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Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted
functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium
homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism
of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis
of ageing-related neurodegenerative disorders including Parkinsons disease and Alzheimer’s disease. Mitochondria-targeted
protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the
prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of
mitochondrial dysfunction in Parkinson’s and Alzheimer’s diseases, with particular attention to in vitro and in vivo studies on

promising endogenous and exogenous mitochondria-targeted protective compounds.

1. Introduction

Mitochondria are spherical cytoplasmic organelles with a
symbiotic origin that are present in all eukaryotic cells.
Structurally, mitochondria consist of two compositions and
functionally different phospholipid membranes referred to
as the outer membrane and the inner membrane and two
aqueous compartments, the intermembrane space and the
mitochondrial matrix. The outer membrane encloses the
entire structure; it has higher content in lipids (over 60%)
and it contains porins and a large multiprotein translocase
complex allowing the passage to ions and larger molecules.
The inner membrane surrounds the mitochondrial matrix
and it invaginates to form cristae that increase total surface
area. In addition, the inner membrane has lipid content over
20% and it is only permeable to small uncharged molecules.
Both membranes are separated by the aqueous compartment
intermembrane space, located between them [1, 2]. Moreover,
mitochondria contain their own DNA (mDNA) held in
the mitochondrial matrix; the human mDNA is a double-
stranded circular genome made up of 16,569 base pairs of

DNA that encodes 13 proteins, 22 transfer RNAs (tRNAs), and
2 ribosomal RNAs (rRNAs) [3]. Functionally, mitochondria
play a vital role in regulating both metabolic and apoptotic
signaling pathways. Their main function is to produce energy
as adenosine triphosphate (ATP) at the mitochondrial elec-
tron transport chain (ETC) in the inner membrane, through
the cellular process of oxidative phosphorylation (OXPHOS).
The mitochondrial ETC consists of four integral membrane
oxidation-reduction electron and proton pump protein com-
plexes (complex I, NADH:ubiquinone oxidoreductase; com-
plex II, succinate dehydrogenase; complex III, ubiquinone-
cytochrome ¢ oxidoreductase; complex IV, cytochrome c
oxidase) and an ATP synthase (complex V) which catalyzes
ADP conversion to form ATP [4]. In addition, mitochondria
participate in other series of functions, including regulation
of cellular calcium homeostasis, balance between ROS pro-
duction and detoxification (i.e., superoxide anion (O,"”) and
the highly reactive hydroxyl radical ("OH)), mediation of the
process of programmed cell death (apoptosis), and synthesis
and metabolism of endogenous compounds such as steroids,
heme groups, and fatty acids [5].
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Consistent evidence suggests that mitochondrial failure
is associated with early events in the pathogenesis of ageing-
related neurodegenerative disorders including Parkinson’s
disease and Alzheimer’s disease. Mitochondria-targeted pro-
tective compounds that prevent or minimize mitochondrial
dysfunction constitute potential therapeutic strategies in the
prevention and treatment of these central nervous system
diseases [6, 7]. This paper provides an overview of the
involvement of mitochondrial dysfunction in Parkinson’s and
Alzheimer’s diseases, with particular attention to in vitro and
in vivo studies on promising endogenous and exogenous
mitochondria-targeted protective compounds.

2. Parkinson’s Disease and Mitochondria-
Targeted Protective Compounds

2.1. Parkinson’s Disease (PD). Parkinson’s disease is a chronic
progressive disorder characterized pathologically by the loss
of dopaminergic neurons located in the substantia nigra
pars compacta, and, to a lesser extent, in putamen, caudate,
and globus pallidus and by the formation of intracellular
protein inclusions of mainly alpha-synuclein (named as
Lewy bodies) in the remaining neurons [8, 9]. The first
clinical description was published in 1817 by the English
physician Dr. Parkinson in his work “An Essay on the Shaking
Palsy” [10]. Parkinson’s disease is the second most common
neurodegenerative disorder after Alzheimer’s disease which
affects more than 6.3 million people over usually the age
of 60 worldwide. Regarding epidemiology, this age-related
central nervous system disease appears to be slightly more
common in whites than blacks and Asian people, in men
than in women, and in some geographical regions (i.e., China,
India, and USA) [11-13]. The most relevant clinical features
include tremor, bradykinesia, rigidity, and dystonia; however,
in addition to these characteristic motor signs and symptoms,
neuropsychiatric and other nonmotor manifestations such
as depression, cognitive impairment, anxiety, and psychosis
have been also described [8, 9, 14]. Although the exact
causal factors of Parkinson’s disease remain unknown, several
research studies point to specific genetic mutations and
environmental factors [15, 16]. It has been estimated that
around 5-10 in every 100 people suffering from Parkinson’s
disease are associated with gene mutations. Scientifics have
identified at least 13 gene mutations, among which one could
highlight those in the genes SNCA (synuclein, alpha non-
A4 component of amyloid precursor), PARK2 (Parkinson’s
disease autosomal recessive, juvenile 2), PARK7 (Parkinson’s
disease autosomal recessive, early-onset 7), PINKI (PTEN-
induced putative kinase 1), and LRRK2 (leucine-rich repeat
kinase 2) [15]. The SNCA gene encodes for the protein alpha-
synuclein, which is a key component of Lewy bodies; the
PARK2 gene encodes for the E3 ubiquitin ligase parkin,
which is implied in mitochondrial maintenance; the PARK?
gene encodes for the antioxidant protein DJ-1; PINK 1
gene encodes for a serine/threonine-protein kinase with a
protective mitochondrial role. Alterations of SNCA, PARK?2,
PARKY7, and PINKI genes are involved in the early-onset
Parkinson’s disease (this is diagnosed before being 50 years
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old) [17-20]. The LRRK2 gene, which encodes for the protein
dardarin, has been associated with the late-onset Parkinson’s
disease [21]. The rest, around 95%, of diagnosed Parkinson’s
disease cases are sporadic, in which environmental factors
such as pesticides and dietary factors, among others, seem
to play a crucial role. Researchers have identified several
common pesticides that their exposure may increase the risk
of developing Parkinsons disease among which rotenone,
paraquat, dithiocarbamates (i.e., maneb, ziram), pyrethroids
(i.e., deltamethrin), organochlorine (dieldrin), imidazoles
(i.e., triflumizole, benomyl), and 2,2-dicarboximides (i.e.,
folpet, aptan) are included [22, 23]. Regarding dietary factors,
both dietary patterns or/and dietary nutrients that may pro-
tect or may increase against to suffer from Parkinson’s disease
have been reported. As an example, in a case control study
performed during ten years for establishing the influence of
minerals, vitamins, and fats in the etiology of Parkinson’s dis-
ease, an association between a high intake of a combination
of iron and manganese and the development of Parkinson’s
disease was found [24]. On the other hand, a large prospective
study performed over fifteen years with 49692 men and
81676 women revealed that the high intake of fruit, vegeta-
bles, legumes, whole grains, nuts, fish, and poultry, the low
intake of saturated fat, and the moderate intake of alcohol are
protective dietary patterns against Parkinson’s disease [25].

