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Abstract
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism

that can be assayed using high-throughput mass spectrometry (MS). These MS-based spa-

tial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands

of proteins in a specific system under controlled conditions. Recent advances in high-

throughput MS methods have yielded a plethora of experimental spatial proteomics data for

the cell biology community. Yet, there are many third-party data sources, such as immuno-

fluorescence microscopy or protein annotations and sequences, which represent a rich and

vast source of complementary information. We present a unique transfer learning classifica-

tion framework that utilises a nearest-neighbour or support vector machine system, to inte-

grate heterogeneous data sources to considerably improve on the quantity and quality of

sub-cellular protein assignment. We demonstrate the utility of our algorithms through evalu-

ation of five experimental datasets, from four different species in conjunction with four differ-

ent auxiliary data sources to classify proteins to tens of sub-cellular compartments with high

generalisation accuracy. We further apply the method to an experiment on pluripotent

mouse embryonic stem cells to classify a set of previously unknown proteins, and validate

our findings against a recent high resolution map of the mouse stem cell proteome. The

methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial

proteomics data analysis.

Author Summary

Sub-cellular localisation of proteins is critical to their function in all cellular processes;
proteins localising to their intended micro-environment, e.g organelles, vesicles or macro-
molecular complexes, will meet the interaction partners and biochemical conditions
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suitable to pursue their molecular function. Therefore, sound data and methods to reliably
and systematically study protein localisation, and hence their mis-localisation and the dis-
ruption of protein trafficking, that are relied upon by the cell biology community, are
essential. Here we present a method to infer protein localisation relying on the optimal
integration of experimental mass spectrometry-based data and auxiliary sources, such as
GO annotation, outputs from third-party software, protein-protein interactions or immu-
nocytochemistry data. We found that the application of transfer learning algorithms
across these diverse data sources considerably improves on the quantity and reliability of
sub-cellular protein assignment, compared to single data classifiers previously applied to
infer sub-cellular localisation using experimental data only. We show how our method
does not compromise biologically relevant experimental-specific signal after integration
with heterogeneous freely available third-party resources. The integration of different data
sources is an important challenge in the data intensive world of biology and we anticipate
the transfer learning methods presented here will prove useful to many areas of biology, to
unify data obtained from different but complimentary sources.

This is a PLoS Computational Biologymethods paper.

Introduction
Cell biology is currently undergoing a data-driven paradigm shift [1]. Molecular biology tools,
imaging, biochemical analyses and omics technologies, enable cell biologists to track the com-
plexity of many fundamental processes such as signal transduction, gene regulation, protein
interactions and sub-cellular localisation [2]. This remarkable success, has resulted in dramatic
growth in data over the last decade, both in terms of size and heterogeneity. Coupled with this
influx of experimental data, databases such as UniProt [3] and the Gene Ontology [4] have
become more information rich, providing valuable resources for the community. The time is
ripe to take advantage of complementary data sources in a systematic way to support hypothe-
sis- and data-driven research. However, one of the biggest challenges in computational biology
is how to meaningfully integrate heterogeneous data; transfer learning, a paradigm in machine
learning, is ideally suited to this task.

Transfer learning has yet to be fully exploited in computational biology. To date, various
data mining and machine learning (ML) tools, in particular classification algorithms have been
widely applied in many areas of biology [5]. A classifier is trained to learn a mapping between a
set of observed instances and associated external attributes (class labels) which is subsequently
used to predict the attributes on data with unknown class labels (unlabelled data). In transfer
learning, there is a primary task to solve, and associated primary data which is typically expen-
sive, of high quality and targeted to address a specific question about a specific biological sys-
tem/condition of interest. While standard supervised learning algorithms seek to learn a
classifier on this data alone, the general idea in transfer learning is to complement the primary
data by drawing upon an auxiliary data source, from which one can extract complementary
information to help solve the primary task. The secondary data typically contains information
that is related to the primary learning objective, but was not primarily collected to tackle the
specific primary research question at hand. These data can be heterogeneous to the primary

Learning from Heterogeneous Data Sources

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004920 May 13, 2016 2 / 26

number 262067) and a BBSRC Strategic Longer and
Larger Award (Award BB/L002817/1). DW and OK
acknowledge funding from the European Union
(PRIME-XS, GA 262067) and Deutsche
Forschungsgemeinschaft (KO-2313/6-1). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



data and are often, but not necessarily, cheaper to obtain and more plentiful but with lower sig-
nal-to-noise ratio.

