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Abstract

Background: Systemic sclerosis (SSc) is an autoimmune disease where controversy on Th1/Th2 balance dominates. We
investigated whether the recently discovered Th17 pattern was present in SSc.

Methodology and Principal Findings: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 12) or diffuse
cutaneous SSc (dcSSc, n = 24). A further arbitrary subdivision was made between early dcSSc (n = 11) and late dcSSc (n = 13)
based upon the duration of disease. As a comparator group 14 healthy controls were studied. CD3+ cells were isolated
using FACS and subsequently studied for the expression of CD4, CD8, CD25, CD45Ro, CD45Ra, IL-23, GITR, CD69 and
intracellular expression of IL-17, TGFb and IFNc using flow cytometry. Levels of IL-17, IL-6, IL-1a and IL-23 were measured
using Bioplex assays. SSc patients had more and more activated CD4+ cells. In addition, CD4, CD45Ro and CD45Ra cells from
all SSc patients highly expressed the IL23R, which was associated with a higher IL-17 expression as well. In contrast, IFNc
and TGFb were selectively up regulated in SSc subsets. In line with these observation, circulating levels of IL-17 inducing
cytokines IL-6, IL-23 and IL-1a were increased in all or subsets of SSc patients.

Conclusion and Significance: The combination of IL-17, IFNc and TGFb levels in CD45Ro and CD45Ra cells from SSc patients
is useful to distinguish between lSSc, ldSSc or edSSc. Blocking Th17 inducing cytokines such as IL-6 and IL-23 may provide a
useful tool to intervene in the progression of SSc.
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Introduction

Systemic Sclerosis (SSc) is a complex inflammatory autoimmune

disease characterized by excessive deposition of matrix molecules,

leading to fibrosis of multiple organs including the skin, lungs,

heart and gastrointestinal tract, and often leading to severe

morbidity and premature death. Although the role of immune

dysfunction in the pathogenesis of SSc is generally accepted, the

exact pathways that cause immune dysfunction in SSc remain to

be elucidated. Alterations in cellular immunity are typified by

aberrant T cell biology both in the skin as well as circulation of SSc

patients. For example, CD4+ T cells are increased in the

circulation of SSc patients [1,2] whereas NKT cells and c/d T

cells are decreased [3]. In addition, lesional skin from SSc patients

displays various features consistent with T cell activation [1,4,5].

Finally, T cell biology was altered in SSc in that the secretion of

various inflammatory mediators is markedly increased [6,7].

In this line the Th1/Th2 paradigm has been investigated by

studying the presence of Th1 (IL-12, IFNc) and Th2 (IL-4, IL-13 and

IL-10) associated cytokines in the circulation, in circulating cells and

in the skin of SSc patients. Driven by opposing findings, these studies

led controversy whether these Th1/Th2 profiles could explain the

pathogenesis of SSc. The recognition of IL-17 producing T cells

(Th17) has opened novel pathways to explain several features of SSc.

In general, T cell priming by professional antigen presenting cells is

tuned by inflammatory mediators, including TGFb, IL-6 and IL-12.

The combination of these cytokines determines the ultimate fate of

naive T cells. For instance, TGFb alone up regulates FoxP3

expression, a marker for T regulatory cells. In contrast, accumulating

evidence suggests that TGFb in combination with IL-1a, IL-6 or IL-
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23 drives the expression of RORct, a proliferation factor specific for

the recently identified Th17 subset [8,9,10,11]. Intriguingly, IL-23,

IL-1a and IL-17 have been found increased in the circulation of SSc

patients compared to healthy controls [12,13,14,15]. Together, these

observations suggest the potential for skewing of the Th17 axis in SSc.

Th17 cells are characterized by the production of IL-17A (IL-

17) and are thought to clear extracellular pathogens not effectively

cleared by either Th1 or Th2 cells. To this aim, Th17 cells appear

at sites of inflammation with rapid kinetics and possibly bridge the

gap between innate and adaptive immunity by attracting other Th

cells to the inflammatory site. Various recent studies have emerged

suggesting that Th17 cells are essential in autoimmune diseases.

