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Abstract 
This article is a review of new advances in histology, concerning either classification or structure of different tissular elements (basement 
membrane, hemidesmosomes, urothelium, glandular epithelia, adipose tissue, astrocytes), and various organs’ constituents (blood–brain 
barrier, human dental cementum, tubarial salivary glands, hepatic stellate cells, pineal gland, fibroblasts of renal interstitium, Leydig testicular 
cells, ovarian hilar cells), as well as novel biotechnological techniques (tissue engineering in angiogenesis), recently introduced. 
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 Introduction 
Since its founding in the 18th century, histology has 

retained a remarkable place in medicine. Although an 
ancient science, its dynamic character is preserved through 
its close connection with multiple important disciplines 
(molecular biology, genetics, physiology, pathological 
anatomy) and through diversified and modern study 
techniques (new microscopic technologies and molecular 
diagnostic methods), which allow the accumulation of new 
scientific data and the permanent modification of classical 
known notions’ pattern. 

This article is a review of such changes in concept, 
recently introduced in histology, concerning the structure 
or the classification of both different tissues’ parts and 
organs constituents or innovatory biotechniques. 

 New aspects regarding epithelia 
The basement membrane and 
hemidesmosomes – recent findings  
and pathological implications 

Until recently, in traditionally processed tissues for 
transmission electron microscopy (TEM) (including fixation 
in glutaraldehyde or formaldehyde) [1] it was considered 
that the basement membrane (BM) consists of two 
overlapping well-defined layers: the lamina lucida, a 
homogeneous structure, clear in electrons flow, and the 
lamina densa [2], with anchoring filaments, that are extending 
from the hemidesmosomes (HDs) through the lamina lucida 
[1]. The preparation techniques by high-pressure freezing 
(HPF) method and subsequent freeze substitution (FS) 

can preserve a greater tissue integrity and therefore, it has 
been found that lamina lucida is actually absent and 
represents only a fixation artifact. Its visibility depends 
by the organic solvent’s extraction of its components in 
embedding techniques [3]. 

In the skin, cornea, parts of the respiratory and 
gastrointestinal (GI) tracts, bladder and amnion, HDs 
facilitate the anchorage of cytoskeletal intermediate keratin 
filaments to the extracellular matrix (ECM) components 
[4]. Hieda et al. have described two variants of HDs, 
according to their ultrastructural appearance and protein 
components: type I and type II [5]. Type I HDs are found 
in the stratified and pseudostratified epithelia, such as 
epidermis, cornea, and oral mucosa; it consists of five major 
components, belonging to four protein families: integrins 
(α6β4), plakins (plectin and the bullous pemphigoid antigen 
(BPAG) 1 isoform e – BPAG1e, also called BP230), 
collagens (collagen XVII, also called BPAG2 or BP180) 
and tetraspanins (cluster of differentiation (CD)151) [5]. 
Type II HDs are found in simple epithelia, such as intestinal 
epithelium, endothelium, or mammary gland epithelium, 
and lack the two BP antigens (BP230 and BP180), thus 
being formed only by α6β4 (integrins), plectin, and CD151 
(tetraspanins) [5]. 

HDs integrity is of crucial importance in a series of 
inherited or acquired diseases; alteration in structure or 
missing of essential components of HDs result in blistering 
and skin fragility, collectively known as epidermolysis 
bullosa (EB). Different mutations in 16 specific genes, 
that encode fundamental elements of HDs, lead to various 
types of EB. The four major classical types of EB, depending 
on the level where tissue separation occurs in the skin, are 
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EB simplex (tissue separation within the basal keratinocytes 
of epidermis), junctional EB (slit between epidermis and 
dermis in the lamina lucida of the BM), dystrophic EB 
(underneath the lamina densa, involving the anchoring 
fibrils of the papillary dermis) and Kindler EB (mixed skin 
cleavage pattern) [6, 7]. Due to new genes and various 
clinical subtypes of EB reported over the past few years, 
in the latest Consensus reclassification of inherited EB 
report from 2020, the notion of “genetic disorders with 
skin fragility” was introduced. Typical EB disease remains 
the archetype of this concept, and other conditions with skin 
fragility (such as erosive diseases, hyperkeratotic diseases, 
peeling skin syndromes and connective tissue syndromes 
associating to skin fragility) are now indexed as independent 
groups [8]. The diagnostic hallmark of this heterogeneous 
group of diseases is marked by skin fragility, blistering 
and erosions of the skin. In different forms of EB, in 
association with skin damage, there can be tooth, hair and 
nails involvement, ocular abnormalities, and GI, upper 
respiratory and urogenital tracts fragility of the epithelia 
[9]. 

Since the identification of the first constituent of HDs 
and the first ultrastructural description as small electron-
dense domains in the cytoplasmic membrane, much 
information was over the past 2–3 decades reported, 
regarding this tightly-ordered and perfectly designed complex 
of multiproteins. At ultrastructural level, in intact human 
skin, HDs display a particular appearance having a tripartite 
structure, with a centrally located less-dense zone, associated 
with two electron-dense plates: an inner plate, towards the 
cytoplasm, and an outer plate, slightly longer and parallel 
to the inner plate, lying on the plasma membrane of the 
basal keratinocytes. Basal keratinocytes are disposed on 
the basal lamina. Extracellularly, below the basal side of 
these keratinocytes a dense plate was observed, having 
an electron-thin but dense line appearance. The stability 
of the HDs–ECM complex is maintained by the thin 
anchoring filaments (that run from the HDs dense plate, 
pass through the plasma membrane, and insert into the 
lamina densa of the basal lamina) and by the anchoring 
fibrils (type VII collagen molecules arranged into semi-
circular loop structures that encircle dermal collagen fibers 
and other components, providing sustained connection of 
basal lamina to underlying structures) [4]. 

Molecular architecture of HDs organization using super-
resolution microscopy in cultured keratinocytes revealed 
the presence of integrin α6β4, at the core of each HDs. 
Integrin α6β4, a laminin 332 receptor, is a heterodimer 
with α6 and β4 transmembrane subunits. The α6 subunit 
consists of a short intracellular domain, followed by a 
transmembrane domain and a long N-terminal extracellular 
domain. This extracellular domain of integrin α6 exhibits 
binding sites for BP180 and CD151 and prefers laminin 
332 (formerly known as laminin 5, one of the two principal 
components of anchoring filaments, next to the type VII 
collagen). The intracellular interactions of this receptor, 
with plectin 1a (P1a) and BP230 and with the BP180 
transmembrane protein, are mediated by the cytoplasmic 
domain of β4. Integrin β4, rather than running parallel to 
the plasma membrane, was reported as being disposed along 
the keratin filaments [10]. The β4 subunit contains a third 
and a fourth fibronectin type III domains; they bind to the 

BP230, but the fibronectin type III third domain also interacts 
with the cytoplasmic domain of BP180 [11]. BP230 and 
P1a facilitate the connection of the cytoplasmic intermediate 
filaments, assembled from K5 and K14 of the basal 
keratinocytes, to the HDs inner plaque. Also, they link to 
the transmembrane protein complexes of the HDs outer 
plaque, namely α6β4, BP180 and CD151. Spatial distribution 
of BP230 and BP180 revealed that BP230 mediates the 
binding process to keratin, through the close association 
of BP230 C-terminus domain with keratin 14, while the 
extracellular domain of BP180 was located farther from 
the keratin filaments [10]. Mutations in either α6 or β4 
subunits lead to junctional EB, associated with pyloric or 
duodenal atresia, and variable involvement of the skin 
(from mild fragility to death due to severe complications, 
such as electrolyte imbalance, disseminated infections and 
urinary tract involvement) [12]. In the epidermis, laminin 
332 is secreted by the basal keratinocytes, and deposited 
into the ECM; it is a heterotrimer assembled from three 
polypeptide chains (α3, β3, γ2) into a cross shape. Laminin 
332 functions as a catwalk unit linking the basal keratinocytes 
to the subsidiary reticular dermis. The globular domain of 
the α3 subunit of laminin 332 binds to integrin α6β4, while 
β3 subunit connects to collagen VII within the structure 
of the anchoring fibrils, thus ensuring a HD–BM stable 
contact [13]. Integrin α6β4 binds to laminin 332, making 
the fundamental initial step in HDs assembly; this idea is 
supported by the fact that patients having junctional EB 
with pyloric atresia, or generalized junctional EB, display 
mutations in the genes for α6β4 or laminin 332, leading 
to rudimentary HDs [14]. In the next stage in HDs design 
construction, after integrin α6β4 binds to laminin 332, 
follows the coupling between β4 subunit and P1a, thus 
inducing the formation of HDs; the plectin–BP180 interplay, 
that escalates the bondage between the elements of the 
complex integrin α6β4–plectin–BP180 and serves as a 
scaffold for BP230 embodiment [14]. 

Tissue morphogenesis, wound healing and cancer 
metastasis are a variety of physiological and pathological 
processes in which HDs assembly and disassembly, and 
they are modulated by structure–function relationship 
between hemidesmosomal proteins and ECM. In biological 
settings (such as terminal differentiation), the basal 
keratinocytes disassemble their HDs, thus inducing their 
detachment from the BM and displacing themselves into 
the suprabasal layer of the epidermis. Recently published 
research on migrating epidermal keratinocytes displayed 
highly ordered ranges of HDs chevrons, intercalated with 
focal adhesions (FAs) of actin filaments (FAs represent 
another type of ECM contact sites beside HDs). The 
migration follows a regional pattern, that includes assembly 
activity in the front of the cell, and dissolution in the rear 
part of the cell, thus supporting controlled translocation of 
the cell body [15]. For sustaining the directed migration 
of keratinocytes, nascent FAs appear the first, in pairs, 
having an oblique angle to the direction of migration, then 
followed by the accumulation of integrin α6β4 in the spaces 
between FAs. Patterned HDs–FAs chevrons remain 
stationary, without positional changes, with subsequent 
translocation of keratinocytes towards cell’s front, while 
at cell’s rear, old FAs are firstly removed, followed by β4 
accumulation with extracellularly patches formation [16]. 
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Migration, proliferation, and differentiation of 
keratinocytes are fundamental stages of epidermal component 
in wound healing process. Losing both cell–cell adhesion 
and cell–substratum contacts, as well as cytoskeletal 
remodeling of intact keratinocytes from unwounded 
epidermis, facilitates their migration to the provisional matrix 
of the wound. While moving over the surface of the wound 
they deposit new matrix proteins, including laminin 332, 
and remodel the provisional matrix that covers the wound 
bed. After complete epithelization, keratinocytes participate 
in the reconstruction process of the BM, then finally, they 
differentiate and stratify to restore skin barrier function 
[17]. In an in vitro wound healing setting, assessing the 
interplay between adhesion complexes of keratinocytes 
migration process, the disassembly and reorganization of 
HDs and FAs generated intrinsic cellular tension and traction 
forces, with an important role of HDs in counterbalancing 
the FAs and actomyosin contractility [18]. 