There are several challenges associated with the integration of information from auxiliary
sources. Firstly, if the primary and auxiliary sources are combined via straightforward concate-
nation the signal in the primary can be lost through dilution with the auxiliary due to the latter
being more plentiful and often having lower signal-to-noise ratio (see Fig H in S5 File for an
illustration). Feature selection can be used to extract the attributes with the most distinct sig-
nals, however the challenge still remains in how to combine this data in a meaningful way. Sec-
ondly, combining data that exist in different data spaces is often not straightforward and
different data types can be sensitive to the classifier employed, in terms of classifier accuracy.

In one of the first applications of transfer learning Wu and Dietterich [6] used a k-nearest
neighbours (k-NN) and support vector machine (SVM) framework for plant image classifica-
tion. Their primary data consisted of high-resolution images of isolated plant leaves and the
primary task was to determine the tree species given an isolated leaf. An auxiliary data source
was available in the form of dried leaf samples from a Herbarium. Using a kernel derived from
the shapes of the leaves and applying the transfer learning (TL) framework [6], they showed
that when primary data is small, training with auxiliary data improves classification accuracy
considerably. There were several limitations in their methods: firstly, the data in the k-NN TL
classifier were only weighted by data source and not on a class-by-class basis, and, secondly in
the SVM framework both data sources were expected to have the same dimensions and lie in
the same space. We present an adaption and significant improvement of this framework and
extend the usability of the method by (i) incorporating a multi-class weighting schema in the
k-NN TL classifier, and (ii) by allowing the integration of primary and auxiliary data with dif-
ferent dimensions in the SVM schema to allow the integration of heterogeneous data types. We
apply this framework to the task of protein sub-cellular localisation prediction from high reso-
lution mass spectrometry (MS)-based data.

Spatial proteomics, the systematic large-scale analysis of a cell’s proteins and their assign-
ment to distinct sub-cellular compartments, is vital for deciphering a protein’s function(s) and
possible interaction partners. Knowledge of where a protein spatially resides within the cell is
important, as it not only provides the physiological context for their function but also plays an
important role in furthering our understanding of a protein’s complex molecular interactions
e.g. signalling and transport mechanisms, by matching certain molecular functions to specific
organelles.

There are a number of sources of information which can be utilised to assign a protein to a
sub-cellular niche. These range from high quality data produced from experimental high-
throughput quantitative MS-based methods (e.g. LOPIT [7] and PCP [8]) and imaging data (e.g.
[9]), to freely available data from repositories and amino acid sequences. The former, in a nut-
shell, involves cell lysis followed by separation and fractionation of the subcellular structures as a
function of their density, and then selecting a set of distinct fractions to quantify by mass-spec-
trometry. These quantitative protein profiles are representative of organelle distribution and
hence are indicative of their subcellular localisation [10]. Based on the distribution of a set of
known genuine organelle marker proteins, pattern recognition andMLmethods can be used to
match and associate the distributions of unknown residents to that of one of the markers. There
is thus a reliance on reliable organelle markers and statistical learning methods for robust prote-
ome-wide localisation prediction [11]. These approaches have been utilised to gain information
about the sub-cellular location of proteins in several biological examples, such as Arabidopsis [7,
12–16],Drosophila [17], yeast [18], human cell lines [19, 20], mouse [8, 21] and chicken [22],
using a number of algorithms, such as, SVMs [23], k-NN [15], random forest [24], naive Bayes
[14], neural networks [25], and partial-least squares discriminant analysis [7, 17, 22].