First, mice deficient for the Th1 effector cytokine IFNc develop

enhanced experimental autoimmune encephalomyelitis (EAE)

[16], and the absence of IL-23, results in a lack of Th17 cells

and protection from EAE and collagen-induced arthritis (CIA)

[17,18]. Second, IL-17 has been found to be increased in patients

with rheumatoid arthritis [19], multiple sclerosis [20], inflamma-

tory bowel disease [21], psoriasis [11] and seronegative spondyl-

arthritides [22]. IL-17 has been involved in many pathological

features that play a role in SSc pathology including the secretion of

pro-inflammatory cytokines, the recruitment of monocytes and the

triggering of granulocyte-macrophage colony-stimulating factor

[23,24]. In light of fibrosis being the cardinal feature of SSc, it is

interesting to note that IL-17 has also been implicated in fibrosis of

the basal membrane in asthma [25] and the control of

inflammatory response after bleomycin-induce lung injury, a

model often exploited to study pulmonary fibrosis [26].

To address the possible role of IL17 in SSc, we investigated

Th17 cell frequency in the circulation of SSc patients, and the

expression of key cytokine regulators and markers of T cell

phenotypes, IFNc and TGFb. Because there are two clinically

distinct forms of systemic sclerosis and at least one of these forms

evolves over time, we evaluated Th17 cell frequency and cytokine

expression in three subgroups: patients with early compared to late

diffuse cutaneous SSc and patients with limited cutaneous SSc. We

found that circulating Th17 cells are significantly increased in all

three SSc patient subsets compared to healthy controls. In

addition, together with the expression of IL-17, clinical SSc

phenotypes were associated with specific patterns of intracellular

expression of TGFb and IFNc. Together these data indicate that

T cell priming in SSc is skewed towards the Th17 axis, which

together with intracellular staining for TGFb and IFNc provide a

novel markers of SSc phenotypes. Importantly, circulating levels of

IL-17 were undetectable whereas the Th17 inducing cytokines IL-

6 and IL-23 levels were increased in the circulation of SSc patients.

Methods

Study population
Cell-based In vitro experiments. Thirty-six patients

presenting to the Arthritis Center, Boston Medical Center were

included in the study (Table 1). All of the patients met the

American College of Rheumatology preliminary criteria for the

classification of SSc [27]. Patients were subdivided as having

limited cutaneous SSc (lcSSc, n = 12) or diffuse cutaneous SSc

(dcSSc, n = 24) on the basis of the extent of their skin involvement

[28]. A further subdivision was made between early dcSSc (n = 11)

and late dcSSc (n = 13) based upon the duration of disease,

defining early dcSSc as patients having a disease duration ,2

years and late dcSSc as patients having a disease duration longer

than 3 years. As a comparator group 14 healthy controls were

studied. Treatment was investigated 6 months before the study.

Measurement of circulating cytokines. For the measure-

ment of circulating levels of TNFa, IL-6 and IFNc plasma from

healthy controls (n = 28) and 177 SSc patients (lSSc n = 110, ldSSc

n = 34, edSSc n = 33) from the Boston University Area (similar to

those included in the in vitro studies), the Radboud University

Nijmegen Medical Center area (RUMC) and Lund University

Hospital area were analyzed. Blood and plasma samples were

obtained with approval by written informed consent under

Institutional Review Board approval protocols at all three

academic centers involved.

Table 1. Clinical characteristics of patients included in in vitro assays.

Limited cutaneous SSc Late diffuse cutaneous SSc Early diffuse cutaneous SSc

Number 12 11 13

N females (%) 10 (83) 9 (82) 11 (85)

Age at onset 42.6612.3 40.6611.2 44.3610.2

Disease duration 9.167.8 7.967.1 1.160.7

ANA positivity 100% 73% 92%

mRSS at inclusion not assessed 15.868.3* 22.268.5*

Pulmonary hypertension 33% 18% 15%

Lung fibrosis 25% 45% 31%

Current Therapies

MMF 0% 36% 30%

Cyclophosphamide 0% 18% 15%

Prednisolone 25% 28% 53%

Hydroxychloroquine 17% 9% 0%

anti-IL-3 0% 0% 8%

Methotrexate 0% 0% 0%

Tacrolimus 8% 0% 0%

*0.03.
doi:10.1371/journal.pone.0005903.t001
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Monoclonal antibodies
For immunostaining and analysis by fluorescence-activated cell

sorting (FACS), we used phycoerythrin (PE), allophycocyanin

(APC) and fluorescein isothiocynate (FITC) conjugated mouse

monoclonal antibodies (mAb) against human CD4, CD8, GITR,

CD69, IL-23R, CD45Ro, CD45Ra, and CD25 (Miltenyi Biotec

Inc., CA, USA). Intracellular staining of CD45Ro, CD45Ra or

CD25+ cells for IL-17, TGFb and IFNc was performed using the

intracellular staining procedure according to the manufacturer’s

protocols. Corresponding mouse/rat isotype controls were includ-

ed in all analyses.

