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Abstract: Depth sensors are important in several fields to recognize real space. However, there are
cases where most depth values in a depth image captured by a sensor are constrained because the
depths of distal objects are not always captured. This often occurs when a low-cost depth sensor or
structured-light depth sensor is used. This also occurs frequently in applications where depth sensors
are used to replicate human vision, e.g., when using the sensors in head-mounted displays (HMDs).
One ideal inpainting (repair or restoration) approach for depth images with large missing areas, such
as partial foreground depths, is to inpaint only the foreground; however, conventional inpainting
studies have attempted to inpaint entire images. Thus, under the assumption of an HMD-mounted
depth sensor, we propose a method to inpaint partially and reconstruct an RGB-D depth image to
preserve foreground shapes. The proposed method is comprised of a smoothing process for noise
reduction, filling defects in the foreground area, and refining the filled depths. Experimental results
demonstrate that the inpainted results produced using the proposed method preserve object shapes
in the foreground area with accurate results of the inpainted area with respect to the real depth with
the peak signal-to-noise ratio metric.

Keywords: depth image; head-mounted display; RGB-D; inpainting; mixed reality

1. Introduction

Head-mounted displays (HMDs) have attracted increasing attention in many fields owing
to their effectiveness in displaying virtual worlds. Representative types of HMDs fall into two
categories, i.e., the see-through method to provide computer graphics (CG) in the real world and
the non-see-through method, which covers the entire viewing field to provide virtual worlds [1–3].
Therefore, it is necessary to select a device that is appropriate for the target application.

HMDs are mainly used in applications in the fields of virtual reality (VR), augmented reality
(AR), and mixed reality (MR). VR applications present only virtual worlds, giving users simulated
experiences; AR applications overlay CGs onto real-world objects and augment information from the
real world; and MR applications present an experience that can interact with both real and virtual
worlds. However, HMDs face issues that must be addressed as HMDs become increasingly popular,
such as their physical weight, size, display resolution, and interface. Many manufacturers have
produced dedicated user interfaces for specific applications [4–6]. Furthermore, a camera with depth
sensors can be mounted onto several HMDs to provide a more natural user interaction between the
real and virtual worlds because depth sensors capture the distances to real objects as a depth image.

Depth sensors can facilitate real-space recognition more effectively than color images. For example,
the hand regions in an image can be extracted easily by isolating distant depths, which can then be
applied to hand recognition tasks. While this approach is effective for hand recognition, the associated
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image depths should not be removed in cases where the users directly interact with real objects in the
virtual world, such as scanning objects, scanning the spaces surrounding users, and using devices
in virtual worlds. Therefore, it is important to utilize all depths obtained from a depth sensor in
MR applications effectively.

The representative methods to generate a depth image using depth sensors are structured-light
(SL), time-of-flight (TOF), and the other stereo methods [7]. SL sensors obtain depth information
through triangulation; TOF sensors obtain depth information by measuring the travel time of a light
pulse; and the stereo methods estimate depth based on a stereo matching technique. There are cases
when many pixels in a depth image captured by sensors do not possess depth information, such as
those shown in Figure 1, because the depths to distal components in a given scene are not always
captured. Although this often occurs with low-cost or SL sensors, it also occurs when a given scene
contains many distal components, such as background elements. Because HMDs are required to
be unobtrusive and lightweight, HMD-mounted sensors cannot avoid being small and low in cost.
In addition, many distal components are included in applications that use the depth sensor of an HMD
to replicate human vision. However, it is difficult to inpaint (repair or restore) large missing regions in
depth images, just as the background cannot be made from the foreground.

In this paper, under the assumption of an HMD-mounted depth sensor, we propose a method to
inpaint a depth image containing large missing regions. The proposed method resolves a scene that
contains large missing regions when the pixels corresponding to the background do not possess depth
information, e.g., an MR application to operate objects in both virtual and real space.

In the proposed method, we partially inpaint missing regions and reconstruct the shapes of only
the foreground components. Conventional studies have primarily focused on inpainting an entire
depth image to generate a complete image. Hence, a clear distinction must be made between the
conventional approaches and the proposed inpainting approach in terms of whether they eventually
create a complete image.