Learning from Heterogeneous Data Sources
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Although the application of computational tools to spatial proteomics is a recent develop-
ment, the determination of protein localisation using in silico data such as amino acid sequence
features (e.g. [26–40]), functional domains (e.g. [41, 42]), protein-protein interactions (e.g.
[43–45]) and the Gene Ontology (GO) [4] (e.g. [46–49]) is well-established (reviewed in [50–
52]). One may question the biological relevance and ultimate utility to cell biology of such pre-
dictors as protein sequences and their annotation do not change according to cellular condition
or cell type, whereas protein localisation can change in response to cellular perturbation. Not-
withstanding the inherent limitations of using in silico data to predict dynamic cell- and condi-
tion-specific protein location, transfer learning [6, 47–49, 53] may allow the transfer of
complementary information available from these data to classify proteins in experimental pro-
teomics datasets.

Here, we present a new transfer learning framework for the integration of heterogeneous
data sources, and apply it to the task of sub-cellular localisation prediction from experimental
and condition-specific MS-based quantitative proteomics data. Using the k-NN and SVM algo-
rithms in a transfer learning framework we find that when given data from a high quality MS
experiment, integrating data from a second less information rich but more plentiful auxiliary
data source directly in to classifier training and classifier creation results in the assignment of
proteins to organelles with high generalisation accuracy. Five experimental MS LOPIT datasets,
from four different species, were employed in testing the classifiers. We show the flexibility of
the pipeline through testing four auxiliary data sources; (1) Gene Ontology terms, (2) immuno-
cytochemistry data [9], (3) sequence and annotation features, and (4) protein-protein interac-
tion data [54]. The results obtained demonstrate that this transfer learning method
outperforms a single classifier trained on each single data source alone and on a class-by-class
basis, highlighting that the primary data is not diluted by the auxiliary data. This methodology
forms part of the open-source open-development Bioconductor [55] pRoloc [56] suite of
computational methods available for organelle proteomics data analysis.

Results
Here, we have adapted a classic application of inductive transfer learning (TL) [6] using experi-
mental quantitative proteomics data as the primary source and Gene Ontology Cellular Com-
partment (GO CC) terms as the auxiliary source. Using this TL approach, we have exploited
auxiliary data to improve upon the protein localisation prediction from quantitative MS-based
spatial proteomics experiments using (1) a class-weighted k-NN classifier, and (2) an SVM
classifier in a TL framework. We also show the flexibility of the framework by using data from
the Human Protein Atlas [57] and input sequence and annotation features from the YLoc [58,
59] web server, and protein-protein interaction data from the STRING database [54] as auxil-
iary data sources.

To assess classifier performance we employed the classic machine learning schema of parti-
tioning our labelled data into training and testing sets, and used the testing sets to assess the
strength of our classifiers. Parameter optimisation was conducted on the labelled training data
using 100 rounds of stratified 80/20 partitioning, in conjunction with 5-fold cross-validation in
order to estimate the free parameters via a grid search, as implemented in the pRoloc package
[56] (and described in the methods below). Here, for the k-NN TL algorithm these parameters
are the weights assigned to each class for each data source, and for the SVM TL algorithm these
are C, γP and γA for the two kernels, as described in the materials and methods. The testing set
is then used to assess the generalisation accuracy of the classifier. By applying the best parame-
ters found in the training phase on test data, observed and expected classification results can be
compared, and then used to assess how well a given model works by getting an estimate of the
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classifier’s ability to achieve a good generalisation, that is given an unknown example predict
its class label with high accuracy. This schema was repeated for all 5 datasets, and for the SVM
and k-NN classifiers, trained on (i) LOPIT alone, and (ii) GO CC alone, for comparison with
the TL algorithms.

For simplicity, throughout this manuscript we refer to the mouse pluripotent embryonic
stem cell dataset as the ‘mouse dataset’, the human embryonic kidney fibroblast dataset as the
‘human dataset’, the Drosophila embryos dataset as the ‘fly dataset’, the Arabidopsis thaliana
callus dataset as the ‘callus dataset’ and finally the second Arabidopsis thaliana roots dataset, as
the ‘roots dataset’.