Isolation of PBMCs, CD3+ cells and flow cytometry
PBMCs were isolated from heparinized venous blood by using

density-gradient centrifugation over Ficoll-Paque (Amersham Biosci-

ence). Next, CD3+ cells were isolated from PBMCs using CD3

microbeads according to manufacturer’s protocol (Miltenyi Biotec).

After isolation, cells were directly transferred into RPMI 1640 media

supplemented with 2 nM L-glutamine, 100 U/mL/ml penicillin/

streptomycin (Life technologies), and 10% FBS (BioWhitacker) in 96-

well U-bottom plates (Nunc). For flowcytometric analysis, CD3+
were kept on ice and washed extensively with citrated PBS containing

1% FCS. 10 ml of FITC, APC or PE- conjugated antibody was added

and incubated on ice for 20 min. 300 ml FACS buffer was added and

T cells were pelleted, resuspended in 200 ml buffer. Thereafter, cells

were washed in buffer, fixed with 2% formaldehyde, washed again in

buffer and stored at 4uC. The cells were analyzed using a LSRII

FACScan flow cytometer (BD Biosciences) and data were processed

using FlowJo software.

Measurement of intracellular and circulating cytokines.

Intracellular expression of IL-17, IFNc and TGFb in CD4 and/or

CD25high cells was investigated using monoclonal antibodies

obtained from BD Bioscience, NJ, USA. After the staining

protocol, cells were fixed with 2% formaldehyde, stored at 4uC
and analyzed on flow cytometer the next day. Circulating and

supernatant cytokine levels were measured and analyzed with the

Bio-Plex system (Bio-Rad). TGFb in supernatants was measured

using the sensitive assay first described by Abe et al. [29] whereas

IFNc and IL-17 were measured using the Luminex platform. The

sensitivity of the cytokine assay was ,5 pg/ml for all cytokines

measured.

Statistical analysis. Values are shown throughout the paper

as mean6sem. Proportions of lymphocyte subpopulations were

compared using the Student’s t test for normally or not normally

distributed population where appropriate. Relationships between

different values were examined using Pearson’s correlation

coefficient and Spearman’s rank correlation tests. Difference

between groups were calculated using the Mann-Withney U test.

All statistical analyses were performed using Graphpad Prism

(GraphPad Prism 4.0 by Graph Pad software Inc.).

Results

CD4 positive T cells from SSc patients display an
activated phenotype

Previous reports have described an increased CD4/CD8 ratio

in SSc patients compared with healthy controls, however, recent

markers permit a more refined analysis of T cell phenotype [2,30].

Since effector T cells, suggested to be involved in SSc, arise from

the CD4+ T cells, we first investigated T cell phenotype and

activation. Consistent with previous studies, healthy controls

(n = 13) displayed a considerably lower CD4+/CD8+ ratio than

that observed in SSc patients (P,0.0001, figure 1a). We next

investigated whether CD4+ cells in SSc patients expressed T cell

activation markers, CD69 and GITR. Indeed, SSc patients on

average expressed significantly higher levels (P,0.0001) of CD69

on CD4+ effector T cells compared with those from healthy

controls (figure 1b). In contrast, CD69 expression was increased

on CD8+ cells only from those patients with the edcSSc, but not

on CD8+ cells from patients with lcSSc or ldcSSc (P,0.001). The

expression of GITR displayed a similar pattern being higher on

CD4+ cells from all subgroups of SSc patients compared to

controls (P,0.001). Highest expression was seen in patients with

edcSSc, with progressively less expression seen in patients with

ldcSSc and lcSSc, respectively (figure 1b, left panel). These

observations prompted us to further study the expression of these

activation markers on memory (CD45Ro) and naive T cells

(CD45Ra), since CD45Ro cells were previously found to be the

main producers of IL-17. Interestingly, the expression of CD69

was significantly higher on both CD45Ro and CD45Ra positive T

cells in all SSc patients compared with healthy controls, suggesting

that both these cell populations are activated in SSc (figure 1b
right panel).