The proposed method first applies smoothing filters to reduce noise. Then, shapes in the
foreground of the image are interpolated and reconstructed. Finally, the proposed method refines the
interpolated depths to improve image accuracy.

(a) RGB color (b) Depth (Kinect) (c) Depth (RealSense)

Figure 1. Resultant depth images obtained using different devices. The black pixels in each image
define areas where the depth information could not be measured. (a) RGB color; (b) depth (Kinect);
(c) depth (RealSense).

2. Related Work

Until approximately one decade ago, depth sensors had primarily been used in reverse
engineering. Such sensors, also known as 3D scanners or digitizers, have traditionally been very
expensive, which has limited their practical applications. The recent development of the Kinect by
Microsoft, which is an inexpensive depth sensor for the entertainment industry, has led to various
fields adopting this sensor for numerous image recognition applications [8]. Depth sensors capture
the distances from the sensor to real objects as a depth image. The Kinect can also capture RGB color
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images because it has a mounted RGB camera. The captured RGB color and depth images are generally
referred to as RGB-D images.

As described in the previous section, SL and TOF are representative methods to obtain depth
information. SL sensors obtain depth information via triangulation, and TOF sensors obtain depth
by measuring the travel time of a light pulse. The depth information obtained by the SL method can
theoretically demonstrate higher average accuracy at close distances than the TOF method, although the
depths of the occluded regions are lacking [7]. The TOF method does not suffer as much from occlusion
as the SL method; however, the TOF method does suffer from the effect of indirect bounces [9].
In addition, stereo matching-based sensors have been proposed [10]; however, their depth images also
suffer problems related to occlusion.

Figure 1a,b illustrates RGB-D images captured using a Kinect v2 depth sensor (TOF). The intensity
of the depth image in Figure 1b indicates the objects’ distances from the sensor, and black
regions indicate that depth could not be measured. The black regions occur due to transparent,
specular-reflected, and occluded objects, as well as components that are proximal or distal to the depth
sensor, which are difficult to measure because depth sensors use infrared rays.

Depth sensors smaller than the Kinect have also been developed recently [11–13]. Figure 1c
shows a depth image captured using the RealSense SR300 depth sensor (SL) developed by Intel.
The RealSense’s depth image contains many more black pixels compared to the Kinect’s depth image
because the RealSense cannot measure the background and distal objects. Therefore, an appropriate
device must be used relative to an application’s requirements. In addition, it is also important to
inpaint depth images properly according to the requirements of different applications.

In consideration of many factors, such as device selection, depth estimation methods,
and environmental conditions, previous studies have proposed various inpainting approaches.
For example, methods that use stereo images have been proposed as a disparity map inpainting
method based on an approach that exploits the characteristic of stereo images [14,15]. In addition,
methods have been proposed to align the edges of a depth image with those of a color image by
exploiting the assumption that depth and color edges at corresponding locations are consistent [16–18]
and, moreover, considering surface smoothness [19]. Furthermore, methods that adopt and extend
the fast marching method, which is a numerical method for solving boundary value problems, have
also been proposed [20,21]. Relative to the exemplar-based or patch-based approach, methods based
on copying a similar source patch into a target patch of depth holes have also been proposed [22–25].
Various filtering-based methods have also been proposed previously, such as joint-bilateral filtering,
which includes spatial and temporal information [26], an edge-preserving filter, which considers edges
to refine straight lines [27], the adaptive hole-filling filter, which labels holes as areas of occluded or
glossed objects [28], a dedicated bilateral-based filter, which considers visual distances in the L*a*b
color space [29], and a median-based filter that applies improved bilateral and non-local means (NLM)
for denoising [30]. In addition, many other methods have been proposed, such as the method based
on 3D reconstruction with plane fitting and optimization [31], the linear anisotropic diffusion method,
whose conductivity is designed based on a color image [32], and a method to inpaint depth images
obtained using a Kinect underwater [33]. These methods are employed to fill and smooth holes and
disocclusion areas, and they have demonstrated good results. Essentially, these methods share a
common goal, i.e., inpainting an entire depth image to generate a complete image.