The k-NN transfer learning classifier
The median macro-F1 scores for the mouse, human, callus, roots and fly datasets were 0.879,
0.853, 0.863, 0.979, 0.965, respectively, for the combined k-NN transfer learning approach. A
two sample t-test showed that over 100 test partitions, the mean estimated generalisation per-
formance for the k-NN transfer learning approach was significantly higher than on profiles
trained solely from only primary or auxiliary alone for the mouse (p = 2e−21 for primary alone
and p = 7e−78 for auxiliary alone), human (p = 1e−7 for primary alone and p = 8e−32 for auxiliary
alone), plant roots (p = 4e−17 for primary alone and p = 4e−22 for auxiliary alone), and fly
(p = 3e−5 for primary alone, p = 1e−112 for auxiliary alone) data (Fig 1). We found that the plant
callus dataset did not significantly benefit (nor detrimentally affected) by the incorporation of
auxiliary data. This was unsurprising as this dataset is extremely well-resolved in LOPIT (Fig A
in S1 File, top right) and the median macro F1-score over 100 rounds of training and testing
with a baseline k-NN classifier resulted in a median macro F1-score of 0.985 (the combined
approach yielded a macro F1-score of 0.973).

The k-NN transfer learning classifier uses optimised class weights to control the proportion
of primary to auxiliary neighbours to use in classification. One advantage of this approach is
the ability for the user to set class weights manually, allowing complete control over the
amount of auxiliary data to incorporate. As previously described, the class weights can be set
through prior optimisation on the labelled training data. Fig 2 shows the detailed results for the
mouse dataset and the distribution of the 100 best weights selected over 100 rounds of optimi-
sation are shown on the top left. We found the distribution of weights for each dataset reflected
closely the sub-cellular resolution in each experiment. For example, for the experiment on the
mouse dataset the distribution of best weights identified for the endoplasmic reticulum (ER),
mitochondria and chromatin niches are heavily skewed towards 1 indicating that the propor-
tion of neighbours to use in classification should be predominantly primary. Note, as described

Fig 1. Boxplots, displaying the estimated generalisation performance over 100 test partitions. Results for the k-NN transfer learning
algorithm applied with (i) optimised class-specific weights (combined), (ii) only primary data and (iii) only auxiliary data, for each dataset.

doi:10.1371/journal.pcbi.1004920.g001
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Fig 2. Visualisation of k-NN TL results. Top left: Bubble plot, displaying the distribution of the optimised class weights over the
100 test partitions for the transfer learning algorithm applied to the mouse dataset. Top right: Principal components analysis plot
(first and second components, of the possible eight) of the mouse dataset, showing the clustering of proteins according to their
density gradient distributions. Bottom: Sub-cellular class-specific box plots, displaying the estimated generalisation performance
over 100 test partitions for the transfer learning algorithm applied with (i) optimised class-specific weights (combined), (ii) only
primary data and (iii) only auxiliary data, for each sub-cellular class.

doi:10.1371/journal.pcbi.1004920.g002
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in the methods if the class weight is assigned to 1, then strictly only neighbours in primary data
are used in classification and similarly, if the class weight is 0 then all weight is given to the aux-
iliary data. If the weight falls between these two limits the neighbours in both the primary and
auxiliary data sources is considered. From examining the principal components analysis (PCA)
plot (Fig 2, top right) we indeed found that these organelles are well separated in the LOPIT
experiment. Conversely, we found that the 40S ribosome overlaps somewhat with the nucleus
(non-chromatin) cluster (Fig 2, top right) which is reflected in the best choice of class weights
for these two niches; they were both assigned best weights of 1/3 and their weight distributions
are skewed towards 0 indicating that more auxiliary data should be used to classify these sub-
cellular classes. If we further examine the class-F1 scores for these two sub-cellular niches (Fig
2, bottom) we indeed find that including the auxiliary data in classification yields a significant
improvement in generalisation accuracy (p = 1e−16 for 40S ribosome (red) and p = 1e−10 for the
nucleus (non-chromatin) (pink)). We also found this to be the case for the proteasome, which
is overlapping with the cytosol. We found LOPIT alone did not distinguish between these two
sub-cellular niches in this particular experiment, however, the addition of auxiliary data from
the Gene Ontology resulted in a significant increase in classifier prediction (p = 2e−16) as
shown by the class-specific box plot in Fig 2, bottom (black).