2.1.1. Mitochondrial Dysfunction in Familial PD. As we have
previously commented, around 5-10% of Parkinson’s dis-
ease cases involve gene products. Mutations in ATP13A2
(PARK9), DJ-1 (PARK7), parkin (PARK2), and PTEN-
induced putative kinase 1 (PINK1) (PARK®6) are associated
with autosomal recessive PD and mutations in «-synuclein
gene and leucine-rich repeat kinase 2 gene (LRRK2) are
implicated in autosomal dominant PD (see Figure 1) [16].
Mutations in the ATPI3A2 gene (PARKY), encoding
for a lysosomal type 5P-type ATPase, cause a hereditary
rare juvenile onset autosomal recessive Parkinsonism with
dementia named as Kufor-Rakeb syndrome. This particular
Parkinson’s form, characterized by supranuclear gaze palsy,
dystonia, pyramidal signs, and cognitive impairment, was
first evidenced in 2006 in members of a nonconsanguineous
Chilean family. The neuronal damage associated with muta-
tions in this gene is related to alterations in mitochondria and
lysosomes functions and divalent cation regulation [26-28].
DJ-1 mutations on chromosome 1p36 cause autosomal
recessive early-onset PD and its pathological mechanism
seems to be linked with mitochondrial fragmentation and
mitochondrial structural damage and consequently defects in
the mitochondrial function of dopaminergic cells [29, 30].
Mutations in the parkin gene product, which is an ubiqui-
tin ligase, lead to an early-onset familial Parkinson’s disease
and its first description dates in the year 1998. Experimental
studies have determined that the pathology of parkin is
associated with alterations in the mitochondrial recogni-
tion, transportation, and ubiquitination and with mitophagy
impairment [31, 32].
Mutations in the mitochondrial serine/threonine-protein
kinase PINKI result in alterations in the mitochondrial
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FIGURE 1: The role of gene products in Parkinson’s disease.

morphology and function (defects in complex I activity)
and they are strongly associated with a form of autosomal
recessive early-onset Parkinson’s disease [33, 34].

Mutations in the protein a-synuclein, which is the main
component of Lewy bodies (it represents 1% of total cytosolic
protein of brain cells), have been reported to play a key
role in the pathogenesis of autosomal dominant early-onset
Parkinson’s disease. Particularly, two mutations in the alpha-
synuclein gene (A30P and A53T) have been identified which
lead to the formation of pathogenic pore-like annular and
tubular protofibrils. These mutations inhibit the activity of
complex I and induce mitochondrial fragmentation, causing
mitochondrial dysfunction [35, 36].

Mutations in the gene encoding leucine-rich repeat
kinase 2 (LRRK2) are related to autosomal dominant Parkin-
sons disease form. The most common mutation is G2019S
that accounts for 5-6% of familial cases of Parkinson’s disease.
Experimental studies have identified different pathogenic
mechanisms for altered LRRK2 that involve inflammation
processes, oxidative stress, and mitochondrial dysfunction,
among others. Focusing on this last pathogenic mechanism,
mutations in LRRK2 cause mitochondrial fragmentation and
a downregulation in mitochondrial homeostasis (reduction
in mitochondrial membrane potential and ATP production)
[37, 38].

2.1.2. Mitochondrial Dysfunction in Sporadic PD. Around
95% of diagnosed Parkinson’s disease cases are sporadic.
One of the proposed mechanisms for the dopaminergic
neurons degeneration in sporadic Parkinson’s disease cases is
related to an excessive production of reactive oxygen species
(ROS) that leads to oxidative stress situation. An excess of

ROS causes the oxidative modification of macromolecules
(lipids, proteins, and DNA) leading to cell damage and
even cell death. The pathological effect of ROS is also
involved in a reduction of ATP (adenosine triphosphate)
production, in an increase of iron levels, and in an increase
of intracellular calcium levels and alterations in mitochon-
drial respiratory chain complexes function. In addition to
oxidative stress mechanism, protein misfolding, aggregation,
and deposition have been reported as other common patho-
logical mechanisms in Parkinson’s disease. A dysfunction in
the ubiquitin-proteasome-system (UPS) and the autophagy-
lysosomal pathway (ALP) as evidenced in a reduction of
proteasome and autophagy activities and in postmortem
brains of patients suffering from this neurodegenerative
disease has been demonstrated [39-43].

2.1.3. Postmortem PD Brain Tissues, Experimental Models, and
Cell-Based Models. Many evidences from postmortem PD
brain tissues, experimental models, and cell-based models
have demonstrated the involvement of mitochondria dys-
function in the pathogenesis of both familial and sporadic
Parkinson’s disease.

The first evidence of the relationship between mitochon-
dria and Parkinson’s disease dates from the second half of
the twentieth century when the postmortem brain analysis
of some drug abusers of intravenous 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), who have developed a
progressive and irreversible parkinsonism, revealed a signifi-
cant nigrostriatal degeneration. MPTP easily passes through
the blood-brain barrier; it is oxidized and transformed into
1-methyl-4-phenylpyridinium (MPP+) and within neurons



MPP+ inhibits the complex I (NADH-quinone oxidore-
ductase) of the electron transport chain, resulting in an
enhanced reactive oxygen species (ROS) generation (i.e.,
hydroxyl radicals, superoxide anion radical) and a decrease in
energy supply (ATP production) [44]. Many lines of evidence
have further demonstrated complex I deficiency or impair-
ment in the cortical brain tissue, frontal cortex, striatum,
skeletal muscle, and platelets of patients with Parkinson’s
disease [40, 45, 46]. In addition to complex I, other studies
have reported that a deficiency in the activity of complex
II (succinate ubiquinone oxidoreductase) and complex III
(ubiquinol-cytochrome C oxidoreductase) is also associated
with the pathogenesis of Parkinson’s disease. Complex III
inhibition, as what happens with complex I, causes an over-
production of ROS, leading to oxidation of lipids, proteins,
and DNA and it finally triggers to cell death [47, 48]. More-
over, ROS mediates the mitochondrial-dependent apoptosis
by inducing mitochondrial permeability transition, releasing
of cytochrome ¢, activation of caspase-3 and caspase-9,
translocation of Bax to mitochondria, and the activation of
c-Jun N-terminal kinase (JNK) and p38 mitogen-activated
protein kinase (p38 MAPK) in the cytosol [49, 50].