As described at Section 1, this study assumes the use of an HMD-mounted depth sensor.
The mounted depth sensor’s accuracy is very low; thus, some approaches have attached a different
depth sensors to HMDs for more interactions and improved accuracy [34,35]. However, there are some
cases, such as that shown in Figure 1c, where the black area represents the background rather than
holes, especially when using low-cost or SL sensors. Therefore, in this paper, we propose an ideal
method that only inpaints the foreground and preserves the shapes of foreground objects.



J. Imaging 2020, 6, 11 4 of 16

3. Depth Image Inpainting Using an HMD-Mounted RGB-D Camera

3.1. Overview

The objective is to inpaint the depth image partially with numerous uncaptured depths, as shown
in Figure 1c, especially in the case of using an HMD-mounted RGB-D camera. Note that the proposed
method is not intended to generate a complete depth image.

Figure 2 shows the outline of the proposed method. First, we reduce noise in the depth image of
the input RGB-D. Then, we distinguish the proximal area that should be inpainted and the other area,
and we inpaint only the proximal area as depth shape reconstruction. Using the interpolated depth
and color image, we apply an NLM-based smoothing filter to the interpolated proximal area.

DepthColor
RGB-D

Noise reduction

Depth shape reconstruction

Smoothing based on non-local mean

Output

Figure 2. Outline of the proposed method.

In some MR applications, it is important to preserve only the shape of very close depth pixels
rather than performing inpainting, such as requiring hand recognition or recognizing an object with
hands. To address this issue in a simple manner, we propose a method to distinguish a very close area
of the proximal area to apply the preceding method separately to the very close area and the other
proximal area. If necessary, this approach is applied between the noise reduction and the interpolation.

3.2. Noise Reduction

First, it is necessary to reduce noise because raw depth images generally include spike noise.
The median filter is as an effective method to reduce spike noise. In reference to previous studies [29,30],
we employ the median filter as a pre-processing, and we apply it Nm = 3 times to the entire
depth image.

3.3. Depth Shape Reconstruction

This approach distinguishes areas that should and should not be interpolated rather than
distinguishing the foreground and background. Figure 3 illustrates our inpainting approach. First, we
defined all pixels with depth. Then, we extracted the edge pixels E = {ei ∈ R2|1 ≤ i ≤ Ne} adjacent
to black pixels, as shown in Figure 3b. Next, we only extracted edges enclosed by the depth pixels
or constitute deep concave as Ê (Figure 3c). Finally, we applied Delaunay triangulation [36] to Ê and
filled the holes with triangles, as demonstrated by [37]. Note that all the triangles were rendered to
the depth image using the colors converted from the edge pixel depths. Then, the inside color of each
triangle was interpolated linearly.

The core of this approach is the extraction of edges Ê. This is the same as removing edges other
than Ê; thus, we extracted the edges other than Ê as outer edges and deleted them from E. Specifically,
we utilized the depth attribute of the HMD-mounted depth images. As shown in Figure 4, proximal
objects are toward the bottom of the image, whereas distal objects are toward the top. This illustrates
the situation whereby most captured depths are concentrated at the bottom of the image, where distal
objects are not captured. Therefore, the depth image was almost divided into two regions, i.e., a
proximal region with depth and a distal region without depth. The shape of the proximal region
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should be inpainted because it is the foreground. In contrast, the shape of the region without depths
should not be inpainted because the required depths do not exist. For example, holes in the proximal
region and pixels with deep concavity should be inpainted while preserving the approximate shape
because we assumed that they were in the foreground. Therefore, we extracted edge pixels that should
not be inpainted and eliminated them from E. We then applied Delaunay triangulation.

(a) Input (b) Edges

(c) Outer edges deletion (d) Interpolation

Figure 3. Overview of proposed inpainting approach. (a) Black areas indicate areas with no detected
depth. (b) White lines mark extracted edges. (c) Outer edges are eliminated. (d) Interpolation using
the edges in (c).

near far

(a) Settings
near

far

(b) Depth image

Figure 4. Composition of depths in depth images captured using a head-mounted display (HMD)-
mounted depth sensor. (a) Settings; (b) depth image.