Th17 cells are more frequent in SSc patients and IL-17 in
combination with IFNc and TGFb expression in T cells
discriminates SSc subsets

These observations showing activated T cells in patients with

SSc and recent findings of increased circulating levels of IL-17 and

IL-23 in patients with SSc, led us to examine the expression of the

IL-23 receptor (IL-23R) on T effector cells. Since it was recently

demonstrated that IL-23 is pivotal in the survival of Th17 cells,

increased expression of IL-23R might lead to enhanced Th17 cell

survival in patients with SSc [8,15,31,32]. Intriguingly, the

expression of IL-23R was markedly higher on CD3+, CD45Ro+
and CD45Ra cells from all SSc patients investigated (P,0.0001,
figure 2a). Notably, increased IL23R expression was observed on

CD4+ T cells of patients with both limited and diffuse cutaneous

SSc, including patients with ldSSc. Next, we investigated the

intracellular expression of IL-17 in CD45Ro and CD45Ra cells.

Consistent with the increased expression of IL-23R and markers of

activation (CD69 and GITR expression), the number of CD45Ro

cells that co-expressed IL-17 was significantly increased in all SSc

patients investigated (P,0.0001, Figure 2b). As previously

described, CD45Ra cells from healthy controls did not express IL-

17. In contrast, CD45Ra cells from SSc patients showed increased

numbers of IL-17 expressing cells that reached almost similar

levels as CD45Ro cells However, the mean fluorescence intensity

(MFI) of IL-17 in CD45Ro cells in SSc patients was clearly

increased compared to that observed in CD45Ra cells.

To further investigate cytokine expression of T cell from SSc

patients, we investigated the expression of TGFb and IFNc other

cytokines that have been implicated in SSc pathogenesis.

Comparison of the cytokine expression by T cells from patients

with the different SSc phenotypes revealed a clearly distinct

pattern. For instance, IFNc was highly expressed by both

CD45Ro and CD45Ra cells from patients with limited SSc, was

almost absent in CD45Ro cells from SSc patients with diffuse SSc

and expressed at intermediate levels by CD45Ra cells from diffuse

patients. In contrast, the expression of TGFb was increased in

both CD45Ro and CD45Ra cells from patients with limited and

late diffuse SSc but was normal in early diffuse patients. Based on

these observations we propose that certain cytokine patterns are

associated with certain SSc subtypes (Table 2).
Previously, we demonstrated that SSc patients have increased

levels of circulating T regulatory cells (submitted for publication).

Recently, two elegant studies revealed that neither Tregs nor Th17

cells are terminally differentiated but, under pressure of several

Th17 Cells in SSc
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cytokines or other immune cells, could switch phenotype [33].

Since this could be an explanation for concurrent increased

expression both of Tregs and Th17 in SSc, we investigated

whether CD25high expressing cells (Tregs) co-expressed IL-17.

Indeed, significant higher numbers of CD25high/IL-17-positive

cells were observed in SSc patients compared with healthy controls

(P,0.01, figure 2c).

To further extend and confirm our results showing increased

intracellular expression of IL-17 and IFNc in SSc, we next

measured the levels of IL-17 and IFNc in the supernatant of

CD3+ T cells isolated from healthy controls (n = 5), lcSSc patients

(n = 5), ldcSSc patients (n = 5) and edcSSc patients (n = 5).

Consistent with intracellular cytokine expression, T cells from all

three clinical phenotypes secreted high levels of IL-17 and IFNc

Figure 1. SSc patients have more and more activated CD4+ T cells compared to healthy controls. Panel A depicts the percentage of
CD4+ and CD8+ cells in the whole T cell pool (CD3+ cells) from healthy controls (n = 14), and SSc patients with the lcSSc (n = 12), ldcSSc (n = 11) and
edcSSc (n = 13) phenotype. The CD3+ cells were isolated using MACS bead isolation after which CD4 and CD8 positivity was analyzed using flow
cytometry. Panel B (left) depicts the percentage of CD4+ and CD8+ cells that were double-positive for the T cell activation markers CD69 and GITR.
For this aim a representative individual from each group was selected. In the right panel, the percentage of CD4-CD69, CD8-CD69, CD4-GITR, CD8-
GITR, CD45Ro-CD69 and CD45Ra-CD69 double positive cells is presented over the whole group of healthy donors (n = 14) and/or SSc patients (n = 36).
doi:10.1371/journal.pone.0005903.g001
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compared to T cells from healthy controls (figure 2d). The

pattern of altered secretion was also similar, with the highest levels

of IFNc secreted by T cells from patients with lcSSc, while the

highest levels of IFNc were secreted by T cells from patients with

early diffuse SSc.