Surface epithelia: urothelium’s membranous 
plaques 

Normal urothelium is characterized by the presence 
of membranous plaques at the surface of the superficial 
“umbrella” cells, that marks the terminal differentiation 
of these cells [19]. From functional point of view, those 
membranous plaques are considered either a protection 
mechanism of the epithelium against the urine components, 
or a necessary reserve. From structural point of view, they 
are found in two aspects: (i) rigid and dense areas (12 nm) 
of the plasma membrane, made up of specific proteins, 
the uroplakins, and (ii) subsurface fusiform vesicles [20], 
transporting and delivering the urothelial plaques to the 
apical plasma membrane, in case of urothelium distension 
and increasing size [21]. 

The urothelial plaques are glycosylated inside Golgi 
apparatus, and then post-Golgi progressively formed, passing 
through three maturation steps of vesicles (uroplakin-
positive, immature fusiform and, finally, mature fusiform 
vesicles) [22]. Several proteins are playing a role in the 
vesicular transport of the uroplakins to the lysosomal 
compartment (e.g., Vps33a) [23], or the insertion of the 
uroplakins into the apical surface (e.g., myelin-and-
lymphocyte protein – MAL) [24]. The uroplakin plaques 
are associated with the multivesicular bodies (MVBs) and 
their endocytic degradation in the lysosomes is controlled 
by the sorting nexin (SNX)31. SNX31 is highly specific 
for mature umbrella cells of the urothelium and enables the 
membranes that contain uroplakin to form the intraluminal 
vesicles [25]. The MVBs are suppressing the excessive/ 
wasteful endocytic degradation of uroplakins [26]. 

Glandular epithelia: new classification 

Regarding the morphological division of exocrine 
glandular epithelium, it is considered that the compound 
exocrine glands can also be classified according to the number 
of the lobules they form; thus, there are: (i) unilobulated 
glands, which contain a single lobule and their intralobular 
excretory ducts converge into a single terminal duct, 
opening at the surface (e.g., minor salivary glands) [27]; 
(ii) multilobulated glands, which contain several lobules 
and intralobular excretory ducts; the lobules are separated 
by conjunctive septa, containing interlobular excretory ducts, 

converging into a single terminal duct, opening at the 
surface (e.g., major salivary glands) [28]; (iii) “battalion” 
glands, multilobulated glands, in which each lobule has a 
terminal and independent excretory duct (e.g., lacrimal [29], 
mammary [30] and prostate [31] glands). The epithelia of 
salivary, mammary, and prostate glands share therefore 
many similarities, as they are composed of epithelial acinar 
and ductal cells, myoepithelial cells [32] and neuroendocrine 
cells [31, 33, 34]. Also, in these epithelial tissues, the 
myoepithelial cells are the key cellular participants in 
morphogenesis, maintenance, and repair [35], with similar 
mechanisms of self-renewing and differentiation (e.g., 
overexpression of stromal-derived factor-1alpha – SDF-1α 
or CXCL12α) [32]. 

 New aspects regarding the connective 
tissues: the adipose tissue 

The novel classification of the adipose tissue comprises 
two new types: the beige and the pink variants. Each type 
of adipose tissues (white, brown, beige, and pink) presents 
specific morphological and functional characteristics 
(inflammatory modulation and endocrine function) of their 
adipocytes and immune cells [36]. 

The beige adipocytes are named also bright or brown-
in-white adipocytes. They are located inside white adipose 
tissue, and their cellular structure is similar to that of the 
brown adipocytes [37]. During basal conditions, beige 
adipocytes function like white adipocytes. Still, a specific 
stimulus (e.g., prolonged exposure to cold or caloric 
restriction) could turn the beige adipocytes into brown-like 
ones, a process named “browning” [38–40]. In stimulation 
conditions, a subset of white adipose cells can acquire a 
thermogenic phenotype without sharing its genetic markers 
[41]. The genetic lineage, several molecular markers (e.g., 
uncoupling protein-1 (UCP1), early B-cell factor-2 (EBF2), 
transcription factor PR-domain containing 16 (PRDM16), 
transmembrane protein 26 (TMEM26), CD137, and T-box 1 
(TBX1)), the maintenance and the thermogenic mechanisms 
can identify beige adipocytes among white adipocytes 
[42–47]. 

The beige adipocytes have a different pattern of gene 
expression than white and brown adipocytes [43] and a 
different cellular origin from the classical brown adipocytes 
[48]. A new subtype of beige adipocytes also emerged, 
the g-beige adipocytes, with a distinct development and 
thermogenic program from that of conventional beige 
adipocytes [47]. Recent studies have shown that brown 
adipose tissue can evolve from the beige adipose tissue, 
that has acquired a brown-like phenotype [49, 50]; this 
conversion has beneficial consequences, regarding metabolic 
changes (treating metabolic syndrome [46], obesity [51–
53], type 2 diabetes [38, 50, 54], atherosclerosis, arterial 
hypertension) [48, 55], ageing [56] and cancer micro-
environment [57, 58]. Both brown and beige adipose tissue 
regulate the systemic metabolism and there is a continuous 
physiological crosstalk between the beige adipose tissue 
– the brown adipose tissue – and the muscle [50]. 

The pink adipocytes were more recently described during 
pregnancy and lactation, due to the pink color of breast 
adipose tissue [59, 60]. The pink adipocytes are characterized 
by microvilli at their apical surface, round and large 
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nucleus, abundant cytoplasmic lipid droplets and milk-
containing granules; like all fat cells, they have a well-
developed Golgi apparatus and endoplasmic reticulum 
(ER), but in a more significant percentage than in other 
adipocyte types [53]. 

During pregnancy and lactation, adipocytes have an 
indispensable role of in mammary gland’s epithelium 
expansion, and they are strongly remodeling by 
dedifferentiation to preadipocytes [61, 62]; in this process, 
the hormones released during late pregnancy and lactation 
are considered to be the key regulators [58]. Also, there is 
a homeostasis transfer of lipids between the adipocytes and 
the epithelial alveolar cells [63]. Therefore, some authors 
sustain that pink adipocyte result from the transdifferentiation 
of subcutaneous white adipocytes, in a reversible process, 
called “pinking”, to produce and secrete milk [36, 59, 64]. 
Arguments for this idea would be the pink adipocytes’ 
secretion of milk, leptin [64–66], the 3-phosphoinositide-
dependent protein kinase-1 (PDPK1) peroxisome proliferator-
activated receptor gamma 1 (PPARγ1) expression [67], or 
the E74-like erythroblast transformation specific (ETS) 
transcription factor 5 (ELF5) expression, a transcription 
factor regulator of alveologenesis [68]. 

There is also some evidence supporting the hypothesis 
of pink-brown transdifferentiation and reversible conversion 
of brown adipose cells to myoepithelial cells [36, 59, 69]. 
The differences between mice genetic models used in earlier 
and more recent studies, for tracing the adipocyte lineage, 
can be the cause of the still present disagreements on the 
possibility of adipocyte–epithelial cell transdifferentiation 
[62, 69]. 

 New classification of astrocytes 
Macroglial cells, also called astrocytes, are specialized 

for the structural and functional support of neurons, being 
present in all regions of the central nervous system (CNS); 
inhere they perform two, essential, but different, functions: 
defense, by forming the blood–brain barrier (BBB), and 
maintenance of the homeostasis, by regulating cerebral 
blood flow, neuronal metabolism, and neurotransmitter’ 
secretion [70]. 

Depending on the morphological pattern, at the beginning 
of the 19th century, two major types of astrocytes were 
described by Golgi staining: protoplasmic astrocytes (located 
in the gray matter) and fibrillar astrocytes (located in the 
white matter) [71]. This classification is currently considered 
to be outdated, as new particular types of astrocytes or 
astrocyte subtypes have been identified: e.g., Bergmann 
and Fañanas cells in the cerebellum, Müller glial cells in 
the retina, pituitary cells in the neurohypophysis, interstitial 
cells (ICs) in the epiphysis, tanycytes in the subependymal 
glia, cribrocytes in the optic disc. In addition, two new 
subtypes have been described for primates and humans: 
interlaminar astrocytes and astrocytes with varicose 
extensions [72, 73]. Given that protoplasmic and fibrillar 
astrocytes have been extensively researched and documented, 
we will further describe only the newest identified types 
of astrocytes. 

Veiled astrocytes 

Veiled astrocytes are a particular type of densely arranged 
protoplasmic astrocytes (e.g., in the olfactory bulb or the 

granular layer of the cerebellar cortex). These astrocytes 
consist of a small cell body and short, leaf-like extensions, 
with a substantial surface/volume ratio (20–30 μm2/L). At 
the level of the cerebellum, the extensions of the veiled 
astrocytes surround several granular neurons, in the form 
of a velum (hence the name of veiled astrocytes). At the 
same time, the extensions of these astrocytes surround the 
glomeruli formed by the rosettes of the mossy fibers, the 
terminal buds of the axons of the Golgi neurons and the 
dendrites of the granular cells. The particular arrangement 
of veiled astrocyte extensions allows them to isolate synaptic 
structures and separate groups of mossy fibers that conduct 
different types of information at the cerebellar level [74–76]. 

Gömöri-positive astrocytes 

Gömöri-positive astrocytes are also a specific subtype 
of protoplasmic astrocytes. Their location is in the arched 
nucleus of the hypothalamus and in the hippocampus. The 
cytoplasm has numerous inclusions or granules, which due 
to the high content in iron (Fe) are intensely highlighted 
in the Gömöri Chrome Alum Hematoxylin staining. The 
granules, formed by remnants of degenerated mitochondria 
and ingested by lysosomes, occur because of oxidative stress 
processes. These astrocytes play an important role in 
providing specific metabolic needs for hypothalamic neurons 
[77, 78]. 