We used the hidden point removal (HPR) operator [38–42] and extended it so that it was
applicable to our pixel extraction method. HPR was proposed as a rendering and shadowing
method for three-dimensional point clouds, and it achieved a visibility check for point clouds with no
information about the connectivity between points. Figure 5 shows HPR in 2D point clouds, which
was accomplished as follows.

(a) Generate a circle with center c, which is also a viewpoint, and radius r.
(b) Place input points inside the circle.
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(c) Flip the input points in the circle using Equation (1).

f (e, c) = e− c + 2(r− ‖e− c‖) e− c
‖e− c‖ , (1)

(d) Construct the convex hull of the flipped points and c.
(e) Points on the convex hull are judged to be visible from cat the points before flipping.

Note that it was difficult to extract deep concave points with HPR; thus, we took advantage of
this characteristics to extract approximate shapes without deep concavity.

Figure 6 shows the outline for extracting inner-edge pixels that should be interpolated. First,
the pixel locations of E were regarded as 2D points. Furthermore, although HPR set a single center
point, we prepared multiple center points C = {cj ∈ R2|1 ≤ j ≤ Nc}. The center points C were set
along the upper side of the depth image, as shown in the left panel of Figure 6. Then, HPR was applied
to E and c1, and the edge pixels visible from c1 were extracted. This visible edge pixel extraction process
was conducted in parallel at the other center points. Finally, all extracted edge pixels were combined
as outer edges and subtracted from the original edge pixels E, thereby extracting the inner-edge pixels
(Figure 6, right panel).

c
×

Figure 5. The hidden point removal (HPR) operator (black points indicate pixels visible from
viewpoint c).

×

c1

×

c2

××

cNc

U

U

U

...

Union of the edge deletions 
in each viewpoint

Edge pixels Inner edge pixels

× ×× ×

c
1

c
2

c
3

c
Nc

・・・ ×

c
Nc

－ ＝

Figure 6. Inner-edge pixels after eliminating outer edges.

The inner-edges Ê used for interpolation are formulated as follows.

Ê = E \ {e′k ∈ E|F( f (ei, cj), cj) = 1, ei ∈ E, cj ∈ C}, (2)
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F(e, c) =

{
1 if e is a vertex of the convex hull of H(c),

0 otherwise.
(3)

H(c) = {hi| f (ei, c), ei ∈ E, 1 ≤ i ≤ Ne} ∪ c, (4)

Finally, we applied Delaunay-based interpolation to Ê and rendered the triangles to the
depth image.

3.4. Smoothing Based on Non-Local Means

It was necessary to sharpen or smooth the inside pixels of the triangles and accurately inpaint the
object shapes because the holes were interpolated linearly in each triangle. This could be achieved using
an edge-preserving smoothing filter, with the bilateral [43] and NLM [44] filters being representative
examples. These filters were based on Gaussian weighting according to the differences in pixel values
and distances. In the proposed method, we used the NLM filter because it achieved better results than
the bilateral filter in most cases [45,46].

The general NLM approach targeted either single- or three-channel images. Although we
primarily targeted a depth image (i.e., a single-channel image), we also included the RGB-D color
image in the filter-weighting scheme to improve accuracy. Because the target depth images included
large missing regions whose pixels did not possess depths, we proposed an NLM filter that applied
only to the foreground region. Specifically, the proposed filter left the pixels of the missing regions
intact and applied the weighted mean filter to the pixels with depths based on their similarity to
adjacent pixels. Therefore, the edge-preserving smoothed depth g(x, y) is expressed as follows:

g(x, y) =



w

∑
m=−w

w

∑
n=−w

W(x, y, m, n)D(x + m, y + n)

w

∑
m=−w

w

∑
n=−w

W(x, y, m, n)
if D(x, y) has a depth,

0 otherwise.