Many experiments are specifically targeted towards resolving a particular organelle of inter-
est (e.g. the TGN in the roots dataset) which requires careful optimisation of the LOPIT gradi-
ent. In such a setup sub-cellular niches other than the one of interest may not be well-resolved
which may simply be due to the fact that the gradient was not optimised for maximal separa-
tion of all sub-cellular niches, but only one or a few particular organelles. Such experiments in
particular may benefit from the incorporation of auxiliary data. We found that for the roots
dataset all sub-cellular classes, except the TGN sub-compartment, benefitted from including
auxiliary data (Fig C in S1 File, bottom), highlighting the advantage of using more than one
source of information for sub-cellular protein classification. The best weight for the TGN was
found to be 1 (Fig C in S1 File, top left), as expected and indicating high resolution in LOPIT
for this class. In this framework we are able to resolve different niches in the data according to
different data sources, further highlighted in the class-specific boxplots in Figs A-D in S1 File.

The SVM transfer learning classifier
Adapting Wu and Dietterich’s classic application of transfer learning [6] we have implemented
an SVM transfer learning classifier that allows the incorporation of a second auxiliary data
source to improve upon the classification of experimental and condition-specific sub-cellular
localisation predictions. The method employs the use of two separate kernels, one for each data
source. As previously described, to assess the generalisation accuracy of our classifier we
employed the classic machine learning schema of partitioning our labelled data into training
and testing sets, and used the testing sets to assess the strength of our classifiers. This was
repeated on 100 independent partitions for (i) the SVM TL method, (ii) a standard SVM
trained on LOPIT alone, and (iii) a standard SVM trained on GO CC alone.

For the SVM TL experiments the resultant median macro-F1 scores for the mouse, human,
callus, roots and fly datasets were 0.902, 0.868, 0.956, 0.875, 0.961, respectively, over the 100
partitions. As per the k-NN TL, we found the macro-F1 scores for the SVM TL Fig A in S2
File) were significantly higher than on profiles trained solely from only primary or auxiliary
alone; mouse (p = 5e−56 for primary alone and p = 6e−37 for auxiliary alone), human (p = 7e−3

for primary alone and p = 1e−21 for auxiliary alone), callus (p = 4e−3 for primary alone and
p = 1e−92 for auxiliary alone), roots (p = 2e−45 for primary alone and p = 7e−25 for auxiliary

Learning from Heterogeneous Data Sources

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004920 May 13, 2016 7 / 26



alone), and fly (p = 3e−3 for primary alone and p = 4e−105 for auxiliary alone) data. This was
also evident on the organellar level as seen in the supporting figures in the S2 File.

Other auxiliary data sources
One of the advantages of the transfer learning framework is the flexibility to use different types
of information for both the primary and auxiliary data source. We demonstrate the flexibility
of this framework by testing other complementary sources of information as an auxiliary data
source.

The Human Protein Atlas. The sub-cellular Human Protein Atlas [57] provides protein
expression patterns on a sub-cellular level using immunofluorescent staining of human U-2 OS
cells. As described in the materials and methods the hpar Bioconductor package [60] was used
to query the sub-cellular Human Protein Atlas [57] (version 13, released on 11/06/2014). This
auxiliary data, to be integrated with our human LOPIT experiment, was encoded as a binary
matrix describing the localisation of 670 proteins in 18 sub-cellular localisations. Information
for 192 of the 381 labelled marker proteins were available. These 192 proteins covered 8 of the
10 known localisations in the human LOPIT experiment and were used to estimate the classifier
generalisation accuracy of (i) the transfer learning approach with both data sources, (ii) the
LOPIT data alone and (iii) the HPA data alone, as described previously. As detailed in the sup-
plementary information (Fig A in S3 File), we observed a statistically significant improvement
in our overall classification accuracy as well as several positive organelle-specific results.