The neurotransmitter dopamine has been also related
to the pathogenesis of Parkinson’s disease. In vitro experi-
mental researches on neuronal cell types and isolated brain
mitochondria and in vivo studies using different animal
models and postmortem brain studies in Parkinson’s disease
have demonstrated that dopamine oxidation and reactive
dopamine quinone oxidation products induce mitochondrial
respiration uncoupling and cause ATP levels reduction and
inactivate proteasomal activity, among other effects, which
contribute to mitochondrial dysfunction [51-57]. The role
of tetrahydrobiopterin (BH4) in Parkinson’s disease etiology
is also remarkable; BH4 is an obligatory cofactor for the
dopamine synthesis enzyme tyrosine hydroxylase and it is
present selectively in monoaminergic neurons in the brain.
It has been suggested as an endogenous molecule that
contributes to the dopaminergic neurodegeneration through
an inhibition of the activities of complexes I and IV of the
electron transport chain (ETC), together with a release of
mitochondrial cytochrome C and a reduction of mitochon-
drial membrane potential [58].

There are other studies which involve calcium excitotoxi-
city and nonexcitotoxicity related mechanisms in the etiology
of Parkinson’s disease. Alterations in calcium influx in neu-
rons via L-type voltage-dependent channels and N-methyl-
D-aspartate (NMDA) receptors may lead to an excitotoxic
cellular calcium accumulation that can cause mitochon-
drial dysfunction by reducing ATP production, activating
mitochondrial permeability transition, increasing ROS gen-
eration, and inducing mitochondrial-dependent apoptosis
[59, 60]. Other circumstances, not ordinarily toxic, have
been reported to contribute to mitochondrial dysfunction.
Hence, Sheehan et al. (1997) showed using mitochondrially
transformed cells (cybrids) that the capacity to sequestrate
calcium was lower in patients with Parkinson’s disease than in
control subjects, suggesting that this homeostasis alteration
could increase neurons cell death [61].
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Regarding familial Parkinson’s disease, mutations in sev-
eral genes previously reported (Parkin, PINKI, DJ-1, a-synu-
clein, and LRRK2) which encode for mitochondrial proteins
have been identified to contribute to mitochondrial dysfunc-
tion [62, 63].

There are different neurotoxins including rotenone, 1-
methyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydop-
amine (6-OHDA), and paraquat, among others, which have
been extensively used as Parkinson’s disease experimental
models to mimic the neuropathology of this neurodegener-
ative disorder in both in vitro (i.e., human neuroblastoma
SK-N-SH cells) and in vivo (animals models such as rats,
mice) investigations and, consequently, to help establish
neuroprotective strategies. Rotenone, an insecticide extracted
from the roots of Derris spp. and Lonchocarpus spp. (Legu-
minosae family), acts by inhibiting the mitochondrial res-
piratory chain complex I [64]. Paraquat (1,1-dimethyl-4,4'-
bipyridinium dichloride), which is a quaternary nitrogen
herbicide used to control weed growth, has been reported to
increase ROS generation and induce a-synuclein fibril forma-
tion [65]. The 1-methyl-1,2,3,6-tetrahydropyridine (MPTP),
a byproduct obtained during the chemical synthesis of a
meperidine analog, is metabolized in the brain to the toxic
compound MPP+ which inhibits complex I of the electron
transport chain [44]. The catecholaminergic neurotoxin 6-
hydroxydopamine (6-OHDA), via intracerebral infusion,
causes the irreversible loss of nigrostriatal dopaminergic
neurons by inducing ROS production and inhibiting complex
I and complex IV of the electron transport chain [66].

2.2. Mitochondria-Targeted Protective Compounds in PD.
Endogenous and exogenous compounds are in continuing
investigation as mitochondria-targeted agents to prevent or
treat Parkinson’s disease (Figure2). Tablel reports com-
pounds that have been demonstrated to be promising agents
in the protection of mitochondrial dysfunction in different
Parkinson’s disease models. Hence, among the endogenous
compounds investigated so far, the hormone melatonin, the
neuropeptide cocaine, and amphetamine regulated transcript
(CART), the ursodeoxycholic acid, the mitoQ (mitoquinone
mesylate), and the a-lipoic acid can be highlighted. The
hormone melatonin has been shown to exert in vivo mito-
chondrial protective action in MPTP-induced mice model,
6-OHDA rat model, and rotenone-induced rat model by
maintaining mitochondrial membrane potential, increasing
antioxidant enzymatic (i.e., SOD, CAT) and nonenzymatic
levels (i.e., glutathione), inhibiting ROS overproduction,
increasing ATP production, decreasing calcium concentra-
tion levels, and enhancing mitochondrial complex I activ-
ity [67-71]. The neuropeptide cocaine and amphetamine
regulated transcript (CART) protected mitochondrial DNA
and cellular proteins and lipids of human neuroblastoma
SH-SY5Y cells, HEK293 cells, and cultures of cortical and
hippocampal neurons exposed to hydrogen peroxide [72].
The ursodeoxycholic acid (one of the secondary bile acids)
and the mitoQ (mitoquinone mesylate) acted as antiapop-
totic agent in human neuroblastoma SH-SY5Y cells treated
with SNP and 6-OHDA, respectively [73, 74]. The a-lipoic
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FIGURE 2: Mechanisms of mitochondrial dysfunction and mitochondria-targeted drugs that have produced beneficial effect in PD models.

acid has been evaluated as mitochondrial-targeted protec-
tive compound in several in vitro and in vivo Parkinson’s
disease models (i.e., PCI2 cells, SK-N-MC cells, and rat
model; toxins as MPP(+) and rotenone); this organosulfur
compound derived from octanoic acid protects mitochondria
by inhibiting ROS production, increasing glutathione levels,
and maintaining mitochondrial membrane potential [75-78].
Pyruvate has also been demonstrated in in vitro studies that
maintains mitochondrial membrane potential and inhibits
ROS generation and nuclear translocation of NF-kappaB as
well as mitochondrial apoptotic pathway [79, 80].