(5)

W(x, y, m, n) =
w′

∑
s=−w′

w′

∑
t=−w′

[
R′(x, y, m, n, s, t)

× G′(x, y, m, n, s, t)

× B′(x, y, m, n, s, t)

× D′(x, y, m, n, s, t)

× T(x, y, m, n, s, t)
]
,

(6)

R′(x, y, m, n, s, t) = exp
(
− [R(x + s, y + t)− R(x + m + s, y + n + t)]2

2σ2

)
, (7)

G′(x, y, m, n, s, t) = exp
(
− [G(x + s, y + t)− G(x + m + s, y + n + t)]2

2σ2

)
, (8)

B′(x, y, m, n, s, t) = exp
(
− [B(x + s, y + t)− B(x + m + s, y + n + t)]2

2σ2

)
, (9)

D′(x, y, m, n, s, t) = exp
(
− [D(x + s, y + t)− D(x + m + s, y + n + t)]2

2σ2

)
, (10)

T(x, y, m, n, s, t) =

{
1 if D(x + m + s, y + n + t) has a depth,

0 otherwise,
(11)
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where w is the size of the filter window, w′ is the window size for similarity, σ is the standard deviation
of the Gaussian distribution, and R(·), G(·), B(·), and D(·) are the R, G, B, and D pixel values,
respectively. In this study, we set w = 4, w′ = 1, and σ = 0.2 (when the R, G, B, and D values were
normalized in the range [0, 1]).

3.5. Definition of Closer Area

It is important to only preserve the shape of very close depth pixels in some MR applications
using HMD, such as hand recognition and recognizing an object with hands. Pixels surrounding
the contour of the very close depth area should not be interpolated linearly with the other area.
Therefore, we distinguished the closer depth area and other depth areas. Then, we separately applied
the interpolation, to each area. Specifically, we defined the closer area as hands and the continuous
region connected to the hands.

As shown in Figure 7, the hands were assumed to be at the front side of the image captured using
an HMD-mounted camera. Here, we set the width α to the depth image in advance based on this
assumption. First, pixel p, which had the nearest depth within Td, was extracted in the area defined by
α. Here, Td was the distance from the HMD-mounted camera to the threshold. Next, we applied the
flood fill method [47] to p as the starting node. We then defined the filled area as the closer area. If both
hands were present in the image, this procedure was repeated for the other hand after excluding the
pixels of the already extracted closer area. The closer area may be separated due to noise or obstruction;
thus, this procedure was repeated until p could not be extracted.

Then, we applied dedicated interpolation to the adjacent triangles connected to the extracted
closer area. When one or two of the three vertices (i.e., pixels) of a triangle were in the closer area,
the depths of these vertices were replaced with the other depth. For example, when only a vertex v1 of
a triangle was in the closer area, its depth d1 was replaced with max(d2, d3), where d2 and d3 were the
depths at the other vertices. Furthermore, when vertices v1 and v2 of a triangle were in the closer area,
both d1 and d2 were replaced with d3. Finally, when all three vertices of a triangle were in the closer
area, the triangle was eliminated because it existed on a finger or hand.

In this study, we set α to 5% of the image width. Furthermore, Td must be adjusted according to
objective requirements because it depended on the positions of the HMD-mounted depth camera.

α

α

Figure 7. Defining width α to distinguish the closer area.

4. Results

We implemented the proposed method and conducted experiments to verify its capability and
effectiveness. All experiments were performed using an Intel Core i7-8800K processor with 16 GB
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RAM and an NVIDIA GeForce GTX 1080. In addition, unless otherwise described, we used an
HMD-mounted Intel RealSense SR300 RGB-D sensor with 640× 480 pixel resolution.

4.1. Experimental Results

Figure 8 shows example results. As discussed in Section 1, the proposed method could
not be compared with the other methods as to whether an image had been partially inpainted,
because the conventional studies’ objective was not partial inpainting. However, to facilitate reasonable
comparison, we compared an existing method [30] to highlight the difference in the results. We selected
the method proposed by Bapat et al. because it partially inpainted the depth image depending on
threshold; however, note that this partial inpainting was unintended by them. The top two rows in
Figure 8 are scenes that included many uncaptured areas that were either too distal or contained darker
objects. In these cases, the proposed method achieved good results relative to preserving foreground
contour shapes, where our extended HPR operators preserved the shapes and obtained important
results relative to our objective. The bottom row is a scene that contained relatively proximal objects
such that the depth image included few uncaptured areas. In this case, most of the uncaptured areas
were interpolated. A black portion of the area to the top of the image remained because the proposed
method preserved the contours for the outer concavity. However, the proposed method still provided
a good result in this case because many of the important areas were interpolated appropriately.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Inpainting results for three different scenes: (a,e,i) input color images; (b,f,j) raw depth
images; (c,g,k) inpainting results obtained by the approach proposed by [30]; and (d,h,l) inpainting
results obtained by the proposed method.