YLoc sequence and annotation features. Sequence and annotation features, that were
used as input from the computational classifier YLoc [58, 59] (see materials and methods,
Table 1) were selected as an auxiliary data source to complement the LOPIT mouse stem cell
dataset. 34 sequence and annotation features were selected using a correlation feature selection,
as described in the materials and methods. Using the LOPIT mouse dataset as our primary data,
and the 34 YLoc features as our auxiliary we employed the standard protocol for testing classi-
fier performance (i) using the k-NN transfer learning with both data sources, (ii) the primary
data alone and (iii) the auxiliary data alone. Although we did not observe a statistically signifi-
cant improvement using the auxiliary data in the transfer learning framework, we did not see
any statistically significant disadvantage in combining information (Fig B in S3 File). Thus we
found that incorporating data from auxiliary sources in this framework does not dilute any
strong signals in the original experiment, demonstrating the flexibility of the classifier.

Protein-protein interaction data. Protein-protein interaction data was retrieved from the
STRING database [54] (version 10) in the human data set. An interaction contingency matrix
was constructed using the STRING combined scores (see methods). Interaction scores for 1109
possible interaction partners were available for 99 of the 381 markers. As described for the

Table 1. A summary of the types of features considered in training and building Briesemeister et al’s
YLoc classifier.

Sequence derived Annotation based

Amino acid sequence e.g. amino-acid composition
(AAC), pseudo- and normalised- AAC [27]

PROSITE patterns [71]

Physiochemical properties e.g. hydrophobic, positively/
negatively charged, aromatic, small etc.

Gene Ontology Terms e.g. cellular compartment
namespace terms from close homologues

Autocorrelation features e.g. autocorrelation of
properties such as charge, volume etc.

Sorting signals e.g. mono nuclear localisation signal,
nuclear export signal, secretory pathways etc.

doi:10.1371/journal.pcbi.1004920.t001
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other sources above, using this protein-protein interaction information as an auxiliary data
source we employed the standard protocol for testing classifier performance (i) using the k-NN
transfer learning with both data sources, (ii) the primary data alone and (iii) the auxiliary data
alone. As per the YLoc data we did not observe a statistically significant increase in combining
auxiliary information with our primary data using transfer learning, however, we did not see
any statistically significant disadvantage (Fig C in S3 File.

Biological application
We applied the two transfer learning classifiers to a real-life scenario, using the E14TG2a
mouse stem cell dataset as our use-case to (i) demonstrate algorithm application, and (ii) high-
light the applicability of the method for predicting protein localisation in MS-based spatial pro-
teomics data over other single-source classifiers.

Sub-cellular protein localisation prediction in mouse pluripotent embryonic stem cells.
The E14TG2a mouse stem cell LOPIT dataset contained 387 labelled and 722 unlabelled protein
protein profiles distributed among 10 sub-cellular niches (Table A in S6 File). Following extrac-
tion of the GO CC auxiliary data matrix for all proteins in the dataset the following five classifi-
ers were applied (1) a k-NN (with LOPIT data only), (2) the k-NN TL (Breckels)(with LOPIT
and GO CC data), (3) an SVM (with LOPIT data only) and (5) the SVM TL (Breckels)(with
LOPIT and GO CC data) and the parameters for each optimised (see methods) for the predic-
tion of the sub-cellular localisation of the unlabelled proteins in the dataset.

In supervised machine learning the instances which one wishes to classify can only be asso-
ciated to the classes that were used in training. Thus, it is common when applying a supervised
classification algorithm, wherein the whole class diversity is not present in the training data, to
set a specific score cutoff on which to define new assignments, below which classifications are
set to unknown/unassigned. The pRoloc tutorial, which is found in the set of accompanying
vignettes in the pRoloc package [56], describes this procedure and how to implement this in
practice. Deciding on a threshold is not trivial as classifier scores are heavily dependent upon
the classifier used and different sub-cellular niches can exhibit different score distributions.