Several natural products from medicinal plants, both
isolated compounds and extracts, have been demonstrated in
in vitro and in vivo studies to exert promising mitochondrial
protection. As extracts, it has been reported that berries rich
in anthocyanidins and proanthocyanidins protect mitochon-
dria from rotenone-induced changes in the respiratory chain
[118]. The silymarin, which is a standardized extract of the
milk thistle seeds, maintained mitochondrial integrity and
function and inhibited mitochondrial apoptotic pathway in
MPP(+)-induced rat model [119]. Green tea polyphenols have
been also evidenced to inhibit mitochondrial apoptotic path-
way (increasing Bcl2 and decreasing caspase-3 activity) and
to maintain mitochondrial membrane potential, to inhibit
ROS production and calcium concentration levels [120]. The
licorice (root of Glycyrrhiza glabra) inhibited dopaminergic
apoptotic cell death as evidenced in the increase in Bcl2
levels and in the decrease in Bax levels, caspase-3 activity,
cytochrome c release, and JNK and MAP activities in a model
of 6-OHDA-induced Parkinson’s disease [121]. The water
extract of Panax ginseng also inhibited apoptosis MPP(+)-
induced in the human neuroblastoma SH-SY5Y cells by
decreasing Bax levels, caspase-3 activity, and cytochrome
release and increasing Bcl2 levels [122].

The herbal medicine Chunghyuldan inhibited caspase-3,
ROS generation and maintained mitochondrial membrane
potential in 6-OH Parkinson’s disease model [123]. Among
isolated natural products, highlight those with polyphenol
structure. The polyphenol resveratrol has been demonstrated
in in vitro primary fibroblasts cultures from patients with
parkin mutations (PARK2) to regulate mitochondrial energy
homeostasis as evidenced in the increment of complex I
activity, citrate synthase activity, basal oxygen consumption,
and ATP production and in the decrement of lactate content
(111]. The polyphenol hesperidin inhibited mitochondrial
apoptotic pathway (increased Bcl2 levels and decreased Bax,
caspase-3, and caspase-9 activities and inhibited cytochrome
¢ release), maintained mitochondrial membrane potential,
inhibited ROS production, and increased glutathione levels
in in vitro human neuroblastoma SK-N-SH cells model of
rotenone-induced Parkinson’s disease [98]. Quercetin res-
cued toxic-induced defects in mitochondria in in vitro and
in vivo experiments. Quercetin inhibited ROS generation and
maintained mitochondria membrane potential in rotenone-
induced rat model [108]. Moreover, quercetin decreased the
production of superoxide radicals and inhibited the expres-
sion of the inducible nitric oxide synthase protein expression
in in vitro glial-neuronal system model of MPP(+)-induced
Parkinson’s disease [109]. The flavonoid baicalein inhibited
in vitro apoptotic mitochondrial cell death and maintained
mitochondrial integrity and function in both SH-SYTY and
PCI2 cells in 6-OHDA and rotenone Parkinsons disease
models as evidenced in the decrease in caspase-3, caspase-
7, caspase-9, and JNK activities and in the maintenance
of mitochondrial membrane potential, increment of ATP
content and reduction of ROS production [82-84]. The
tyrosol protected CATH.a cells against MPP(+)-toxicity by
inhibiting apoptotic cell death via activation of PI3K/Akt
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signaling pathway and by maintaining ATP production and
mitochondria membrane potential [116]. The caffeic acid
phenethyl ester inhibited 6-OHDA-induced mitochondrial
apoptotic pathway in in vitro and in vivo models [85, 86]. The
curcumin polyphenol derived from the spice turmeric acts as
mitochondrial antiapoptotic agent through the inhibition of
caspase-3 and caspase-9 activities and cytochrome c release
and it also protects mitochondrial integrity and function via
ROS production inhibition and complex I activity enhance-
ment [89, 90]. In addition to curcumin, its synthetic pyra-
zole derivative compound, CNB-001, has been also studied,
which avoids rotenone-induced mitochondrial damage in the
human neuroblastoma SK-N-SH cells by inhibiting mito-
chondrial apoptotic pathway and maintaining mitochondrial
structure [87, 88]. Glutamoyl diester of curcumin has also
been shown to maintain mitochondrial membrane potential
and to inhibit ROS production in mouse brain mitochon-
dria induced-peroxynitrite Parkinson’s disease model [96].
Salvianic acid A and salvianolic acid B isolated from Salvia
spp. as well as protocatechuic acid afford in vitro protection
through antiapoptotic pathway [107, 113, 114]. The flavonoid
kaempferol exerts antiparkinsonian effect via autophagy
[100] and rosmarinic acid maintains mitochondria protec-
tion by maintaining mitochondrial membrane potential and
decreasing ROS production [112].

Other natural products with mitochondrial protective
effect are the coumarins umbelliferone, esculetin, and osthole
which in in vitro and in vivo Parkinson’s disease models
have been demonstrated to possess antiapoptotic properties
on mitochondria [94, 104]. Other compounds that exert
protection via inhibition of the mitochondrial apoptotic
pathway are the monoterpenoid alcohol isoborneol [99],
the alkaloid piperine [105], the pyrazine tetramethylpyrazine
[81], and the nonprovitamin A carotenoid astaxanthin [115].
On the other hand, the -carboline alkaloids harmalol and
harmine maintained mitochondria membrane potential and
decreased ROS generation in PCI2 cells exposed to S-
nitroso-N-acetyl-DL-penicillamine (SNAP) [97]. Moreover,
the triterpenoid xyloketal B also maintained mitochon-
dria membrane potential and decreased ROS generation
and it increased glutathione levels in in vitro rat adrenal
pheochromocytoma (PC12) cells and Caenorhabditis elegans
of MPP(+)-induced PD [117]. Furthermore, the carotenoid
lycopene inhibited macromolecular mitochondrial damage
(lipids, DNA, and proteins), overproduction of ROS, ATP
failed production, and cytochrome c release in MPP(+)-
induced human neuroblastoma SK-N-SH cells and rotenone-
induced rat model [101, 102].