Figure 9 shows several results obtained with different values for parameter Nc, which was the
number of the center points in our extended HPR. As can be seen, the shape was improved when
Nc was large. However, increasing Nc to very large values did not improve the results. From this
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and the other preliminary results, we determined that Nc = 5 was sufficient relative to performance
improvement. Note that all subsequent results were obtained with Nc = 5.

(a) Input color (b) Input depth (c) Nc = 2

(d) Nc = 3 (e) Nc = 4 (f) Nc = 5

Figure 9. Results with the different Nc. (a) Input color; (b) input depth; (c) Nc = 2; (d) Nc = 3;
(e) Nc = 4; (f) Nc = 5.

Figure 10 shows the results for a case using different depth sensors. The Kinect depth image
contained noise and incorrect depths due to the effect of indirect bounces. Therefore, the resultant
image included some smoothless or incorrect inpainting regions. The RealSense depth image had only
closer depths than the Kinect’s. Captured regions were relatively less, although the result showed
preserving shapes in the region captured. Although there were differences due to sensor characteristics,
the proposed method could obtain good results in terms of shape preservation.

Figure 11 shows the result of closer depth area refinement. As shown, the hand was blurred in
the no refinement case (Figure 11b) because the uncaptured areas were primarily interpolated using
a linear interpolation. In contrast, the hand shape was clearly preserved in the case with refinement
(Figure 11c), which is important in some applications, such as hand recognition, which highlighted the
effectiveness of this refinement. Note that this result depended on threshold Td (Section 3.5), which
was the distance from the HMD-mounted camera positions. Here, we set Td = 350 (mm).
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(a)

(b) (c) (d) (e)

Figure 10. Inpainting results obtained with different sensors: (a) capture scene; (b) raw depth image
from Kinect v2 (TOF); (c) raw depth image of RealSense SR300 (SL); and (d,e) inpainting results of (b,c).

(a) (b) (c)

Figure 11. Closer depth area refinement results: (a) input depth image; (b) result without refinement;
and (c) result with refinement.

4.2. Objective Evaluation

A common method to evaluate image quality quantitatively is to calculate the peak signal-to-noise
ratio (PSNR). For example, Bapat et al. [30] applied the PSNR to evaluate the accuracy of interpolated
depths, where they eliminated some depths, inpainted the eliminated area, and then calculated
the PSNR based on the difference before and after inpainting. However, this approach is often
inappropriate because raw depth images generally include considerable noise that cannot be ground
truthed; thus, the noise must be suppressed to achieve high accuracy. Therefore, we simulated some
normal situations by placing them onto the depth maps of CG models rather than actual depth images.
Here, we specifically created 3D CG objects and their depth maps for these normal situations, as shown
in Figure 12. Furthermore, we eliminated a portion of each depth map to imitate actual situations.
Then, we inpainted these eliminated areas using the proposed method and calculated the PSNR using
the depth maps with and without smoothing.

Table 1 shows the PSNR values for the inpainted depth maps obtained using the proposed method.
The accuracy of Areas (B) and (C) were particularly lower than that of the other areas. The reason
for this reduced accuracy was likely due to the large depth differences in and around the eliminated
areas, which were indicated by the large standard deviations (SD) for the depths in and around the
eliminated area (Table 2). In contrast, the accuracy of Areas (A) and (E) was higher with relatively low
SD values. Therefore, it appeared that accuracy depended on the depth differences of the surrounding
inpainting areas.
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However, Area (A) demonstrated the highest accuracy, even though Area (E) possessed the lowest
SD. As shown in Figure 12, Area (A) was a planar defect, and Area (E) was a defect due to the curved
surfaces between the components of the teapot. Therefore, Area (A) had higher accuracy due to the
employed linear interpolation, which was suitable for the square shape. Further improvements to
accuracy include extending the linear approach to an adaptive, nonlinear interpolation process.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Three experimental images: (a–c) three planes, (d–f) torus, and (g–i) teapot. (a,d,g) Color
images. Each image is a 3D CG object. (b,e,h) Depth maps. (c,f,i) Depth maps with eliminated areas.

