36 171 1.38 332 1.1
JSu 0.075 0.032 0.047
JS2 0.08 (#:649) 0.04 (#: 608) 0.05 (#: 538)
JSu2 0.05 (#:28) 0.025 (#: 38) 0.025 (#: 18)
r 0.84 0.87 0.86
13 and 0.9%), and the Neq values vary between 2.87 and 1.75, with-
out any obvious relation to the number of accepted substitutions.

Finally, if we consider the values of Neq obtained for the unipro-
t90 homologs, they look rather small (between 1.05 and 2.19) com-
pared to the values obtained from the simulations. For the
simulations, values of Neq similar to those observed for uniprot90
are obtained for rather low values of JS - between 0.03 and 0.12
(JSu), but again one observes a strong dependence on the specifics
of each particular case.
4.4. JS controlled sequence evolution can mimmick sequence
divergence observed in natural sequences

In order to get a better agreement between the simulations and
the observations of uniref90, we have performed second stage sim-
ulations using JS values for the Neq were close to that of uniref90
(Table 2, JSu2 values). Note that these new cut-off values guide the
search into new regions of the sequence space, and thus, we do not
expect the Neq values to be preserved, thus JS2 values were chosen
slightly larger than the JSu values. A first observation about these
simulations is that indeed, the acceptance rate is, as expected
much larger for lower JS values (between 18 and 37% – see Table2)
than that observed for the initial simulations, which confirms a
better sampling of the sequence space for the targeted divergence,
the minimum number of accepted substitution events being of
538, when it was below 100, for the first series of simulations.
The minimal sequence identities for the accepted sequence were
of 23, 37, 32, 20, 31 and 25% for 1bhi, 1by0, 1dv0 2k9d, 3e21 and
1wr3, respectively.

Fig. 7 shows for each of the 6 targets, the logos obtained for the
JSu2 values, i.e. for average Neq values similar to those obtained for
uniref90. There is a good visual agreement between the logos of
the simulations and uniref90, and the r values vary between 0.63
and 0.77 (see Table 2), which is highly significant (p < 10-10). Note
however that the number of sequences, even if much larger than
that of the first series of simulations, remains low, except for
2k9d and 3e21 for which the r values, even if a bit lower remain
very significant. Of note, this low number of accepted sequences
is also conditioned by the weak Neq values observed for uniref90.
We have further verified that for series of 1000 tests permuting the
series of 20 probabilities for one of the profiles, the distribution of r
values is close to 0–0.1 on average. Overall, this suggests that our
simple procedure is able to mimmick accurately enough the
sequence fluctuations as observed in uniref90.

Looking at the positions highly conserved (Neq < 1.1) it is strik-
ing that most of them are located at the termination of secondary
structures, which suggest that the approach is probably sensitive
enough to detect that these regions are critical for structure preser-
vation. This is even more true when looking at residues conserved
s of 3000 substitution events were performed using JS = 0.12. Uniref90: corresponding
d Neq is identical to that of uniref90. JS2: JS cut-off values used for the second stage
nt between second stage and uniref90 profiles.

2k9d 3e21 1wr3

# Neq # Neq # Neq
2 1307 3.02 677 2.30 1126 3.05

356 2.89 186 2.23 535 3.04
7 80 2.33 27 1.75 79 2.45
8 11 1.22 8 1.06 11 1.13
3 9 1.07 2 1.02 3 1.02
6 18 1.74 232 2.19 237 1.05

0.075 0.12 0.06
0.08 (#: 1110)) 0.12 {#: 677) 0.07 (#: 887)
0.05 (#: 96) 0.12 (#: 677) 0.035 (#: 16)
0.63 0.77 0.77
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for slightly larger values of JS cut-offs (magenta in Fig. 7). Overall,
the positions highly conserved identified by our protocol corre-
spond to 31 over 55 (56%) of the positions highly conserved
observed in the uniref90 distributions. As illustrated upper for
the 1bhi case, constraints on sequence can occur due to several
reasons not related to the preservation of the local structure.

Finally, another outcome of the approach is that it also provides
for each position in the sequence, information about the substitu-
tions that have been rejected. Fig. 7 also presents, for all 6 cases the
logos of the amino acids that were not accepted by the JS cut-off,
and were excluded at least once with a JS value of more than 0.3
Fig. 7. Results obtained for simulations calibrated according to the uniref90 Neq.Left: For
uniref90 logo (bottom). The middle logo reports the distribution of the amino acids that h
residues of the targets are numbered as 1. Right: Conserved (Neq < 1.1) residues as obtain
subset of sequences using JS + 0.02, when possible (i.e. except for 3e21). (For interpretati
version of this article.)
(chosen large enough compared to the JS cut-off values to get con-
fident enough a local conformational change is expected). It is
interesting to compare these amino acids to those present in the
uniref sequences. For instance, at 1by0 conserved position 22, D
was rejected several times by our protocol, whereas E was pre-
served. D is not present either in the uniref profile. At position
10 of 1dv0, the uniref profile has a conserved position with R, when
our simulations report occurrences of R,K and M, and A, L, T and V
where rejected. For 3e21 position 10, the uniref contains occur-
rences of D, N, S, E, accepted amino acids of the simulations contain
D, N, E and G, A, H, R, S, T, Y were rejected. Another such similar
each target, we present le logo of the accepted sequences of the simulation (top), the
ave been systematically rejected during the simulations. For sake of clarity, the first
ed from the simulations. Cyan residues depict residues that are still conserved in the
on of the references to colour in this figure legend, the reader is referred to the web
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example is observed at 1wr3 position 28. In few cases, however,
some rejected amino acids are observed in the uniref profiles. Such
a situation occurs for 2k9d position 10, where the simulations
accepted R, H, K, uniref contains occurrences of N, H, K, R and
rejected amino-acids include N. Several causes can explain such
events, including epistatis effects (occurrence of N conditioned
by the occurrence of another amino-acid close in the sequence to
preserve local structure), or insufficient accuracy of the SVM pre-
diction for some sequence motifs, to mention two of them. Such
cases are however rare, and concern mostly amino acids occurring
with weak frequencies in the uniref90 profiles. Over the 6 targets
of our test set, the average cumulated probabilities of such amino
acids if of only 6.7%.
5. Discussion and perspectives