3. Alzheimer’s Disease and Mitochondrial-
Targeted Protective Compounds

3.1. Alzheimer’s Disease. Alzheimer’s disease (AD) is a neu-
rodegenerative disease characterized by progressive cognitive
decline leading to complete need for care within several years
after clinical diagnosis [124]. AD is the most common form
of dementia, being the most prevalent neurodegenerative
disease (followed by Parkinson’s disease), and accounts for
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approximately 65% to 75% of all dementia cases. It has been
estimated that Alzheimer’s disease affects over 44 million
people worldwide, mainly after the age of 65 years [125, 126].
The incidence of AD augments with age in an exponential
manner and its prevalence increases from 3% among indi-
viduals aged 65-74 to almost 50% among those 85 or older;
these numbers can be translated to the extremely high health
care costs that AD represents [127]. In addition, because of the
aging of the population, it is expected that the prevalence will
quadruple by 2050, which means 1 in 85 persons worldwide
will be living with the disease [128].

AD is a progressive neurodegenerative disease with a
marked late onset (late diagnosis as well) and mainly charac-
terized by progressive decline of cognitive functions, mem-
ory, and changes in behavior and personality [129, 130].
The two major pathophysiological hallmarks that have been
observed in postmortem brains of AD patients include extra-
cellular 3-amyloid protein (Af3) deposits in the form of senile
plaques and intracellular deposition of the microtubule-
associated protein tau as neurofibrillary tangles, especially
abundant in the regions of the brain responsible for learning
and memory. These features have been linked to an abnor-
mally enhanced neuronal loss in this condition, especially
affecting cholinergic neurons and consequently leading to a
reduction in the levels of the neurotransmitter acetylcholine
in the hippocampus and cortex areas of brains of AD
patients. Moreover, AD has also been associated with the
loss of synapses, synaptic function, inflammatory responses
involving glial cells, and mitochondrial abnormalities [131-
133].

Considering AD pathogenesis, multiple etiological fac-
tors including genetics, environmental factors, diet, and
general lifestyles have to be taken into account [134]. Most of
the cases of AD are believed to be “sporadic” and their causal
factors are still unknown for the vast majority of patients;
on the other hand, genetic factors cause about 2% of all AD
cases and include mutations in APP (Af3 protein precursor),
presenilin-1 and presenilin-2 genes, and polymorphisms in
apolipoprotein allele E4 [135, 136].

Due to the complex and not fully understood etiopathol-
ogy of AD, no available drug has been shown to completely
protect neurons in AD patients, and there is a continuous
search for new compounds and therapeutic tools. There
are two possible conceptual approaches to the treatment of
AD. The first one is a symptomatic treatment that tries to
minimize tertiary cognitive symptoms and protects from
further cognitive decline; it is the most common therapeutic
tendency and drugs such as tacrine, donepezil, and rivastig-
mine have been used with this purpose with limited efficacy.
Another approach is the treatment addressed to prevent the
onset of the disease by sequestering the primary progenitors
or targets, to reduce the secondary pathologies of the disease,
to slow disease progression, or to delay onset of disease, by
preventing or attenuating neuronal damaging factors [137,
138]. With regard to this, compounds that exert activity
against oxidative stress and mitochondrial dysfunction in AD
(as discussed below) deserve to be considered as potential
therapeutic options.
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During the last two decades, consistent evidences have
proposed oxidative stress as a crucial pathogenic mechanism
underlying AD [139]. Oxidative stress (OS) occurs when
the production of reactive oxygen species (ROS) exceeds
the antioxidant enzymatic and nonenzymatic cellular mech-
anisms. Actually, the S-amyloid peptide A, 4, (insoluble
form), which forms the senile plaques, exerts neurotoxicity
involving OS in AD. Particularly, this Af3,_,, has the ability
to produce ROS, mainly hydrogen peroxide, when it reacts
with transition metal ions present in senile plaques [140].
As a result of OS, accumulated oxidative damage to lipids,
proteins, and nucleic acids in postmortem studies of brains
of patients with AD has been identified: advanced glycation
end-products (AGEs), advanced lipid peroxidation end-
products, nucleic acid oxidation, carbonyl-modified neuro-
filament protein, and free carbonyls [141]. The brain is
more susceptible to OS than other organs because of a low
antioxidative protection system, which allows for increased
exposure of target molecules to ROS; the higher level of ROS,
together with neuroinflammation and excessive glutamate
levels, is proposed to contribute to neuronal damage and
death in AD [142].

3.1.1. Mitochondrial Dysfunction in AD. Mitochondria are the
primary source of ROS, and oxidative damage to mitochon-
drial components precedes damage to any other cellular com-
ponent during the development of neurodegenerative dis-
eases [143]. Actually, mitochondrial dysfunction has largely
been demonstrated as one of the main key cytopathologies
of AD [144, 145]. Numerous evidences suggest the involve-
ment of S-amyloid protein deposits in the mitochondrial
dysfunction found in AD as a plausible mechanism for its
neurodegenerative effects [146-148]. In support of this, it has
been shown that cells depleted of endogenous mDNA lacking
functional electron transport chains (ETC) are resistant to
AP toxicity [149]; also, a reduced respiratory capacity and
low cytochrome oxidase activity were found in isolated
mitochondria exposed to Af [150, 151]; transgenic mice
expressing mutant APP (amyloid protein precursor) genes
exhibit mitochondrial dysfunction, and an AD transgenic
mouse line presents early expression of genes encoding mito-
chondrial proteins and ETC subunits, as an initial cellular
change in AD pathology [152].

Mitochondria have been shown to be a direct site of
A accumulation in AD neurons, and various experimental
models of AD were used by researchers to verity the effect
of that specific accumulation on cell death [153]. Actually,
Manczak et al. proved an association between mutant APP
derivatives (A3 monomers and oligomers, such as Af3;_,,
and Af,_,,) and mitochondria in cerebral cortex slices from
Tg2576 mice and N2a cells expressing mutant APP. Such
accumulation supposes an increase in mitochondrial ROS
production together with a reduced Cyt C oxidase activity,
thus relating in vivo oxidative stress and impaired mitochon-
drial metabolism to the toxic effects of A peptides [154].
Further, Devi et al. demonstrated that the mitochondrial
dysfunction in human AD brain is associated with the
abnormal accumulation of APP across the mitochondrial
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import channels. In postmortem evaluations, it was evidenced
that nonglycosylated full-length and C-terminal truncated
APP had been accumulated exclusively in the protein import
channel of mitochondria of AD brains (specially higher
accumulation in AD-vulnerable regions, such as cortex,
hippocampus, and amygdala), by forming stable complexes
with the outer membrane translocase and/or the inner mem-
brane translocase; the effect of such association could inhibit
the entry of nuclear encoded Cyt C oxidase protein, thus
diminishing its activity in mitochondria and increasing the
levels of H,O,. The higher the level of arrested mitochondrial
APP, the worse the mitochondrial dysfunction [155].