Table 1. PSNR values (dB) of inpainted depth maps obtained using the proposed method. (A)–(E)
indicate the eliminated areas in Figure 12.

Object Without Smoothing With Smoothing

Planes (A) 44.47 52.00
Planes (B) 17.78 19.61
Planes (C) 15.04 18.00
Torus (D) 24.80 33.98
Teapot (E) 42.05 50.45

Table 2. SD values for depths around the eliminated areas in Figure 12.

Object Standard Deviation

Planes (A) 9.01
Planes (B) 24.86
Planes (C) 35.14
Torus (D) 11.16
Teapot (E) 4.22



J. Imaging 2020, 6, 11 13 of 16

Furthermore, it could be confirmed that our edge-preserving smoothing approach, which was
based on NLM, improved the accuracy in all results. This smoothing approach placed the depths of
the linear interpolated areas closer to the actual objects, and the results highlighted the importance
and necessity of the proposed method.

We also measured processing times to evaluate the proposed method. Here, processing time was
measured for a minute, with a mean time of 42 ms (computational cost rate: noise reduction 15%,
depth shape reconstruction 68%, smoothing 14%, and closer area extraction 3%).

4.3. Application Example

The purpose of the proposed method was to inpaint depth images from an HMD-mounted RGB-D
camera for use in MR applications. The specific procedure employed the HMD-mounted RGB-D
camera to capture an RGB-D image, with the depth image subsequently inpainted using the proposed
method. With the exception of areas with no depth constraints, the RGB-D image was mapped onto a
virtual space and displayed using the HMD. Figure 13 illustrates business- and entertainment-related
examples of this procedure, where the top row shows a workplace example first captured in real space
and then mapped onto a virtual space. Although the workplace was a small office, it could readily
be transformed into a spacious environment. The bottom row shows someone reading in a small
space. Similar to the previous example, this small reading space could be transformed to a warm and
spacious outdoor environment. Therefore, the proposed method could effectively create composites of
the real and virtual worlds. Thus, we expected that the proposed method could be applied to various
MR applications.

(a) (b) (c)

(d) (e) (f)

Figure 13. Two application examples: (a–c) a workspace and (d–f) reading in a small space.
(a,d) Real-world images. (b,e) Depth images inpainted using the proposed method. (c,f) Composite
results placed in virtual worlds.

5. Conclusions

Various RGB-D sensors have been produced and adopted to achieve numerous objectives, such
as user interfaces, object recognition, and object reconstruction. However, there are often cases where
depth images contain defects that are too large, especially in low-cost or SL sensors. In this paper,
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under the assumption of an HMD-mounted depth sensor, we proposed a method to inpaint RGB-D
depth images partially to preserve object shapes. The proposed method employed a denoising filter
to reduce spike noise in the depth images. The proposed method clearly distinguished areas that
should be inpainted using our extended HPR, which allowed us to avoid unnecessary inpainting
processes. Furthermore, the proposed method improved the accuracy of inpainted depths using an
edge-preserving smoothing filter. In addition, the proposed method applied a refinement process to
closer areas, which is a common requirement in various MR applications.

We conducted experiments to confirm the effectiveness of the proposed method, and the results
demonstrated effective inpainting that preserved the shapes of objects. We applied the proposed
method to MR applications and highlighted its capabilities, as well as its potential use in other MR
applications. While the proposed method was specialized to preserve the shapes of objects, there is
room to improve the accuracy of inpainted depths. For example, an adaptive, nonlinear interpolation
or the other approach can be employed to improve the accuracy of the proposed method since it
primarily depends on the depth differences of surrounding inpainting areas. Furthermore, in the
future, it will be necessary to evaluate the applicability and effectiveness of MR applications that
implement the proposed method.
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