In the present study, we have introduced a new paradigm to
simulate protein sequence evolution. It builds on the concept of
structural alphabet – a kind a generalized secondary structure –
used as a means to constrain a very basic procedure to sequence
evolution. The underlying hypothesis is that the limitation of the
divergence between two structural alphabet profiles ensures the
point to point preservation of the local conformation along the
sequence. Surprizingly, we find that this very simple procedure is
able, for the mini-proteins of our test set, to result in generating
sequences which significantly fit sequence diversity as observed
among uniref90. Indeed, we find that our procedure is able to grab
the specifics of the heterogeneity of rate among sites, and of the
nature of the amino-acids at those sites. This being only induced
by the constraint on the divergence between the structural alpha-
bet profiles implies that the point to point control of the preserva-
tion of the local structure of a target is an important determinant of
sequence evolution. To the best of our knowledge, our procedure is
the first procedure to directly address this question, and this
clearly opens the door to further investigations on the amount by
which sequence evolution is controlled by such local constraints
versus longer range interactions. One has however to consider
carefully the present results. For one part, we have tested so far a
limited number of targets, and in addition, some optimizations
can already be foreseen. A special point is about the heterogeneity
in the JS cut-off values depending on the targets. Probably, it could
be of interest to study the convergence of our simulations for a lar-
ger number of cycles of simulations – here, only two were per-
formed. A comparison and/or combination with the results of
simulation procedure along a phylogenetic tree could also reveal
informative.

It is difficult to compare the results of our protocol to those of
former approaches described to measure the impact of mutations,
as their objectives differ largely. The aim of the approaches devel-
oped so far has usually been to predict the impact of substitutions
on protein stability. This includes local conformation preservation
considerations, but also longer range effects involved in the stabi-
lization of the structure, such as the interactions between sec-
ondary structure elements, or more complex effects. Here our
main focus is only about the preservation of the local structure,
disregarding longer range effect. It is thus expected that our results
are more specific than those of other approaches. In addition, most
of former approaches, such as Backrub [38], Rosetta-Design [15] or
POP-Music [39] require the 3D coordinates of the protein while we
consider here only the sequence. We discuss briefly our results in
the light of the results obtained by the INPS server [40] – based
on sequence and the very recent SAAMBE-3D server [41] – based
on structure. Considering for instance the 1by0 target, both INPS
and SAAMBE-3D predict that the subsitution E22D is slightly
destabilizing, while it is not accepted by our protocol, nor observed
in unriref90, which seems consistent. At position 10 of 1dv0,
SAAMBE-3D predicts all substitutions to be destabilizing - which
is consistent the full preservation of K in uniref90, while INPS pre-
dicts that substitutions of R into A, T, K or M would decrease the
stability of the protein and that substitutions into L or V would
increase the stability. Our results suggest that substitutions of K
into R or M are compatible with local structure preservation,
occurrences of A, L, T or V being never observed. For 2K9D position
10, the same kind of observations can be done. R10H, R10N, R10K
substitutions are all predicted to decrease the stability by both
INPS and SAAMBE-3D, while our procedure suggests that R10K
and R10H preserve local structure, and all are observed in uniref90.
In fact, it is fully possible that some substitutions that destabilize
the global structure do not affect the local structure and are still
compatible with the preservation of the local structure. It is also
to be noted that servers such as INPS or SAAMBE-3D consider the
impact of single mutations, all other amino acids being preserved,
while our procedure makes the complete sequence evolve, and
thus, some substitutions can be accepted conditional to previous
events in the neighborhood of a site. We also recall that our proce-
dure focusing on the preservation of 3D-structure comes with no
quantification of the impact of the substitutions on stability or
on function.

Indeed, a motivation for developing this procedure was the per-
spective to assist sequence optimization, as can be needed for the
development of a candidate therapeutic peptide or mini-protein.
Two questions can be posed in such context. The first is to identify
which positions in the sequence should not be modified to ensure
the preservation of the conformation of the candidate. To this
respect, it is interesting that the observed heterogeneity of substi-
tution rates over positions obtained from our simulations make it
possible, from a single sequence, to identity positions at which
substitutions seem risky. A second is to propose, for positions at
which we find some diversity, which substitutions are likely.
Numerous protocols and prediction approaches have been devel-
oped to this aim (see for instance [42,43]). Here, a particularity
of our approach, which is not quantitative, is probably to return
information about which residue substitutions were not accepted
at a given position. Although our results clearly show that rejected
substitutions depend on the context of the neighboring residues
since false rejections were observed at a frequency of close to 7%,
we put emphasis on the fact that our procedure is based on single
mutation events only, whereas more sophisticated ways to simu-
late evolution could be setup, for instance considering co-
evolution. All together, we however hope that our procedure of
sequence evolution under the constraint of the point to point
preservation of local structure already meets the objective of
assisting sequence optimization.
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