To validate our results and calculate classification thresholds based on a 5% false discovery
rate (FDR) for each of the five classifiers (i.e. k-NN, k-NN TL(Breckels), k-NN TL (Wu), SVM,
SVM TL (Breckels)) we compared the predicted localisations with the localisation of the same
proteins found in the highest resolution spatial map of mouse pluripotent embryonic stem cells
to date [61]. From examining the overlap between our new classifications and the localisations in
the high resolution mouse map we found 183 of our 722 unlabelled proteins matched a high con-
fidence localisation in the new dataset. Of the remaining, 347 of our proteins were labelled as
unknown in the mouse map (i.e. were assigned a low confidence localisation in the experiment),
and 192 proteins did not appear in the map.We used the localisation of these 183 high confidence
proteins as our gold standard on which to validate our findings and set a FDR for our predictions.

Increasing classifier discrimination power. Fig A in S4 File shows the score distributions
for correct and incorrect assignments of the unassigned proteins in the dataset (as validated
through the hyperLOPIT mouse map [61]) and the distribution of the scores per classifier.
Note, the scores are not a reflection of the classification power and the score distributions
between the different methods are not comparable to one another as they are calculated using
different techniques. For both of the single-source k-NN and SVM classifiers there is a large
overlap in the distribution of scores for correct and incorrect assignments (Fig A in S4 File). It
is desirable to have a distribution of scores that enables one to choose a cutoff that minimises
the FDR. What is evident from examining the score distributions of incorrect and correct
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assignments is that by using transfer learning we have increased the discrimination power of
the classifier and thus lowered our FDR.

This is further highlighted by receiver-operator characteristics (ROC) analysis (Fig 3) in
which the performance of the five different classifiers is displayed for different scoring thresh-
olds. When given a specific score cutoff, the ROC curve plots the true-positive rate (TPR) ver-
sus the false-positive rate (FPR) for each classifier. We calculated the area under the ROC
curve (AUC) for each classifier and found the AUC for the k-NN, k-NN TL (Breckels), k-NN
TL (Wu), SVM and SVM TL (Breckels) classifiers were 0.693, 0.746, 0.711, 0.705 and 0.822, for
each classifier respectively.

Using our knowledge of the correct/incorrect outcomes of these 183 previously unlabelled
proteins we calculated an appropriate threshold at which to classify all unlabelled proteins. Using
a FDR of 5% we found assignment thresholds for the SVM (0.85), SVM TL (0.785) and k-NN TL
(0.805) to classify the remaining unlabelled proteins. A FDR of 5% was not possible with the k-
NN classifier, and the lowest achievable FDR was 15%, which occurred using the strictest thresh-
old of 1 i.e. only when all 5 nearest neighbours agreed. Comparing the classifications made from
the single-source classifiers to those made with the transfer learning methods, we found in both
cases we get many more assignments using the combined transfer learning approaches compared
to the single-source methods using a fixed FDR of 5%, as discussed below.

Fig 3. Receiver-operator characteristics (ROC) analysis. The performance of the 5 different algorithms for varying scoring thresholds.
For a specific score cutoff, the ROC curve shows the true-positive rate (TPR) versus the false-positive rate (FPR) for each classifier. We
calculated the area under the ROC curve (AUC) for each curve; the AUC for the k-NN, k-NN TL (Breckels), k-NN TL (Wu), SVM and SVM
TL (Breckels) classifiers were 0.693, 0.746, 0.711, 0.705 and 0.822, for each classifier respectively.

doi:10.1371/journal.pcbi.1004920.g003
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Fig 4 shows the SVM and SVM TL scores assigned to each of the 183 validated proteins. The
sub-cellular class is highlighted by solid colours and an un-filled point on the plot represents the
case where the two classifiers disagreed on the sub-cellular localisation. We found that the SVM
TL classifier gave 70%more high-confidence classifications with the same 5% FDR threshold
than the single-source SVM trained on primary data alone. All proteins that were assigned to a
sub-cellular niche with a high confidence score in both the SVM and SVM TL (Fig 4, top right
grid) were assigned to the same class. We also found that many proteins outside of the high con-
fidence threshold were assigned the same sub-cellular class using both methods, as indicated by
the abundance of solid points on the plot. Of the total 722 previously unlabelled proteins we
assigned high confidence localisations for 204 proteins using the SVM TL, and 176 proteins
using the k-NN TL method, based on a FDR of 5% (Tables A and B in S4 File).