What is more, a recent study indicated that mitochondria-
targeted Af3,_,, accumulation is the necessary and sufficient
condition for Ap-mediated mitochondrial impairments and
derived cellular death. In an in vitro model of mice hippocam-
pal cell line (HT22 cells), an exogenous Af3,_,, treatment
caused a deleterious alteration in mitochondrial morphology
and function, which was blocked by a clathrin-mediated
endocytosis blocker; besides, specific mitochondria-targeted
accumulation of Af3;_,, in HT22 cells using a mitochondria-
targeting sequence reproduced the same morphological and
functional alterations of mitochondria as those observed in
APP mutant mice model and the previous Ap,_,,-treated
HT22 cells. Mitochondria-mediated apoptotic cell death
was observed in both models, thus implying that no other
signaling alteration induced by A3 plays a more relevant role
in cell death than its mitochondrial toxicity [156].

In general, mitochondrial dysfunction in AD is essen-
tially characterized by diminution in complex IV activity
(cytochrome c oxidase), decline in other enzymes of tricar-
boxylic acids cycle, and mutations to mDNA. The mechanism
that underlies the complex IV defect is not clearly known,
but a study on SK-N-SH cells exposed to Ap-induced
toxicity showed a decrease in mDNA encoded complex
IV subunits, at both the mRNA and protein levels; this
finding suggests a possible relationship between decreased
complex IV activity and mDNA perturbation [157]. Results
from cybrids studies also imply that AD is characterized
by specific mDNA mutations that correlate with defects in
certain mitochondrial respiratory complexes. These changes
generate an increased production of oxidant species and free
radicals, such as hydrogen peroxide. In turn, a deficiency
in energy metabolism and ATP generation is a serious
consequence of impaired mitochondrial function [158, 159].
In addition, deficiency in scavenging mitochondrial free
radicals may similarly contribute to the excessive oxidative
damage in the affected brain regions in AD. For instance,
decreased mitochondrial MnSOD expression level has been
found in AD patients as well as decreased Coenzyme Q
in peripheral tissues and brains [160, 161]. Therefore, a
relationship between the mitochondrial dysfunction and the
oxidative stress situation is established.

Neurodegeneration and synaptic degradation in AD are
primarily mediated by defective mitochondrial biogenesis
and axonal transport of mitochondria [162]. Normal mito-
chondrial dynamics, an essential function in maintaining cell
viability, is likewise impaired in AD. Disturbances affecting
the balance of fusion and fission processes trigger serious
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mitochondrial changes and lead to cellular perturbations,
such as apoptosis. Recent studies have found altered levels
of mitochondrial fusion (including MNF-1/2 and OPAI) and
fission (FIS1) proteins in AD hippocampal tissues, meaning
decreased fusion and increased fission processes; mitochon-
drial fission protein DLP1 has also been found to be decreased
in hippocampal neurons [163]. Moreover, mitochondrial cal-
cium overload is another feature of mitochondrial dysfunc-
tion in AD; A3 has been shown to cause calcium overload that
then causes increased free radical accumulation and provokes
the formation of mitochondrial transition pore (mPTP), thus
leading to exacerbation of cytoplasmic calcium and eventual
neuronal death [164].

Further, mitochondria play a pivotal role in aging and
senescence, contributing to neural dysfunction with age.
They are actually the main cellular organelle implicated in
the process of neuronal apoptosis, which takes place in an
excessive manner in AD brains [165]. The fact that many
neurons undergo apoptosis in AD is evidenced by the pres-
ence of high levels of activated proapoptotic proteins such
as caspase-3 and Bax in neurons that exhibit neurofibrillary
tangle pathology [166].

Concerning AD models of study, unfortunately, there is
no animal model so far that replicates all the major aspects
of AD pathology and symptoms, and models based on postu-
lated disease pathways are widely used to explore biological
targets [167]. Regarding the investigation of the effects of
compounds on mitochondrial dysfunction, rodent transgenic
models are very common for reproducing the mitochon-
driopathy features in AD. For instance, an APP (amyloid
precursor protein) mice transgenic model demonstrated
an accelerated upregulation of the apoptotic-related factors
involved in mitochondria-mediated apoptosis, such as Bax
and caspase-3 [168]. Similarly, isolated mitochondria from
APPg,, mice (expressing the Swedish familial mutation in
APP gene) presented an abnormally reduced mitochondrial
respiratory rate, mitochondrial membrane potential (MMP)
disruption, increased ROS generation, and lower ATP levels
[169]. APP/PSI transgenic mice include mutations both in
APP and in presenilin-1 genes and show similar mitochon-
drial characteristics [170]. Other models even express more
mutations, such as 3xTg-AD mouse model that includes three
mutant human genes: APPswe, presenilin-1 (PSIM146V), and
tau protein (tau P301L); in this model, MMP loss and higher
caspases 3 and 9 activations are observed [171].

However, most of the works assessing mitochondrial
defects in AD are still performed on toxin-induced in
vitro models. With this respect, rat primary neurons in
culture exposed to Af,_,, oligomers reproduced the gen-
eration of mPTP in mitochondrial membrane with sub-
sequent calcium overload, the MMP loss, and release of
cytochrome C, thus leading to cell death via mitochondrial-
mediated apoptosis [172]. Mouse neuroblastoma N2a cells
cotransfected with Swedish mutant APP and A9 deleted
presenilin-1 (N2a/Swe.A9) recapitulated similar loss of mito-
chondrial integrity and function and evidenced increased
mitochondrial apoptotic pathway, with a higher Bax/Bcl2
ratio and augmented caspase-3 activity [173]. Recent studies
have employed cybrid neurons resulting from incorporating
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platelet mitochondria from AD patients into mitochondrial
DNA-depleted neuronal cells (SH-SY5Y cell line); this model
demonstrates changes in length and density of mitochon-
dria, imbalanced mitochondrial fission, and fusion dynamics
(altered expression and distribution of DLP1 and Mfn2
proteins), together with reduced mitochondrial function and
energy metabolism [174].