SSc patients have normal levels of IL-17 but increased
levels of Th17 promoting cytokines IL-1a, IL-23 and IL-6

It has previously been reported that IL-17 levels are increased in

the circulation in SSc patients [15]. A major limitation of these

studies was the small sample size. This, together with our

experience that circulating IL-17 is very difficult to detect in

other autoimmune disorders such as rheumatoid arthritis, we

investigated the levels of IL-17 and IL-17 promoting cytokines in a

large cohort of SSc patients (n = 177) consisting out of 110 patients

with LSSc, 34 with ldSSc and 33 with the edSSc phenotype. As a

comparator group we used 28 healthy controls. When comparing

the level of IL-17 in SSc patients and healthy controls, IL-17 could

only be detected in a minority of the samples (9 of 177; Table 3,

Figure 3a) and was not detected more frequently in SSc patients

compared to controls. In contrast, the levels of IL-6 (53.669.7 vs.

5.463.4, P,0.0001), IL-1a (83.2611.2 vs. 1.261.1, P,0.002)

and IL-23 (49.167.3 vs. 5.360.6, P = 0.003) were significantly

higher in SSc as a whole compared with controls (Figure 3b–d).
Subgroup analysis revealed that IL-6 and IL-23 levels were equally

distributed among SSc phenotypes whereas IL-1a was significantly

increased in lSSc patients (P,0.001) only. An association between

clinical characteristics including the presence of autoantibodies,

disease duration and/or pulmonary involvement was not observed

(data not shown).

Discussion

We show here that patients with SSc have strikingly increased

frequencies of circulating Th17 cells. In addition, the combined

analysis of intracellular IL-17 with the expression of IFNc or

TGFb revealed a pattern among patients that correlated with the

different clinical SSc phenotypes. In line with these observations,

levels of Th17 inducing cytokines IL-6, IL-1a and IL-23 were

significantly higher in the circulation of SSc patients compared to

controls, although circulating IL-17 was not detectable. Similar to

our observations, the measurement of IL-17 in the circulation of

patients with rheumatoid arthritis and psoriasis, two conditions in

which IL-17 play a pivotal role in local pathology, was very

Table 2. Cytokine expression pattern in SSc clinical
phenotypes.

Phenotype/Cytokine expression IL-17 IFNc TGFb

Healthy controls low Low low

Limited SSc high High high

Late diffuse SSc high low high

Early diffuse SSc high intermediate low

doi:10.1371/journal.pone.0005903.t002

Figure 2. SSc patients express high levels of IL-17-positive T cells and the co-presence of IL-17 with either IFNc, IFNa or TGFb
reflects SSc phenotype. Panel A presents the percentage of IL-23R positive cells in the CD4+ positive pool of T cells (left panel) and CD45Ro and
CD45Ra positive cells (right panel) from healthy controls (n = 14), and SSc patients with the lcSSc (n = 12), ldcSSc (n = 11) and edcSSc (n = 13)
phenotype. Panel B shows the mean intracellular expression level of IL-17, IFNc and TGFb in CD4+ cells from each a representative individual from
each tested group (left side). On the right side, the mean percentage of CD45Ro-positive or CD45Ra-positive cells that express IL-17, IFNc or TGFb and
the mean intensity thereof are presented for the whole group of healthy controls (n = 14), and SSc patients with the lcSSc (n = 12), ldcSSc (n = 11) and
edcSSc (n = 13) phenotype. Panel C depicts the percentage of CD25high cells that co-express IL-17 in healthy controls and different SSc phenotypes (*
represents a p-value,0.01). Panel D represents the level of cytokines (IL-17 and IFNc) spontaneously secreted by CD3+ T cells from healthy controls
and SSc patients after 24 hrs of incubation. * P-value,0.0001, ** P-value,0.002, *** P-value,0.004.
doi:10.1371/journal.pone.0005903.g002

Table 3. Clinical characteristics of patients used for measurement of circulating cytokines.