Bergmann astrocytes 

Bergmann astrocytes are located in the middle layer 
of the cerebellar cortex, also called the Purkinje cell layer. 
These astrocytes have 3–6 extensions, which extend and 
cross the molecular layer to the pial membrane. These 
extensions are strongly branched, with a large area relative 
to volume (≈20 μm–1) and cover up to 6000–8000 synapses 
formed by the terminations of granular neurons [79]. 
There are two subtypes: bifurcated cells and “broom” 
cells. Having a very small cell body (≈15 μm in diameter), 
Bergmann astrocytes are difficult to observe in standard 
sections stained with Hematoxylin–Eosin (HE). Multiple 
cell extensions serve as a guide in the migration process 
of granular neurons, from the outer layer of the cerebellar 
cortex to the inner layer, being a concrete proof of the neuro-
astrocyte evolutionary link; the small neurons in the outer 
granular layer descend along the Bergmann processes to 
reach their final destination, the inner granular layer. They 
are hypoxia-resistant cells and can change their mitotic 
activity (they can double or even triple their number, in 
cerebellar ischemic disorders, that destroy Purkinje cells 
located in the same layer). Secondary, reactive gliosis in an 
area of total infarction allows a retrospective assessment 
of the degree of hypoxic injury [80]. 

Fañanas astrocytes 

Fañanas astrocytes are located in the molecular layer of 
the cerebellum. They are small cells with numerous, short, 
varicose extensions, with a defining “wedge” appearance; 
the expansions have a parallel path with the extensions of 
Bergmann cells, without contributing to the formation of 
the glia limitans [81]. 

Two particular types of astrocytes, characteristic of 
the human species, were recently described. Studies on 
nerve tissue, taken from the human adult temporal lobe, 
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identified four morphological subclasses glial fibrillary acidic 
protein-positive (GFAP+): densely packed interlaminar 
astrocytes (in layer 1), protoplasmic astrocytes (in layers 
2–4), astrocytes with varicose projections (in layers 5–6), 
all located in the cerebral cortex, and fibrillar astrocytes 
located in the cerebral white matter. Similar examinations 
on nerve tissue, taken from the brain of chimpanzees, 
identified the same four types of astrocytes, but with a 
lower cell complexity than in the human species [82, 83]. 

Astrocytes with varicose projections 

Astrocytes with varicose projections exist only in the 
human and chimpanzees’ brain. They are characterized by 
one to five very long (1 mm) and unbranched primary 
cytoplasmic extensions, which extend in all directions in 
the deep cerebral cortical layers (cortical layers 5 and 6). 
The primary cytoplasmic extensions, intensely GFAP+, are 
straighter and longer, compared to those of protoplasmic 
astrocytes that are more wavy and strongly branched. 
Astrocyte extensions with varicose projections end in the 
surrounding neuropil or on the surface of the capillaries. 
These extensions may enter the range of extensions of 
neighboring astrocytes, but their function is unknown. 
On the surface of the extensions, these astrocytes have 
numerous varicose veins arranged evenly and spaced at a 
distance of 10 μm, an aspect that also gives the name of 
these cells [84]. 

Interlaminar astrocytes 

Interlaminar astrocytes were first described by Carlo 
Martinotti & William Andriezen as “caudate caudal fibrous 
cells” [85], and by Gustav Retzius, as small cells (located 
in the superficial cortical layers), but with long extensions 
(reaching to the deep layers) [86]. Many decades later, it 
was found that these astroglial cells exist only in the brains 
of higher primates and in humans [82]. 

Interlaminar astrocytes appear postnatal and are thought 
to come from some astroglial precursors and not directly 
from the radial glia [87]. Human interlaminar astrocytes 
are spherical cells, with a small cell body (≈10 μm), located 
in the supragranular layer (or layer 1) of the cortex. They 
have several short extensions, arranged parallel to each other 
“in palisade”. One or two extensions are very long (up to 
1 mm), penetrate the cortex, and end in layers 2–4, crossing 
the domains of protoplasmic astrocytes. Interlaminar 
astrocyte’ extensions often have a spiral appearance, and 
they terminate in the neuropil and occasionally on the 
blood capillaries. The terminal portions of cell extensions 
(similar to axonal terminal buttons) are specific structures, 
known as “terminal masses” or “terminal bulbs”, that contain 
mitochondria [84]. Interlaminar astrocytes are specifically 
stained with anti-CD44 antibodies. The specific function 
of these cells remains unknown, although they may play 
a key role in connecting distant cells and integrating cell 
groups into larger structures [88]. 

Still, a better understanding of normal brain function 
is needed, to reveal the astrocytes’ heterogeneity and their 
response to injury and disease [89]. 

 Blood–brain barrier: factors secreted  
by astrocytes and ways of molecular 
transport 

BBB is a complex vascular structure, which regulates 

the transport of molecules to and from the CNS, thus strictly 
controlling the chemical composition of the neuronal 
microenvironment [90]. At the CNS level, the BBB forms 
neurovascular units, schematically represented by three 
components: capillary, astrocyte, and neuron [91]. 

Astrocytes are an important element in the structure 
of the BBB, forming a bridge that connects over 80% of 
the blood vessels of the CNS with neurons. Astrocytes 
are cells with polarized extensions that, on the one hand 
surround the capillaries, and on the other hand the neurons; 
consecutively, a double signaling pathway is created 
between vessels and neurons, with the role of adapting the 
blood flow to the neural activity. Through signals received 
from neurons or endothelial cells (ECs) of blood vessels, 
astrocytes secrete numerous factors that influence the 
functionality of the BBB [91–93]. 

Within the neurovascular unit, the factors secreted by 
astrocytes, through paracrine interactions with pericytes and 
ECs, maintain the BBB and contribute to the regulation of 
blood flow. 

Recent studies mention the sonic hedgehog (SHh) factor, 
a component of the hedgehog (Hh) signaling cascade, as 
having a role in modulating EC function, both during 
barrier development, and in adulthood. ECs have the Hh 
patched-1 receptor on the surface, so that, by activating the 
Hh signaling cascade, the expression of junctional proteins 
is induced; this determines the characteristic phenotype 
of the endothelium in the structure of the BBB [94]. 

Other factors secreted by astrocytes are vascular 
endothelial growth factor (VEGF), angiopoietins (Ang1 
and Ang2) and transforming growth factor-beta (TGF-β), 
factors involved in vascular growth. 

During development, VEGF is necessary for the formation, 
remodeling, and maintenance of embryological blood vessels; 
in the early stages of development, the main source of VEGF 
is radial glia. In adulthood, VEGF reduces the stability of 
the BBB in inflammatory processes [92]. 

Ang1 is involved in the process of differentiating the 
BBB, by promoting angiogenesis and reducing endothelial 
permeability. Ang2 is involved in the destruction of the 
BBB in trauma and inflammatory processes [94]. 

TGF-β secreted by astrocytes and ECs in the CNS has 
the role of inhibiting leukocyte transmigration through 
the endothelium; yet recent research concludes that it is 
difficult to establish the exact role of this factor in the 
physiology of the BBB [94]. 

Another factor secreted by astrocytes is the angiotensin-
converting enzyme-1 (ACE-1). The role of ACE-1 is to 
convert angiotensin I into angiotensin II, that acts on 
angiotensin receptors of ECs in the structure of the BBB. 
The effect of this angiotensin II–receptor complex is 
vasoconstriction, reducing barrier permeability and stabilizing 
the function of junctional proteins [94]. 

A recent study admits that astrocytes play an essential 
role in regulating the BBB, but it is difficult to define the 
quantum of their involvement in specific physiological and 
pathological processes [93]. 

BBB is difficult to be penetrated. This phenomenon has 
huge consequences on therapy. Recent data points to some 
ways, by which molecules can attend the brain surface. 
Nonetheless, the effectiveness of transport policy is 
insufficient. The question of how to overcome transport 
constraints and develop a fresh mode of transport is a new 
one. 
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The bulk-phase/fluid-phase transcytosis techniques (FMT) 
can transport across the BBB a few soluble plasma molecules 
at random (e.g., albumin or immunoglobulin G’s transferrin). 
This is due to the presence of high-density clathrin-coated 
vesicles in ECs, which negatively inhibit charged ligands 
from passing through FMT. Sinking into the latherin-coated 
vesicles of the cellular membrane allows the transport of 
parts of molecules [95]. Based on the transport mechanism, 
the process is categorized as receptor-mediated transcytosis 
(RMT) or adsorptive-mediated transcytosis (AMT). 

Nanoparticles (NPs) can also be carried across the BBB 
through carrier-mediated transcytosis (CMT), often used 
to transfer large molecules, like glucose and acids. 

Additional mechanisms include the paracellular aqueous 
pathway, cell-mediated transcytosis, transcellular lipophilic 
pathway, and efflux pumps. 

Receptor-mediated transcytosis 

Specific BBB receptors that transport endogenous 
polymers based on adenosine triphosphate (ATP) hydrolysis 
are used in this process. RMT is characterized by a high 
level of specificity, affinity, and energy dependence [95]. 
According to the researchers, among the few peptides and 
proteins that may pass the BBB, can be counted insulin-
like growth factors (GFs), Fe–transferrin, insulin, low density 
lipoproteins and amyloid proteins. Large chemicals can 
also pass the BBB through the RMT, according to a growing 
number of studies in recent years. The transferrin-coated 
polyester NPs, (poly(D,L-lactide-co-glycolide), can improve 
cell surface adhesion and endocytosis, according to research 
into the transferrin receptor [96]. Carbon nanospheres, 
large particles with 100 to 500 nm diameter, have been 
demonstrated to penetrate the BBB via clathrin-mediated 
endocytosis [97]. 

Adsorptive-mediated transcytosis 

Transport across BBB is facilitated by the attraction 
between the NPs’ positive charge and the EC membranes’ 
negative charge. However, AMT has some disadvantages, 
as poorer affinity, specificity, and targeting capabilities. 
These limitations restraint AMT’s practical applicability. 
Few cell-penetrating peptides and cationic proteins are 
transported by AMT [98]. Those materials, however, can 
mix with a wide range of cargos, and NPs might help AMT 
deliver medications more efficiently. The bovine serum 
albumin (BSA) NPs coupled with poly(ethylene glycol)–
poly(lactide) can traverse the BBB via AMT with 7.76-
fold increased permeability following cationization (cationic 
BSA (CBSA) NPs) [99]. The surface density of CBSA NPs 
may impact the bridging of the BBB by CBSA NPs in 
AMT. It is thought that CBSA NPs cross the BBB via AMT, 
by first connecting with the negative charge of BBB’s ECs. 
These findings improved AMT’s potential for translocation 
over the BBB. 