Therefore, it has been suggested that a substance of exoge-
nous or endogenous origin that is able to reverse any of the
aforementioned mitochondrial deficits may facilitate a better
neuronal health and then be of interest of study as a potential
active compound in AD therapy [175]. In fact, mitochondrial
medicine is emerging as a field of research focused on the
finding of therapeutic strategies to enhance mitochondrial
function in aging and in those neurodegenerative diseases
in which it has been shown to be impaired [176-178]. This
avenue of investigation has led to the discovery of several
agents directly targeted to mitochondria that are able to delay
or revert the mitochondrial impairments associated to AD; all
available information on these compounds is reviewed below
and collected in Table 2 and schematized in Figure 3.

3.2. Mitochondria-Targeted Protective Compounds in AD

3.2.1. Synthetic Compounds. Several mitochondria-targeted
antioxidants have been designed by conjugating the lipophilic
triphenylphosphonium (TPP+) cation to an antioxidant
moiety, such as coenzyme Q (CoQ), obtaining as a result
compounds like MitoQ [219]. Due to its chemical nature,
MitoQ takes advantage of the large MMP for reaching high
concentrations in mitochondria and, unlike isolated CoQ,
it is an effective antioxidant in the absence of functional
ETC [220, 221]. McManus et al. demonstrated that MitoQ is
effective in preventing loss of spatial memory and delaying
the early neuropathology in a triple transgenic mouse model
of AD; they evaluated its effect on mitochondrial deficiency
and found that MitoQ avoided the MMP drop and reduced
the apoptosis in cortical neurons by a decrease in caspase-
3 activity [171]. Another study employed a Caenorhabditis
elegans model overexpressing human A end evidenced that
MitoQ exerted protective effects on lifespan and A-induced
paralysis and markedly ameliorated the depletion of mito-
chondrial lipid cardiolipin and increased the mitochondrial
ETC function by protecting complexes IV and I; however, it
was not able to reduce the Af-induced mitochondrial DNA
oxidative damage [201].

Recently, Szeto developed a series of small, cell-perme-
able antioxidant peptides (SS peptides) that are known to
protect mitochondria from oxidative damage [222]. SS31 (H-
D-Arg-Dmt-Lys-Phe-NH2) is one of them and presents a
sequence motif that allows it to target mitochondria. In an
Ap,s 35-induced AD model of mice hippocampal neurons,
SS31restored axonal transport of mitochondria and displayed
promising protection and maintenance of mitochondrial
function, proved by an increase in the number of healthy and
intact mitochondria and a reduction in the levels of fission
proteins, matrix protein, and CypD [162]. Similar results were
found by Calkins et al. [211]. Manczak et al. also revealed
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FIGURE 3: Mechanisms of mitochondrial dysfunction and mitochondria-targeted drugs that have produced beneficial effect in AD models.

positive effects on mitochondria for SS31; it was able to nor-
malize the number of mitochondria and reduce the abnormal
expression of peroxiredoxins and mitochondrial structural
genes, that was present in an Af,;_;5-induced mouse N2a
cells AD model [200]. Moreover, the mitochondrial division
inhibitor 1 (mdivi-1) attenuated the degree of apoptosis in an
Ap-induced model of AD in BV-2 and primary microglial
cells, then counteracting another pathological feature of AD,
such as neuroinflammation; this effect is probably mediated
through its effects on mitochondria, since Mdivi-1 reversed
abnormal mitochondrial fission, MMP loss, CytC release, and
caspase-3 activation [223]. Besides these actions, in a cybrid
cell model, it also maintained mitochondrial integrity and
function, via a reduction of mitochondrial ROS production,
and increases in CytC oxidase and SOD activities and ATP
levels [174]. Another chemically synthesized compound such
as complex ASS234, a novel multipotent molecule that com-
bines indolyl propargylamine and benzylpiperidine moieties,
has shown protective activities in an Af,_,,-induced SH-
SY5Y neuroblastoma cells model of AD; ASS234 inhibited the
mitochondrial-mediated apoptotic pathway by reducing the
levels of cleaved caspases 3 and 9 and the levels of proteolysed
PARP [182]. The pyrazolone edaravone reversed the AD-like
in vitro mitochondrial insults in the transfected N2a/Swe.A9
cell model, in which edaravone treatment increased cell
viability, attenuating oxidative stress and CytC release and
improving MMP; in addition, it diminished apoptotic rate
through a decrease in the Bax/Bcl-2 ratio and a suppression
of caspase-3 activation [173]. Also, both R(+) and S(-)
stereoisomers of pramipexole exerted restorative effects in
another Af-induced model of AD; they were able to inhibit
mitochondrial-mediated apoptotic process by inhibiting cas-
pases activations [209].

Finally, a very recent work has revealed a mitochon-
drial-targeted protective action for the well-known acetyl-
cholinesterase inhibitor donepezil, which is clinically used
for treating AD. Donepezil displayed ameliorative effects on
behavioral deficits in APP/PSI double transgenic mice and
enhanced the resistance of their brain mitochondria to the
induction of mPTP by calcium ions; such action may be
mediated by its lowering effect on mitochondrial Ap level in
brain of treated animals, which was also later confirmed in
vitro in isolated mitochondria from rat brains. Thus, it avoids
the AB,_,,-induced functional decay in mitochondria in such
AD model [224].

3.2.2. Endogenous Compounds. Several compounds with
endogenous origin have revealed interesting actions on mito-
chondrial deficiencies of AD. For instance, the hormone
melatonin has been largely studied. Dragicevic et al. showed
that a pretreatment with melatonin protected cognitive func-
tion in an APPsw mice model of AD. A plausible mechanism
for the observed effect via mitochondria was tested in isolated
mitochondria from mice, proving that melatonin could com-
pletely restore mitochondrial respiratory rate, MMP, ROS
production, and energy metabolism; other in vitro assays sug-
gested a possible implication of c-AMP-dependent phospho-
diesterase (PDE) 4 or cGMP-dependent PDES5 in the effects
displayed by melatonin [169]. The same group of research pre-
viously demonstrated similar actions of melatonin in brain
mitochondria isolated from the double transgenic APP/PSI1
mice model of AD and determined that melatonin receptor
signaling is required for its full effect [170]. Furthermore,
melatonin evidenced mitochondrial protective activity in in
vitro models. Besides acting as an antioxidant activator of
mitochondrial aconitase, one of the enzymes of the citric
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acid cycle that is affected by the oxidative stress in AD [179],
melatonin was reported to act as a defensive agent against A f3-
induced cytotoxicity in BV2 microglial cells; it attenuated the
cellular apoptosis by activating Bcl-2 antiapoptotic pathways,
thus involving higher Bcl-2 expression and reduced Bax
mRNA level and caspase-3 activity [197].