Limited cutaneous SSc Late diffuse cutaneous SSc Early diffuse cutaneous SSc

Number 110 34 33

N females (%) 89 (81) 26 (76) 27 (82)

Age at onset 43.368.9 42.7611.7 41.369.8

Disease duration 11.267.1 8.165.3 1.560.8

ANA positivity 100% 77% 92%

Pulmonary hypertension 37% 19% 18%

Lung fibrosis 22% 47% 30%

Current Therapies

MMF 0% 7% 8%

Cyclophosphamide 0% 16% 33%

Prednisolone 14% 11% 23%

Hydroxychloroquine 3% 0% 0%

anti-IL-3 0% 0% 0%

Methotrexate 0% 0% 0%

Tacrolimus 0% 0% 0%

doi:10.1371/journal.pone.0005903.t003
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disappointing. Therefore, it is tempting to speculate that IL-17

might be an important cytokine locally in SSc.

In our study all SSc patients had increased frequencies of IL-17

positive cells and T cells cultured from SSc patients showed high

spontaneous production of IL-17. However, co-expression of IFNc
and TGFb together with IL-17 distinguished SSc phenotypes.

Patients with lcSSc expressed IL-17, IFNc and TGFb at the

highest levels. In particular, T cells from these patients expressed

higher levels of intracellular IFNc than patients with edcSSc.

Interestingly, in the lcSSc subgroup circulating levels of IL-1a
were significantly higher compared to other SSc phenotypes and

healthy controls, whereas IL-6 and IL-23 levels were elevated but

comparable in all SSc subgroups. Perhaps, higher IL-1a levels

skew the balance to more IL-17/IFNc double positive T cells.

The potential involvement of IL-17 in various autoimmune

diseases has sparked research aimed at the identification of the

forces driving Th17 priming. To date, accumulating evidence

point towards the essential role of DCs in orchestrating Th17

priming by the production of the driving factors for Th17

development, such as TGFb, IL-1a, IL-6 and IL-23. More

recently, it has become clear that Toll-like receptor mediated DC

activation is also implicated. In this light Gerosa and co-workers

demonstrated that the combination of specific Toll-like receptor

(TLR) ligands dramatically stimulated IL-23 production and skews

the immune response towards Th17 [34]. Although the role of

TLRs in SSc has not been subjected to extensive research, our

observations suggest a possible role for TLRs as a stimulus for the

increased numbers of Th17 cells in these patients. TLR are critical

for the innate immune response and bridge the innate and

adaptive immune response [35]. Many ligands have been

described for TLRs [36]. For TLR2 and TLR4 both exogenous

(derived from microorganisms) and endogenous (originating from

‘‘self’’ tissues) have been identified. In contrast, ligands identified

for the intracellular TLR3, TLR7, TLR8 and TLR9 mainly

Figure 3. Increased level of Th17 inducing cytokines in the circulation of SSc patients. Panel A depicts the presence of IL-17 in the
circulation of SSc patients and healthy controls. Panel B, C and D represents the levels of IL-6, IL-1a and IL-23, respectively. The circulating levels of IL-
17, IL-1a and IL-23 was measured by ELISA whereas IL-6 was studied by Bioplex assays.
doi:10.1371/journal.pone.0005903.g003

Th17 Cells in SSc
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comprise exogenous ligands including double and single stranded

RNA and CPG DNA. In this light it is interesting that several

endogenous ligands for TLR4 are present in the plasma of some

SSc patients ([37], unpublished results). We are currently

investigating the nature of endogenous TLR ligands in different

SSc phenotypes that could help to explain the observed differences

with respect to co-expression of several cytokines in conjunction

with IL-17. Recent observations from our group indicate an

aberrant TLR responses in SSc that are distinct among patients

having lcSSc, ldcSSc and edcSSc (manuscript submitted).

Little is known about the differentiation and maturation of IL-

17 positive cells in humans. In contrast with the initial reports, we

demonstrate that the Th17 phenotype is not confined to CD4+
effector cells but also includes a substantial number of naı̈ve cells

(CD45Ra) [11]. The latter is in line with a recent report

investigating Th17 cells in seronegative spondylarthropathy [22].

As explained in this report, potential differences between studies

could be explained by slightly differences in isolation protocols.

However, an important other explanation might be that the

factors that drive Th17 among different diseases differ also with

respect to the CD4+ subpopulations that are activated.

Taken together, although the underlying mechanisms that

explain the distinct patterns of intracellular cytokine expression

among SSc phenotypes need to be identified, these patterns

suggest distinct immune dysregulation in dcSSc versus lcSSc and

in early versus late disease in dcSSc. These insights open novel

avenues for research aimed at identifying pathogenic pathways

and therapeutic targets.
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