Carrier-mediated transcytosis 

Multiple carrier proteins have been discovered in ECs 
that can carry amino acids, nucleic acids, glucose, and other 
essential nutrients across blood capillaries to brain tissue. 
The substrate specificity of CMT carriers is really significant, 
meaning they exclusively connect with specific endogenous 
molecules. NPs should resemble the chemical that will be 

carried over the BBB via CMT. Glucose transporter proteins 
(GLUTs) are the most well-known carriers. The membranes 
of mammalian neurocytes and brain capillary endothelium 
contain a lot of GLUT1 and GLUT3 [100]. In the mammalian 
brain, GLUT1 is the primary glucose transporter. Researchers 
devised a method that takes advantage of GLUT1 transport, 
to loading glucose onto the liposome surface [101]. Newly 
modified glucosylated (2-deoxy-D-glucose (D-Glu)) NPs 
loaded with Paclitaxel (PTX) have a better ability to 
penetrate the BBB and are less toxic to the cells than non-
glucosylated NPs loaded with PTX. In chemotherapy of 
multiform glioblastoma, D-Glu NPs has emerged as a viable 
targeted delivery system due to its ability to improve 
BBB penetration (GLUT-mediated transcytosis) and drug 
accumulation (GLUT-mediated endocytosis) [102]. 

 Current state of knowledge regarding the 
origin and classification of human dental 
cementum 

Root cementum has given rise to a number of 
controversies related to origin, classification and structure. 
In fact, it is the most publicized mineralized tissue in our 
body. Still, a lot of data on its regard was obtained from 
the laboratory animals, information that is not actually in 
accordance with the human structural reality [103, 104]. This 
brief presentation refers to the current state of knowledge 
regarding part of the histology of human dental cementum 
only. 

Root cementum was highlighted by optical microscopy 
at the beginning of the 19th century (1835) by Frankel & 
Ratskov, its presence being important to be distinguished 
from the coronal cementum, that occurs in some animals, 
e.g., horse, sheep, rabbit, and guinea pig [103, 105]. 

It is a hard, mineralized tissue, a thin strip, that covers 
the dentin of the root. The variance in chemical composition 
during the mineralization process is due to diet and other 
environmental influences [106]. Human cementum has a 
calcium (Ca)/phosphorus (P) ratio of 1.51, a Ca/zinc (Zn) 
ratio of 595–990 and a mineral density of 1240–1340 mg/cm3 
[107]. Immunohistochemistry (IHC) has proven a small 
number of ECM glycoproteins: dentin matrix protein 1 
(DMP1), bone sialoprotein (BSP), osteopontin (OPN), all 
in connection with tissues that possess a mineralization 
capacity [108]. Potential biomarkers for human cementum 
were identified in cementocytes: superoxide dismutase 3 
(SOD3) and serpin family A member 1 (SERFINF1), 
considered to be indigenous products [109]. 

Functionally, cementum is part of the periodontium, 
having a role of protection and regeneration of periodontal 
tissues [103, 104]. 

The origin of human cementum is controversial [103]. 
There were two hypotheses regarding the nature of root 
cementum, the mesenchymal one, in which cementoblasts 
derive from both the fibroblasts of the follicular sac or of 
the desmodont, and the epithelial one, in which cementoblasts 
arise from the epithelial cells of the Hertwig sheath [103]. 

It is worth emphasizing that the epithelial theory, which 
has gained a lot of momentum in the last two decades, is 
supported today by a very small number of researchers 
and practically it is disproved [103]. Yet, HERS-C2, a 
cell line obtained from Hertwig’s epithelial root sheath 
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(HERS), can differentiate into cementoblasts via the process 
of epithelial–mesenchymal transition and generate cementum-
like tissue in vivo (immunohistochemically positive for the 
three ECM glycoproteins discussed above) [110]. 

The classification of cementum is also highly controversial 
[103]. The most complete is the Schroeder classification, 
which uses three criteria: (i) the submission time (primary/ 
secondary cementum), (ii) the presence of cells (acellular/ 
cellular cementum) and (iii) the source of its collagen fibers 
(intrinsic/extrinsic fibers cementum). 

Historically, the cementum has been classified into two 
major types: acellular variant, in the superficial third, and 
cellular variant, in the deep third [103, 104]. Over time, 
these two types were reconfigured and subdivided according 
to the structural identification of new elements, resulting 
in the description of 11 classes of cementum [103]. 

The first three types of cementum are the most important 
and correspond to the old historical classes of acellular and 
cellular cementum. These are: acellular extrinsic fiber 
cementum (AEFC), cellular intrinsic fiber cementum 
(CIFC) and cellular mixed stratified cementum (CMSC). 
In addition to these and their subtypes, there are other 
varieties of cementum, more or less controversial [103]. 

• AEFC contains dense extrinsic fibers, without 
cementocytes, and corresponds to the classical acellular 
cementum [103]. According to IHC, the ECM glycoproteins, 
BSP and OPN, revealed a very strong pattern in the thin 
AEFC layer. Functionally, the acellular cementum binds 
the periodontal ligament and thus, it participates to the 
stabilization of the tooth in the dental alveolus [108]. Its 
subtype, the acellular intrinsic fiber cementum (AIFC), is 
challenged by certain researchers! [103]. 

• CIFC contains intrinsic fibers and cementocytes [103]. 
BSP revealed a diffuse localization; OPN is present in CIFC 
too, providing a good contrast with the underlying dentin 
[108]. Its subtype, the cellular extrinsic fiber cementum 
(CEFC), has not been distinctively classified, but more, after 
the amount of the extrinsic fibers: CIFC rich in extrinsic 
fibers and CIFC poor in extrinsic fibers [103]. 

• CMSC corresponds to classical cellular cementum; 
it contains layered CIFC (Salter incremental lines) and 
AEFC [103]. It is present on the apical roots and the 
furcation area [111]. The localization of the three ECM 
glycoproteins is different: DMP1 is found only in the matrix 
at the cementum–dentin junction (CDJ), and BSP and OPN 
through the whole cementum stratum [108]. The role of 
DMP1 here is not completely understood: it is possible 
that it plays a local function at CDJ, or in the process of 
cementum development [108]. There is a CMSC’ subtype, 
the CMFC; it is fast formed, with less mineralized fibers; 
it contains extrinsic and intrinsic fibers and cementocytes 
[103]. 

• Acellular afibrillar cementum (AAC): it does not 
contain fibers or cells. It is a notion under debate! [103, 
111]. 

• Intermediate cementum: it also represents a notion 
that should be reconsidered, being more probably part of 
the dentin! [103]. 

• Aberrant cementum: coronary cementum with 
cementicles [111]. 

Acellular extrinsic fiber cementum 

AEFC covers 1/3 of the cervical surface; it is made up 
of collagen fibers and contains completely mineralized non-
collagenous proteins [103]. According to IHC staining pattern, 
both BSP and OPN are locally highly concentrated, possibly 
playing a role in cementum development [108]. 

The extrinsic fibers come from those of the periodontal 
ligament; they are thick, branched, and have a perpendicular 
disposition to the dentin. It features incremental Salter lines, 
due to the rhythmic deposition process, intensely stained 
with HE [103, 104]. 

In its structure, the controversy implies the CDJ. 80% 
of the authors consider this junction made from the inter-
digitations between the cementum extrinsic fibers and 
those of the dentin matrix; 20% of the authors discuss the 
presence of an amorphous material, formed from non-
collagenous proteins with rare fibrils, that serve as a binder 
between dentin and cementum [103]. 

Acellular intrinsic fiber cementum 

It represents a contested variant of acellular cementum; 
it occurs at the end of cementogenesis, in the apical zone and 
in the interradicular region. It does not show cementocytes; 
the cementoblasts are withdrawing among the desmodontal 
cells. Collagen fibers are intrinsic. It probably plays an 
adaptive role [103]. 

Acellular afibrillar cementum 

It represents an isolated area, just below the enamel–
cementum junction; also, it can partially cover the cervical 
enamel. It is made up of non-collagenous proteins similar 
to those from AEFC. It is a controversial type in origin 
and function. The origin resides in either: cementoblasts, 
or Hertwig epithelial sheath cells, or it is just a precipitate 
from tissue fluid (serum). Its function is generally unknown. 
In case that it is originating from cementoblasts, its role 
must be of protection, the deposition of cementum by the 
cementoblasts adding strength to the reduced layer of enamel 
[103]. 

Cellular mixed stratified cementum 

It forms 2/3 of the root, being located in the apical region 
and the furcation zone of the tooth; it contains CIFC, layered 
by incremental lines and occasionally some AEFC. CIFC 
contains both intrinsic and extrinsic fibers. The content 
in extrinsic fibers varies from individual to individual, 
depending on their density; thus, the following varieties 
can be distinguished [103]: 

▪ CIFC rich in extrinsic fibers is an inconsistent and 
controversial structure! The extrinsic fibers are surrounded 
by intrinsic fibers and are thicker than those in AEFC; they 
present a central unmineralized core, surrounded by a highly 
mineralized area. 

▪ CIFC low in extrinsic fibers. 
▪ CIFC without extrinsic fibers (pure CIFC) is 

characterized by the presence of lamellae, obtained by the 
longitudinal and transverse arrangement of collagen fibrils: 
alternation of clear and dark lines (2.5 μm diameter), more 
numerous towards the dentin. 

Cellular mixed cementum 

It is a variant of the CMSC, but faster formed, with less 
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mineralized fibers [103]. It covers the root surface and 
anchors the periodontal ligament, and it is very sensitive 
to disturbances in the phosphate/pyrophosphate (Pi/Ppi) 
ratio [112]. 

The origin of collagen fibers is twofold: extrinsic 
(desmodontal) and intrinsic (cementoblasts). There are 
differences between the fibers: the extrinsic ones are ovoid/ 
round in shape and thicker (5–7 μm in diameter); the intrinsic 
fibers are more delicate, and they are smaller (1–2 μm in 
diameter) and numerically reduced. Intrinsic and extrinsic 
fibers form a complex model at almost right angles with 
different orientations. Regarding the cells from its structure, 
the cementocytes are phosphate-responsive cells, able to 
regulate cementum homeostasis. They express sclerostin, 
SERFINF1, DMP1, SOD3 and E11/gp38/podoplanin, but 
no markers for odontoblasts [109, 113, 114]. 