The endogenous antioxidant glutathione also acts as a
mitochondrial aconitase activator [179] and avoids the Af-
induced mitochondrial membrane depolarization in human
HCN-1A cells [193]. Two mitochondrial metabolites such
as the acetyl-L-carnitine and the R-a-lipoic acid (LA) have
attracted attention in AD-related research. Aliev et al. con-
firmed that old rats fed with both compounds presented
significantly reduced number of damaged mitochondria and
increased number of intact mitochondria in hippocampus,
thus preventing from mitochondrial decay associated with
age and AD [180]. The organosulfur compound LA was
able to decrease the mitochondrial-related oxidative stress
in fibroblasts from AD patients; at a concentration of
1mM, LA attenuated AD-type mitochondrial dysfunction
generated by the cytochrome oxidase assembly inhibitor N-
methylprotoporphyrin [196].

The neuroprotective role of peroxiredoxins (Prdx) 3 y
6, the key mitochondrial antioxidant defense enzymes in
detoxifying ROS such as H,O,, has been evaluated with
results suggesting their therapeutic/prophylactic potential to
slow and attenuate AD progression and related neuronal
death. Rat PCI12 cells overexpressing functional Prdx 6 pre-
sented diminished Af3,5_;5-induced mitochondrial apoptotic
pathway, expressed by an inhibition of PARP inactivation,
caspases 3 and 9 activations, and Bcl-2 and Bax dysreg-
ulation [206]. Meanwhile, Chen et al. evidenced the role
of Prdx 3 in improving cognition, by using two transgenic
mice models of AD (APP and APP/Prdx3 models); Prdx
3 activity was correlated with reduced brain amyloid beta
level and production and maintenance of mitochondrial
integrity and function, showing reduced mitochondrial DNA
oxidation and enhanced activity of mitochondrial complexes
I and IV [205]. Nicotinamide, as an endogenous inhibitor
of poly-ADP-ribose polymerase-1 (PARP-1), is evidenced to
display reduction of oxidative stress in an Af,_,,-induced
rat model, and it upregulated mitochondrial function and
downregulated mitochondrial apoptosis, lessening Bax levels
and increasing Bcl-2 levels [204].

3.2.3. Natural Products. Finally, numerous natural products
deserve to be mentioned for their mitochondrial-targeted
antioxidant activities. Alkaloid caffeine is proved to exert
similar activities to melatonin [169] and in its crude form,
resulting from decaffeination of coffee, it reduced memory
impairment and Apf,_,, levels in hippocampus of an AD
mouse model, the J20 mouse line; crude caffeine maintained
mitochondrial function as revealed by increased ATP lev-
els and lower ROS generation and inhibited the apoptosis
mediated by mitochondria (reduced caspase-3 activity) [184].
Polyphenol resveratrol, a proven antioxidant with interest
in AD [225], when tested in an Af-induced N2a mouse
cells model, normalized the number of mitochondria and

Oxidative Medicine and Cellular Longevity

decreased the abnormal expression of peroxiredoxins and
mitochondrial structural genes; it also preserved mitochon-
drial function in vivo, by inhibiting CypD expression [200].
Polyphenolic compound tournefolic acid B (TAB) has been
isolated from Tournefortia sarmentosa Lam. (Boraginaceae)
and investigated by Chi et al. on an in vitro model of AD, who
demonstrated its neuroprotective effect via mitochondrial
caspase 8-tBid-cytochrome ¢ pathway. Actually, 50 uM TAB
revoked the A protein-induced caspases 8 and 9 activa-
tion, significantly reduced the elevation of calcium level in
mitochondria, and delayed the release of CytC; reduction in
apoptosis was evidenced by an attenuation in mitochondrial
tBid elevation, without affecting AfB-mediated decrease in
mitochondrial Bcl-2« [214].

Gypenoside XVII (GP-17) is a novel phytoestrogen iso-
lated from Gynostemma pentaphyllum or Panax notoginseng
that, due to its structure, was found to confer neuropro-
tection against Af,;_;s-induced neurotoxicity in PC12 cells
via estrogen receptor-dependent activation of PI3K/Akt and
Nrf2/ARE/HO-1 pathways and inactivation of PI3K/Akt
pathway; regarding mitochondrial failures, pretreatment with
GP-17 10 uM) for 12h is demonstrated to restore normal
MMP and reduced CytC release and the enhanced apoptosis,
by inhibiting caspase-3 activation and cleavage [194]. The
phytoestrogen genistein also showed its potency to upregu-
late the mitochondrial Na/K-ATPase activity in human AD
brains, which is proved to be disturbed in the early phase
of the disease; by ameliorating the energy metabolism in
the initiation of AD pathology, genistein is presented as an
interesting candidate drug [191].

Wang et al. evaluated the potential activity of acteoside,
an antioxidant phenylethanoid glycoside first extracted from
Verbascum sinuatum and named “verbascoside,” on Af,5_55-
induced SHSY5Y cell injury. They concluded that a pretreat-
ment with acteoside for 15 h was effective for inhibiting ROS
production and mitochondrial dysfunction and apoptotic
pathway; this modulation involved decrease in Bax/Bcl-2
ratio, cytochrome c release, and the cleavage of caspase-3
[181]. Thymoquinone is the bioactive and most abundant
constituent of the volatile oil of black seed and has been
described as a promising antioxidant in in vitro AD models,
in part for its restorative action on MMP impairments due to
A neurotoxicity [212, 213].

Concerning plant extracts, a green tea leaf extract rich in
epicatechin and epigallocatechin gallate, was able to reverse
damaging effects of AICl; in a rat model, suggesting it might
be beneficial in AD. It reduced the aluminium neurotoxicity
via antioxidant and mitochondrial protective effects, such as
an augment in CytC oxidase activity [226].
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