Intermediate cementum 

It is the most controversial type of cementum, being 
regarded as an overlapping of notions. The denomination 
should be reconsidered to prevent further confusion! 
Currently, it consists of the Hopewell–Smith hyaline layer 
in the AEFC region and Bencze intermediate cementum in 
the CMSC region. It is formed by a thin cementum strip 
between the dentin and the AEFC/CMSC, respectively. 
It occurs at the beginning of cementogenesis. It covers 
the dentin mantle of the molars and premolars. Also, its 
origin is controversial. In 90% it is considered as part of 
the dentin (the observed lacunae are dilated dentinal tubules 
or dilated odontoblastic processes, in continuity with 
typical dentinal tubules); still, there are authors that take 
into consideration an enamel origin: an enamel like tissue 
secreted by the cells of the Hertwig sheath; this theory is 
currently disproved, data being obtained from rodents! 
[103]. 

Possibly, the role of the intermediate cementum is to 
seal the sensitive root dentin. 

Aberrant cementum 

It refers to coronal cementum or cementicles [111]. 
The coronal cementum characterizes teeth with imperfect 

amelogenesis or early degeneration of the adamantine 
organ (it causes the differentiation of follicular sac cells 
into cementoblasts with coronary cementogenesis). 

The cementicles are free or attached to root cementum. 
They are obtained either by the mineralization of Mallasez’s 
epithelial remains or by the mineralization of degenerate 
desmodontal vessels. 

Despite all the progress in understanding the cementum 
and its developmental biology, additional fundamental 
questions remain, including: the factors directing cementum 
formation, the origin of the cementoblasts, potential functions 
for cementocytes, and prospects for directing cementum 
regeneration [115]. 

We can conclude that cementum is a highly unique 
mineralized tissue, whose controversial structure may 
possibly benefit from dental tissue engineering and the 
development of new biotechnologies. 

 The tubarial salivary glands – a new type 
of salivary gland? 

The tubarial salivary glands appear to be the fourth pair 

of macroscopic salivary glands; they are located between 
the nasal cavity and the neck, in the posterolateral walls of 
the nasopharynx on the medial side of the torus tubarius. 
Their name came from their location [116]. 

These glands were described using positron emission 
tomography (PET) and computed tomography (CT), with 
radiolabeled ligands to the prostate-specific membrane 
antigen (PSMA PET/CT) [116], as structures with a cranio-
caudal length, with a median value of 3.3 cm (2.2–4.6 cm) 
in females (only six patients studied) and of 3.9 cm (1.0–
5.7 cm) in males (99 cases studied) [117]. Several ducts 
open on the medial side of the torus tubarius, towards the 
nasopharyngeal wall [116]. Yet, the recognition of the 
tubarial salivary glands as individual anatomical organs 
is still under debate due to three elements: (i) the previous 
anatomical description of clusters of glands around the 
auditory tube’s mucosa and in the regions adjacent to the 
torus tubarius [118, 119]; (ii) the previous description of 
salivary glands cancers at the nasopharynx level [120]; and 
(iii) the issue of gender representation (sexual dimorphism) 
[121]. 

It has been hypothesized that they may contain many 
mucous PSMA-positive acini, with a physiological role 
in the lubrication of the nasopharynx and oropharynx, as 
well as in swallowing. Consistently with a reduced number 
of serous acini, there was no amylase expression in the 
gland cells [116]. 

As clinical relevance, during an intensity-modulated 
radiotherapy for head and neck cancer, a radiotherapy mean 
dose can have significant local toxicity, expressed by 
dysphagia and xerostomia [122]. 

 Activation and cross-talking of hepatic 
stellate cells, key players, and prognostic 
markers in hepatic diseases 

The hepatic stellate cells (HSCs), initially named the 
Ito cells, are representing approximately 15% of the total 
resident cells and 1/3 of the nonparenchymal cells, in the 
normal human liver [123]. 

The HSCs are located inside the Disse space, a virtual, 
permeable, subendothelial connective tissue space delimitated 
by the basolateral surface of hepatocytes and the anti-luminal 
side of the sinusoidal ECs layer [123, 124]. They are  
the main perisinusoidal cellular type [125]. In the Disse 
space occurs the exchange of biomolecules between the 
hepatocytes, the portal blood flow from the GI tract, and 
many other cells located at this level [126]. 

The HSC origin is both mesodermic and endodermic, 
with characteristics of resident fibroblasts in the stromal 
matrix and pericytes attached to capillaries [123, 127]. 
They are mainly considered as pericytes, located in the 
perisinusoidal Disse space [128]. 

Morphogenetically, the HSCs are involved in growth 
and differentiation of all the hepatic parenchymal cells 
and in the liver regeneration (they are members of the 
hepatic progenitor cell’ niche and they are recruited in the 
regeneration process) [129]. 

In healthy liver, the HSCs have an important involvement 
in homeostasis and lipidic metabolism, being a lipid-storing 
cell [125], that store and control the release of the retinol 
and vitamin A from their cytoplasmic lipid droplets [128] 
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and synthesize some lipoproteins. They also contribute to 
liver immune system, to xenobiotic metabolism, to pH 
regulation and to oxidant stress response [127]. 

All types of liver pathology activate the regenerative role 
of HSCs. It is well documented the HSCs involvement in 
liver fibrosis [130], viral hepatitis [131], liver tumor micro-
environment and cancer generation and arrest [132]. In 
the space of Disse of the fibrogenic liver, quiescent HSCs 
are activated and transdifferentiated into myofibroblasts, 
whose secretion accumulates ECM components that form 
scar tissue [126]. The liver fibrosis and disease progression 
processes depend on the dynamic cell-to-cell communication 
among the hepatic cellular types, through activation of novel 
pathways and their messengers, and through receptors that 
translate information into cellular pathophysiology and 
fate [133]. These very intricate and dynamic cell-to-cell 
communication mechanisms include autophagy [134], 
ER stress [131], oxidative stress, retinol and cholesterol 
metabolism, epigenetics, and receptor-mediated signals 
[123, 135]. 

Activated HSCs are interacting with other elements, 
such as: injured epithelial cells (hepatocytes and 
cholangiocytes) [136], altered components of ECM (ECM 
proteins progressively stored in Disse space) [137], immune 
regulatory cells (through paracrine regulation of Kupffer 
macrophages [138], T-helper 17 (Th17) cells [139], γδ T-
cells [140], B-cells [141], natural killer (NK) cells [142], 
and with the other surrounding hepatic cell types (such as 
sinusoidal ECs [143] or hepatic oval progenitor cells) 
[129]. Other factors are mitigating the HSCs activation: 
the enteric microbiome [144], the chronic infection by 
hepatotropic viruses [145] and/or the co-infection with 
human immunodeficiency virus (HIV) [146]. 

The activation and crosstalk of the HSCs induce changes 
in other communicating/interacting cells, and involve the 
production of GFs, and cytokines with autocrine and paracrine 
functions – substances which promote lipophagy, cell 
proliferation and fibrogenesis [134]. In activated HSCs, 
their homeostatic function is dysregulated, and they obtain 
energy by enhanced lipophagy of vitamin A-storing lipid 
droplets and depletion of the vitamin A stores [134]. 

Activated HSCs contribute to hepatocellular carcinoma 
(HCC) development by promoting fibrogenesis and 
inflammation and by modulating tumor microenvironment 
[147]. Therefore, HSCs and their cellular crosstalk mediators, 
such as fibroblast growth factor 9 (FGF9) [147, 148], 
SDF-1 protein [149], TGF-β [125], PDGF-α [150], micro-
ribonucleic acids (microRNAs)’ expression [151] and the 
extracellular vesicles [152], can be used as prognostic 
biomarkers in chronic fibrotic processes and in HCC. 

With the aid of the newly experimental methods (e.g., 
multi-cell type and/or three-dimensional (3D) cell culture, 
or animal-based models [153, 154]), the complex HSC’s 
signaling is still under study. Deciphering the regulation 
of HSC activation promises remarkable possibilities for 
novel human clinical therapies, with successful long-term 
results. 

 Kidney interstitium – a new insight of 
resident fibroblasts 

The renal interstitium is situated between the BM of 
the renal tubules and vessels, having several functions: to 

support the elements of the renal parenchyma, to secrete 
hormones or other substances (erythropoietin, renin, 
adenosine), to mediate the exchange processes between 
the tubules and vessels, maintaining homeostasis, to protect 
against anemia and to regulate the inflammatory responses 
[155–158]. 

The renal interstitium is divided into different 
compartments, corresponding to the cortex and medulla. 
The cortical interstitium represents about 10% of the human 
cortex volume [156], while in the deeper part of the medulla, 
surrounding the renal papilla, the interstitium volume can 
increase up to 30–40% of the renal medullary volume [155, 
156]. The cortical interstitium contains different regions: 
between the renal tubules (peritubular interstitium), 
between the arteries (periarterial interstitium) and the 
mesangium [159]. 

The renal interstitium contains a loose ECM, interstitial 
fluid, and different cell types, such as fibroblasts, mono-
nuclear immune cells (macrophages, antigen-presenting 
dendritic cells) and perivascular cells or pericytes (mostly 
in the medulla) [155–158, 160]. 

A lot of differences were described between the cortical 
and medullary interstitium, regarding the interstitial volume, 
the histological constituents, and the endocrine synthesis 
function [156]. 

Resident fibroblasts in the renal interstitium, also 
called type 1 ICs of the kidney, are stellate cells, with long 
cytoplasmic processes. The cytoplasm contains an important 
protein synthesis apparatus: rough ER, free ribosomes, as 
well as Golgi complexes, mitochondria, lysosomes and a 
lot of microfilament bundles and microtubules. Fibroblasts 
are involved in the synthesis of ECM components (type 
I, III, VI collagen fibers in the matrix, collagen IV and V 
in the BM, ground substance constituents) and several 
hormones [157, 161]. 

Cortex 

In the cortex, the peritubular interstitium is a narrow 
space found between the renal corpuscles or glomeruli, 
tubules, and capillaries, whereas the periarterial interstitium 
is wider, located between the renal arteries and containing 
the lymphatic vessels [156]. 

The cortical peritubular fibroblasts (cortical type 1 ICs) 
represent the major population of ICs, having similar 
characteristics as fibroblasts in other organs [157, 161]. 
Their long cytoplasmic processes contain microfilaments 
and dense plaques [161], which are in contact to the BM 
of the renal tubules, capillaries, and Bowman capsule. 
Moreover, there are junctional complexes that connect the 
fibroblast extensions, thus, forming a continuous network 
that support the renal parenchyma and maintain the 3D 
architecture of the renal tissue [157, 158, 161]. All these 
connections may suggest that the intercellular communication 
between interstitial fibroblasts, epithelial tubular cells 
and ECs are mediated not only by paracrine factors or 
exosomes, but also by mechanical forces [157, 160]. As 
a result, fibroblasts integrate all these cellular responses, 
being key participants in different physiological and 
pathological processes [157]. 

In healthy kidney, occasionally, cortical fibroblasts 
accumulate a few lipid droplets. 

Different subpopulations of cortical fibroblasts were 
described, according to their origin, morphological 
characteristics, and functions [157]. 
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The ecto-5’-nucleotidase (ecto-5’-NT) enzyme or CD73, 
that converts extracellular nucleotides to adenosine, is 
expressed in the plasma membrane of cortical peritubular 
fibroblasts, but not in fibroblasts of other compartments 
of the renal interstitium (periarterial connective tissue, 
medullary interstitium) [157]. The renal adenosine production 
plays an important role in controlling the glomerular 
filtration (due to the constriction of afferent arteriole), as 
well as, in the modulation of the inflammatory responses 
[156, 157, 162, 163]. 

A subpopulation of cortical peritubular fibroblasts, 
which are ecto-5’-NT-positive peritubular fibroblasts, is 
responsible for erythropoietin (EPO) production in the 
kidney, a glycoprotein hormone that regulates hematopoiesis, 
inducing proliferation and differentiation of erythroid 
progenitors [156, 157, 161, 163, 164]. The kidney is the 
main site of EPO synthesis [156]. In healthy kidney, EPO 
is produced in response to hypoxic insults, to maintain 
homeostasis [156, 158]. An interesting fact is that Ito cells 
in the liver, which also produce EPO, are positive for ecto-
5’-NT, as well [157]. 

Renin, a hormone secreted by juxtaglomerular cells, may 
be produced by some cortical fibroblasts, which are located 
nearby juxtaglomerular cells, but also by perivascular cells 
(pericytes) in kidney diseases [157]. 

The phenotype of cortical fibroblasts may change in 
different pathological conditions. 

Medullary interstitium 

Medullary fibroblasts (medullary type I ICs or lipid-
laden type I ICs), resemble the cortical fibroblasts and 
they have structural relations to medullary renal tubules and 
vessels, forming a continuous network and providing a local 
structural support. The connection between medullary 
fibroblasts and the BM of the thin loops of Henle and vasa 
recta are very well observed at the electron microscopy, 
but the contact with the collecting ducts is rarely noticed. 
They increase in number in the deeper part of the medulla 
and are often named renomedullary ICs. 

Unlike the cortical fibroblasts, the lipid-laden type I 
ICs do not secrete EPO and adenosine, but they have a high 
content of lipid droplets, that vary in size and number, 
and almost fill the whole cell [156, 157]. 

Renomedullary ICs have a characteristic arrangement, 
in rows, perpendicular to the tubules and vessels, connecting 
all these structures like the rungs of a ladder. 

Besides their role in ECM production, renomedullary 
ICs are an important site for prostaglandin E2 (PGE2) 
synthesis, being a mediator of inflammatory responses [158]. 
The lipid droplets within the cytoplasm represent the 
precursors for PGs secretion. Additionally, these medullary 
interstitial type I cells have endocrine antihypertensive 
functions, secreting medullipin I, which is converted to 
medullipin II in the liver. 

Recent studies revealed that fibroblast subpopulations 
may have different origin. Even though usually fibroblasts 
are considered to be derived from mesenchymal cells in 
classical studies, new data suggest that EPO-secreting 
fibroblasts may have a neural crest origin, from myelin 
protein zero (P0)-Cre lineage-labeled cells, whereas the 
renin-produced fibroblasts derive from forkhead box D1 
(FoxD1) mesenchymal cell progenitor cells [156–158, 

165]. In addition, some authors have shown that almost 
98% of all cortical fibroblasts originate from neural crest 
[158, 165, 166]. 

The literature related to type I ICs in healthy kidney 
is less consistent, but there are a lot of studies that have 
examined their involvement in kidney diseases, especially 
their contribution to renal interstitial fibrosis development 
[156, 160]. 

During chronic kidney disease (CKD), resident fibroblasts 
may contribute to development of the fibrotic process, 
being also involved in regeneration of the damaged renal 
tubular epithelium and in inflammatory responses [158, 
166]. Besides, dysfunctional fibroblasts lose the role in 
maintenance the organ architecture and detach from the 
BM of the capillaries. Therefore, peritubular capillary is 
no more structurally stable, they become fragile and rare, 
leading to hypoxia, which amplify the pathological condition 
[166]. 

In a severe renal fibrosis, the interstitium may occupy 
up to 60% of the total kidney volume [3, 9], with increasing 
numbers of ECM-producing fibroblasts (and also renin-
producing cells) and accumulation of excessive ECM [155–
158]. Increased number of ecto-5’-NT-positive peritubular 
fibroblasts lead to high concentrations of adenosine in 
chronically injured kidney, thus, contributing to the 
vasoconstriction of the afferent arteriole and a lower 
glomerular filtration rate (GFR) [156, 164, 167]. Meanwhile, 
EPO-secreting cells are lost, leading to renal anemia, even 
though the hypoxic conditions represent a key pathological 
condition in renal fibrosis [156, 158]. 

In physiological conditions, adult fibroblasts are inactive 
but, following tubular lesions or inflammatory conditions, 
these cells may acquire an activated phenotype and convert 
into myofibroblasts, which synthesize components of the 
ECM and express alpha-smooth muscle actin (α-SMA) 
[156–158, 166]. Recent studies revealed that EPO-secreting 
cells also may transdifferentiate into myofibroblasts in renal 
interstitial diseases, so, a deficiency in EPO production and 
anemia occurs [166]. Besides, in chronic renal disease, renal 
fibroblasts can acquire a pro-inflammatory phenotype, 
producing cytokines (interleukin-1 (IL-1), tumor necrosis 
factor-alpha (TNF-α), etc.) [158, 166]. Some authors reported 
that anti-inflammatory agents provide the phenotypic 
reversion, thus, offering a promising therapeutic approach 
for severe renal fibrosis [158]. 

Several pathways that regulate the phenotype transition 
were described, especially PDGF receptor (PDGFR) signaling 
pathway [158, 168]. Resident fibroblasts in the kidney are 
positive for CD73 and PDGFR-β. Activation of PDGF-BB/ 
PDGFR-β axis is responsible for the regenerative function 
of the renal tubular epithelium [158, 160]. However, in 
chronic kidney diseases, the long-term activation of PDGF-
BB/PDGFR-β axis accelerate the renal fibrosis, therefore, 
PDGF-BB/PDGFR-β signaling pathway may be advantageous 
or troublesome [158, 160, 166]. 

In conclusion, resident fibroblasts in healthy kidney 
represent a heterogeneous cell population, with distinct 
molecular characteristics and various functions in the cortex 
and the medulla. In CKD, fibroblasts are versatile cells and 
display a functional heterogeneity and plasticity, playing a 
pivotal role in fibrinogenesis and in mediating inflammation. 
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 New insights about the pineal gland 
calcification 

The pineal gland is a vital homeostatic photo-neuro-
endocrine organ, that synthesizes melatonin, a substance 
with a myriad function: a signaling molecule in regulating 
the circadian rhythm (by acting on the way of the super-
chiasmatic nuclei) [169], a strong antioxidant for neural 
protection [170] and a powerful anti-inflammation, anti-
tumor, and anti-aging agent [171, 172]. 

The pineal gland has the highest rate of calcification of 
all organs and tissues of the human body [173, 174] and is 
the most common site of physiological calcifications (71.6%) 
[175]. The pineal calcification limits the synthetic capacity 
of melatonin and earlier studies sustained an association 
with a variety of neuronal diseases, as schizophrenia 
[176, 177], dyskinesia [178, 179], Alzheimer’s [180] and 
Parkinson’s disease [181]. Recently, several studies have 
shown that the increasing of pineal calcification decreases 
the melatonin production in humans, and that the melatonin 
and its metabolite levels are positively correlated to the 
uncalcified gland volume and negatively linked to the 
size of the pineal calcification [182–184]. The decreased 
endogenous melatonin level lowers the neuronal resistance 
to oxidative stress and the inhibition of amyloid secretion 
and deposition; consequently, the hyperphosphorylation 
of tau protein is increasing [185–187]. Therefore, the 
pineal calcification seems to have a direct influence on 
neurodegenerative diseases and aging, even on cancer 
immunosuppression [174, 188]; the melatonin treatment 
is relieving the clinical symptoms, even if it does not cure 
the diseases: a meta-analysis showed that the melatonin 
treatment leads to a modest improvement of tardive 
dyskinesia symptoms in schizophrenia patients [189]. 

Pineal calcification was identified in the human species 
even since 1653. Several studies indicate that the pineal 
calcification is a natural aging-related process, though with 
considerable interindividual variability, linked with sex, 
altitude, and duration of sunlight exposure [190, 191]. Males 
are more likely to present pineal calcification then females 
[192, 193]. Higher altitude and duration of sunlight exposure 
are also correlated with an increased pineal calcification 
[190]. These changes can be caused by an aging-related 
deterioration of the suprachiasmatic nucleus (the neuronal 
circadian pacemaker’s transmission to the pineal gland) 
[194], similar to neurodegenerative disorders [191, 195]. 

The pineal calcifications are strongly associated with 
aging even if they have been detected in newborns or 
children. Yet, in children they are rare [196, 197] (under the 
age of six years old being present in 1% of children) [196]. 

However, their number and proportion (total volume 
calcification toward total volume of the gland) increase 
with age [174, 198]; in humans, the incidence of the visible 
calcification is at 5% of the 0–9 years old people [197], 
32% of the 10–19 years old people, 53% of the 20–29 years 
old people and 83% of the over 30 years old people [174]. 

The formation of pineal calcified concretions (“corpora 
arenacea” or “brain sand”) is incompletely elucidated, it 
can have a physiological, maturational, degenerative, or 
combined cause [174, 197]. The concentric laminated pineal 
calcification is not a random process, but a complex, 
well-structured and programmed mechanism: the number 
of lamellae is directly proportional to human age [174, 

199] and the laminated pineal concretions are structurally 
similar to the osteons of the compact bone [174]. Two 
main types of pineal intraparenchymal calcifications are 
observed, in young and old people, with different shapes and 
size of calcifications; in young people, the calcifications 
are globular, lobulated, and localized in the proximity of 
the pinealocytes, while in elderly patients, calcifications 
are larger, lamellar, concentric, associated with glial cells 
[197, 200–203]. Kim et al., studying the pineal gland of 
older adults (62–80 years), found conglomerate areas, 
calcified in a concentrical manner, distributed over the 
entire parenchyma, but preponderantly with a central 
concentration [204] (they may be related to the circannual 
changes in Ca level) [199]. 

In the pineal gland are significantly present two different 
crystalline compounds; this fact suggests two different 
biologically mechanisms of formation and biological 
functions [201]. There are small, well-defined crystals, that 
have less than 20 μm in length (microcrystals) [205] and 
large polycrystalline complexes, of hundreds of micrometers 
in length (often called “mulberry-like” structures) [201]. 
Electron microscopy studies detailed three types of the 
small crystals: cubical, cylindrical (95%) and hexagonal 
[201, 202]. 

The chemical components of pineal crystals are mainly 
represented by salts of Ca and magnesium (Mg) [199, 206]. 
Ca2+ tend to concentrate along the cellular plasmalemma 
[197]. New analyzing methods of spectroscopy (energy 
dispersive spectroscopy and infrared Raman spectroscopy) 
and selected area electron diffraction have shown that the 
tiny crystals are usually made of calcite (calcium carbonate, 
mainly containing Ca, carbon, and oxygen), comparable 
to the otoconia from internal ear. The presence of calcite 
inside epiphysis represents its only known nonpathological 
occurrence in the human body (excepting the otoconia of 
the inner ear) [201, 207]. The large, laminated concretions 
were found to be nanocrystalline hydroxyapatite (containing 
Ca, Mg, and ammonium phosphates, with a mean Ca/P 
molar ratio between 1.65 to 1.68) [207, 208], but traces of 
sulfur (S), Mg, and sodium (Na) were also detected [206]. 

Numerous theories are trying to explain the mechanisms 
for pineal calcification formation. Mast cells, which secrete 
tryptase, that participate in calcification, have been found in 
perivascular areas, where Ca deposits originate [197, 199, 
209]. Another possible mechanism of pineal calcification 
is represented by the extrusion of polypeptides in the 
extracellular space, with an active transfer of Ca. In the 
center of the concentrical “corpora arenacea”, exophytic 
membrane debris was found; this could represent a by-
product of pineal neuronal and glial polypeptide exocytosis 
[197]. There is also the possibility of osteoblast-like and 
osteocytes-like transformation of local, or vascular migrated 
mesenchymal stem cells (MSCs), under pathological 
conditions [174, 203, 210]; thus, the high melatonin levels 
promote calcification by stimulating mesenchymal cell 
differentiation in bone cells [174, 211, 212]. 

The mechanism of pineal calcification is therefore 
considered to be multifactorial; with the advance of age, 
the calcification is intensifying and its pattern changes, 
the number of pinealocytes decreases and the secretory 
function of the pineal gland is diminishing. In the light of 
recent research, inevitable as it seems, the pineal calcification 
should not be considered a common physiological process. 
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 New findings in Leydig cells 
Leydig cells (LCs) are polygonal, with a centrally located, 

large, and round nucleus presenting a marked nucleolus and 
an eosinophilic cytoplasm. These cells produce testosterone 
and have the morphological characteristics of steroid-
secreting cells, with a prominent smooth ER, sizable and 
multiple lipid vacuoles, and numerous mitochondria. The 
lipofuscin inclusion represents a usual presence in LCs, 
appearing as rounded irregular bodies composed of 
accumulated lipid droplets in the lysosomes. They also 
contain specific cytoplasmic inclusions, the Reinke 
crystalloids, arranged in a linear pattern. These crystalloids 
are by-products of steroid metabolism and testosterone 
production in testes [213–215]. 

LCs present a unique cytoarchitecture in cord-like 
structures surrounding the seminiferous tubules. Only 
very few LCs are present among the seminiferous tubules 
[216]. They share the same thin basal lamina and present 
small canaliculi, rudimentary desmosomes, and microvilli 
processes. 

From the interstitial LCs, the testosterone diffuses into 
seminiferous tubules and influences the seminiferous 
epithelia and the Sertoli cells, generating and sustaining 
sperm production. 

In mammals, two distinct LC populations appear during 
pre- and post-natal testis development: the fetal LCs (FLCs) 
and the adult LCs (ALCs). FLCs and ALCs may share 
the same progenitor pool in the fetal testis [217]. 

Activation of the sex determining region Y (SRY)–SRY-
box transcription factor 9 (SOX9) genetic cascade induces 
Sertoli cell differentiation. Sertoli cells produce desert 
hedgehog (DHh) and PDGF to induce FLC differentiation 
in the interstitial zone [218, 219]. 

NR5A1 (or the steroidogenic factor 1 – SF1) is a nuclear 
receptor expressed in various tissues, such as the ventro-
medial hypothalamus, pituitary gonadotropic area, adrenal 
cortex, spleen, as well as testis, and ovary. Its activation 
is essential for steroidogenic cell differentiation, and this 
factor is expressed in the adreno-gonadal primordium [220, 
221]. From stem cells of non-steroidogenic tissues transfected 
with SF1 were obtained in vitro, differentiated steroidogenic 
cells. Without the SF1, female internal genitalia were 
developed by male mice, who died early after birth due to 
a lack of testosterone and adrenocortical-producing cells 
[222]. Was proves, thereby, that FLC’s androgen production 
during the fetal period is essential for the masculinization 
of the brain and male genital tract [223]. 

The stem LCs (SLCs) generate during puberty adult 
LCs (ALCs), which will produce androgens in the adult, 
under the control of the hypothalamic–pituitary–gonadal 
(HPG) axis. 

A new treatment for androgen deficiency in 
hypogonadism, which affects males of all ages, could be 
offered by stem cell therapy: from SLCs were generated 
in vitro ALCs, and Leydig-like cells, which were transplanted 
into ALC-null animals, restoring the serum testosterone 
levels successfully under HPG control. 

The multipotent SLCs persist in the adult testis and have 
the capacity to form ALCs, and also all the three major 
lineages from MSCs (adipocytes, chondrocytes, and 
osteoblasts) [224]. 

In fetal and neonatal mouse testes, ALCs can have three 
possible sources: peritubular progenitors (Hes1+/Arx+) 

originating from coelomic epithelium [225], perivascular 
progenitors (nestin+/Notch+) originating from the gonadal–
mesonephros border [226], and dedifferentiated FLCs, 
appearing by the end of the fetal stage [227]. 

Because ALCs are considered postmitotic cells that 
do not divide [228], the SLCs have an essential role in 
maintaining adult ALCs’ homeostasis [229, 230]. It is not 
clarified if the SLCs represent a unique subset of stem 
cells or a mixed origin population from mesenchymal 
progenitors or pericytes [231]. 

 Ovarian hilar cells 
In 1922, Berger described the morphology of the 

ovarian hilar cells for the first time and referred to them 
as “sympathicotropic cells” [232]. 

Ovarian hilar cells are located in the hilum of the 
ovary, adjacent to the mesovarium; cells are organized in 
unencapsulated aggregates of different size and shape, 
more numerous in the medial and lateral poles of the hilum, 
near the insertion of the ovarian ligament [233]. At the 
interface between hilum and medullary stroma, these cell 
aggregates are closely related to large veins and lymphatic 
vessels and may protrude into their lumen. Characteristically, 
the hilar cells unsheathe unmyelinated nerve fibers and 
occasionally extend into the medulla, surrounding the rete 
ovarii. The hilar cells are surrounded by thin collagen fibrils 
and are associated with fibroblasts and intermediate cells 
that share common features of fibroblasts and hilar cells. 
Both hilar cells and intermediate cells are in close 
relationship with the hilum nerves, and even establish 
synapses with the nerves; this particular arrangement suggests 
that hilar cells may originate from hilum fibroblasts and 
the differentiation of fibroblasts into hilar cells could be 
induced by the nerve impulses [233–235]. 

Morphologically, cells are round or oval shaped, ranging 
between 15 and 25 μm in diameter, and contain an abundant 
acidophilic cytoplasm and a round, euchromatic vesicular 
nucleus with one or two nucleoli. In postmenopausal women, 
the nuclei may be heterochromatic. The cytoplasm contains 
perinuclear acidophilic granules, lipid vacuoles located 
peripherally, and inclusions of lipochrome pigment, golden-
brown in color. 

Ovarian hilar cells are similar to LCs in the testis and 
contain specific Reinke crystals unevenly distributed in the 
cytoplasm, arranged either in parallel arrays, or staked. The 
crystals are homogenous, acidophilic structures, shaped as 
rods with rounded or tapered extremities and their length 
often equals the largest diameter of the cells. The crystals 
are present only in a few cells and difficult to identify. 
Reinke crystals may be revealed by Fe Hematoxylin or 
Masson’s trichrome staining, and appear black and magenta, 
respectively [234]; in sections stained with HE and 
viewed in ultraviolet light, crystals fluorescence yellow. 
Additionally to Reinke crystals, hyaline structures, spherical 
or ellipsoidal in shape, are present in a large number 
within the hilar cells; these are regarded as precursors of 
the crystals [234]. 

Ultrastructurally, ovarian hilar cells exhibit the features 
characteristic to cells that secrete mitochondria with tubular 
cristae, lysosomes, and lipid inclusions. Reinke crystals have 
a crystalline aspect, and consist of hexagonal microtubules, 
densely packed and parallel, separated by clear spaces [235]. 
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Immunohistochemically, the hilar cells are intensely 
positive for inhibin, calretinin and Melan-A [236]. 

Ovarian hilar cells should be differentiated from the 
ectopic adrenal cortex tissue and the theca lutein cells 
[237]. The adrenal cortical rests are rare in the ovary but 
can be present in the mesovarium or in the ovarian hilum; 
these cells resemble to normal adrenal cortex and contain 
abundant lipid vacuoles [234]. 

Ovarian hilar cells are present in various number and 
have different distribution depending on the age: these cells 
can be observed in the fetal ovary, but are absent in children, 
reappear at puberty and also persist after menopause 
[234]. Mild hyperplasia of the hilar cells is common in 
postmenopausal women and can be associated with the 
proliferation and luteinization of the ovarian stroma [234]. 

The morphology and the enzymatic equipment of the 
ovarian hilar cells are consistent with the steroid hormone-
secretion profile, but their contribution to the steroid hormone 
pool has not been established in normal females [233].  
In vitro studies demonstrated that ovarian hilar cells secreted 
high amounts of androstenedione and low amounts of 
estradiol E2 and progesterone [234]. In vivo, hilar cells are 
stimulated by exogenous and endogenous human chorionic 
gonadotropin (hCG), which induces cell proliferation and 
growth [234]. Moreover, their secretory activity is influenced 
by the hormonal changes that occur at puberty, during 
pregnancy and after menopause [238]. Since ovarian hilar 
cells secrete androgens, their hyperplasia or the tumors 
arising from these cells lead to masculinization [238]. 

According to the World Health Organization (WHO) 
Classification of tumors of the female reproductive organs, 
hilar cell tumors are classified as sex cord-stromal tumors 
[239]. These tumors usually occur in women after menopause, 
and are unilateral, small, with a benign evolution and good 
prognosis [232, 239]. The differentiation between extensive 
hyperplasia and hilar cell tumors is based on the size of 
the lesion. Hilar cells tumor may be associated with other 
benign or malignant tumors of the female genital tract, 
including polycystic ovaries, uterine myoma, granulosa 
cell ovarian tumor and endometrial adenocarcinoma [232]. 
Tumor hilar cells are polygonal or oval-shaped, rarely 
elongated, contain abundant granular acidophilic cytoplasm 
and oval nuclei with coarse chromatin. For the diagnosis 
of such tumors, the presence of the Reinke crystals is 
pathognomonic (even though the crystals are found only in 
half of the cases), especially if tumor cells display vacuolated 
or acidophilic granular cytoplasm [232, 240]. Moreover, 
tumor cells are commonly IHC positive for inhibin and 
melanoma antigen recognized by T cells-1 (MART-1), and 
sometimes can express vimentin, keratin, or actin [241, 242]. 
It has been hypothesized that the hilum of the ovary is the 
niche for putative tumor-initiating stem cells, with high 
potential for cancer transformation by the inactivation specific 
tumor suppressor genes; these cancer-prone stem cells seem 
to be responsible for tumor growth and chemoresistance 
[243–245]. 

 Angiogenesis – the contribution of tissue 
engineering 

Angiogenesis is the development of blood vessels. The 
formation of new vessels can take place under normal 
and pathological conditions. It is very rare in the adult 

human subject. Two types of angiogenesis are described: 
angiogenesis that occurs especially in the areas of scarring 
and recovery of lesions and that which occurs in the process 
of tumor growth. 

Although the effects of the action of different types of 
angiogenesis are not identical, they are driven by similar 
signals. Through angiogenesis from normal tissue repair 
processes, interconnected and functionally intact vessels 
are generated. In contrast, in angiogenesis from tumor growth 
processes unformed vessels are numerous, but destructured 
and immature [246, 247]. 

Knowledge of the mechanisms involved in the regulation 
of normal and pathological angiogenesis will open important 
ways for the realization through tissue engineering of new 
reconstructive models that integrate a strong and fully 
structured vascularization. However, the results of tissue 
engineering research have only partially materialized, so 
that clinical applications are still very low [248]. 

Spatial control of the scaffold architecture 

In vivo, angiogenesis is controlled by spatial landmarks 
that direct the growth and maturation of vessels. It has 
been shown that the intervention of factors, such as 
inflammation or ischemia, results in a stimulation of the 
local release of cytokines, GFs, and chemokines, causing 
the formation of a molecular gradient in the extracellular 
space [249]. 

The difference in concentration of the molecules 
determines the formation at the cellular level of a frontal 
edge, with spatially controlled arrangement. The difference 
in molecular concentration causes locally angiogenesis and 
increased perfusion. 

Currently, tissue engineering has attempted to replicate 
this process of angiogenesis. To reproduce the spatial control 
of cell disposition, the two methods used consisted in the 
direct modeling of the cells by the bioprinting process and 
by the distribution technique of the molecules involved in 
the proangiogenic stimulus. 

The most advanced techniques in the field based on 
recent advances are 3D bioprinting and electrospinning. 
These two methods represent the most advanced tissue 
engineering constructions which simulate natural vascular 
development [250]. 

3D bioprinting 

In regenerative medicine, the technique of 3D printing 
is widely used. Through this procedure, the process of 
angiogenesis in the modified tissues can be performed. 
There are two methods of bioprinting: the direct method 
(direct bioprinting) and the indirect method (indirect 
bioprinting) These printing methods can combine cells, 
biomaterials, and GFs. Thus, complex constructions are 
obtained that have pores and channels the size of microns, 
capable of guiding the process of angiogenesis. 

The direct 3D method (direct bioprinting) uses bio-
ink that contains cellular and extracellular components. 
The bio-ink drops are printed in defined shapes. This 
technique consists in the rapid crosslinking or gelation of 
hydrogels to obtain a structure with high stability. 

The indirect bioprinting method consists in printing 
“sacrifice” channels that will later be encapsulated by the 
biomaterial loaded with cells. Then the “sacrifice” channels 
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will be removed. This process is performed either by using 
a solvent or by thermal action. The remaining capillary 
network will be seeded with dormant ECs. This will play a 
role in guiding angiogenesis [251]. The direct 3D method 
is a 3D printing method that uses inkjet. The principle of 
the method consists in using an instrument called thermal 
or piezoelectric actuator by which the layer-by-layer (LBL) 
technique dispersion of the bio-ink droplets on a substrate 
is achieved. Hydrogels with fast gelling properties combined 
with crosslinking agents are used to print very well-
organized networks by the direct 3D bioprinting method. 
Thus, by this method it was possible to create vessels with 
a diameter of 200 μm [252]. 

Another method used in tissue engineering is pressure-
assisted bioprinting, to initiate the process of vascularization 
and angiogenesis [253]. In this technique, the bio-ink is 
pressurized and stored instead of a thermal or piezoelectric 
actuator, as is done in the direct bioprinting technique. 
Some researchers obtained infusible vascular structures 
loaded with very well-organized cells. They used an 
extrusion system and a mixture of bio-ink [254, 255]. 
Other researchers obtained infusible vascular structures 
loaded with very well-organized cells. They used an extrusion 
system and a mixture of bio-ink. A system of nozzles that 
are arranged coaxially was used to produce tubes with 
diameters between 500–1500 μm and vessel wall thicknesses 
of 60–280 μm. It can be considered that, by the method 
of bioprinting by pressure, together with the one of direct 
bioprinting made with bio-ink containing encapsulated 
cells, it will be possible to induce the formation of functional 
vessels [255]. 

Laser bioprinting is a less widely used printing method. 
This technique uses direct laser-induced transfer or the light 
curing process [256]. The method has the advantage that 
the cells can be printed with a very high resolution, without 
subjecting them to the so-called shear phenomenon [257]. 
In humans, through this method of biological printing 
with the help of laser, smooth muscle cells were obtained, 
interconnected ECs from the umbilical vein, and through 
the photopolymerization technique, tissues with a complex 
prevascularized structure were obtained [258]. Two weeks 
after the application of the biological impression, the obtained 
tissue was analyzed and a development of an anastomosis 
between it and the vessels of the host tissue was found 
[255]. Compared to the control tissue, a significant increase 
in the number of vessels as well as their density was observed 
in the tissue that underwent prevascularization. 

3D printing has a great advantage because this technique 
can control angiogenesis and the appearance of new vessels 
in the tissues that have undergone changes. In the future, 
by developing 3D bioprinting techniques and increasing 
the accuracy of these methods, the prevascularization of 
many tissues can be achieved on a large scale. 

Electrospinning 

The electrospinning technique has been used by 
researchers in recent years. This manufacturing method 
uses a nanofiber-based electrospinning technique to obtain 
new vascular networks. 

The electrospinning technique allows precise control 
over the diameter (50 to 500 nm, similar to the ECM’s 
fibers), porosity and degradation rate of the newly formed 
fibers [259]. 

Kenar et al. used a poly(L-lactide-co-ε-caprolactone) 
(PCL) mixture (with collagen and hyaluronic acid) and 
significantly improved the vessels’ length in modified 
tissues. This mixture was used to form a fibrous matrix, 
which implanted in the host tissue, promoted integration 
with the vascularization of this tissue [260]. 

Other studies have used electrospinning, implemented 
at the nanometer scale to produce matrices capable of being 
identical to the extracellular bone matrix and thus managed 
to significantly improve the process of angiogenesis by 
spatial organization of fibers [261, 262]. 

Biomaterials and their role in intracellular 
angiogenesis 

To increase the performance of tissue regeneration 
through cell transplantation, release of GFs and gene therapy, 
the effective way to achieve these targets is represented by 
angiogenesis. Cell dynamics and implicitly angiogenesis 
is stimulated or inhibited by several factors, such as 3D 
cellular arrangement, the chemical composition of the ECM, 
cellular ultrastructure, as well as the physicochemical and 
morphological properties of the cells. Proteoglycans with 
hydrophilic groups and structural or adhesive glycoproteins, 
such as fibronectin, laminin, tenascin, vitronectin influence 
the mutual interaction between cells and surrounding patterns, 
making possible external transduction, i.e., the initiation 
of specific signaling. 

Integrins expressed on the cell surface represent the 
superfamilies of immunoglobulins representing adhesive 
molecules, such as cadherins, selectins, etc., and through them 
the cell can attach to surfaces. The juxtacrine cell–matrix 
interaction between cellular receptors and corresponding 
elements in the ECM induces a series of biochemical reactions 
at the cellular level, resulting in the maintenance of cell–
matrix interaction, cell motility and migration, their growth, 
gene expression, improving the intercellular connection, 
as well as modulating the cellular phenotype. A reciprocal 
connection is made between the cells determined by the 
activation of the surface mechanoreceptors, which determine 
the juxtaposition of each cell with chemical groups from 
matrix. As a result of this connection between cells and matrix 
and by the involvement of adhesive proteins, cytoskeletal 
contractile agents will be released. The use of appropriate 
models, which have adequate physicochemical stability 
and combined with factors and components of the ECM, 
could reorganize the arrangement of cells to promote the 
process of angiogenesis. 

 Conclusions 
Histology is the key element for the microscopic study 

of cells, tissues, and organs. It remains one of the fundamental 
elements of science, being essential in understanding and 
interpreting new scientific discoveries. If today, in the 
field of research, this discipline may seem outdated and 
surpassed by the in vitro cell and molecular biology’, 
genetic’ and proteomic’ studies, it definitely remains the 
cornerstone (along with the in vivo study of tissues and 
organs) for the effective diagnosis in clinical practice. 
Although most new advances in science are submicroscopic, 
the final expectations of these discoveries will eventually 
be assessed on their microscopic effects on the cells, 
tissues, and organs of an individuum. HE staining is still 
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the “gold standard” for histological diagnosis, while IHC 
and molecular biology are ancillary tools that can provide 
additional information in confirming histological diagnosis. 
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