New findings. By way of biological validation we investigated the additional protein
assignments that were found using the SVM TL method (Fig 4, bottom right grid) as novel
assignments to one of these classes, the plasma membrane, by searching through the literature
for supporting empirical evidence. For example, using the SVM TL method we found four new

Fig 4. Scatterplot displaying the scores for the SVM and SVM TL classifiers for the 183 proteins validated by the hyperLOPIT
mousemap [61]. Each point represents one protein and its associated classifier scores. Filled circles highlight proteins that were assigned
the same sub-cellular class with each classifier, empty circles represent the instance when the two classifiers gave different results. The
solid lines show the classification boundaries for the two classifiers at a 5% FDR, above which proteins are classified to the highlighted
class, below these boundaries proteins are deemed low confidence and thus left unassigned.

doi:10.1371/journal.pcbi.1004920.g004
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proteins (GTR3_MOUSE, SNTB2_MOUSE, PAR6B_MOUSE and ADA17_MOUSE) assigned
only to the plasma membrane with the SVM TL method (Fig 5) that were also assigned to the
plasma membrane in the recent high resolution mouse map [61] (Fig B in S4 File). Dehydroas-
corbic acid transporter (GTR3_MOUSE) is a multi-pass membrane protein which has been
previously shown to be a plasma membrane protein in studies isolating the cell surface glyco-
protein in Jurkat cells [62]. Beta-2 syntrophin or syntrophin 3 (SNTB2_MOUSE) is a

Fig 5. Principal components analysis plot (PCA) of the mouse stem cell dataset. Proteins are clustered according to their density
gradient distributions. Each point on the PCA plot represents one protein. Filled circles are the original protein markers used in
classification, hollow circles show new locations as assigned by the SVM TL classifier. The 4 proteins GTR3_MOUSE, SNTB2_MOUSE,
PAR6B_MOUSE and ADA17_MOUSE that were found in the SVM TL method and not in an SVM classification with LOPIT only are
highlighted.

doi:10.1371/journal.pcbi.1004920.g005
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phosphoprotein with PDZ domain through which it interacts with ion channels and receptors.
There are confounding reports of the sub-cellular location of this peripheral protein. It associ-
ates with dystrophins and has no signal sequence. It is found mostly in muscle fibres and brain
[63], but to date, its role has not been studied in mouse embryonic stem cells. Given its associa-
tion with ion channels and receptors, it is perfectly feasible that the steady location of this pro-
tein in stem cells is the plasma membrane. Partitioning defective 6 homolog beta
(PAR6B_MOUSE) is a peripheral membrane protein thought to be in complex with E-cad-
herin, aPKC, and Par3 at the plasma membrane [64], where it functions to guide GTP-bound
Rho small GTPases to atypical protein kinase C proteins [65]. Disintegrin and metalloprotei-
nase domain-containing protein 17 (ADA17_MOUSE) is a single pass plasma membrane pro-
tein which functions to cleave the intracellular domain of various plasma membrane proteins
including notch and TNF-alpha [66]. It is therefore involved in the upstream events in several
signalling pathways. It has a 17 amino acid N-terminal signal sequence suggestive of its func-
tion as a membrane protein. The full list of localisation predictions for all proteins in the
mouse dataset can be found in the R data package pRolocdata.

A comparison of transfer leaning algorithms
We compared the macro- and class-F1 scores from all experiments on all 5 datasets used to
assess the classifier performance of the k-NN TL and SVM TL methods. We found that no sin-
gle method systematically outperformed the other, as described in S5 File.

When applying the SVM TL and k-NN TL classifiers to the unlabelled proteins (see biologi-
cal validation) an analysis of the final assignments (as classified based on a FDR of 5%) showed
that the predicted protein localisations were in high agreement. Although there were no pro-
tein-organelle assignment mismatches between TL methods we did find a few cases where one
TL method would assign a protein to one of the sub-cellular classes but the other TL method
did not result in any organelle assignment, due to low classification scores (see Table C in S4
File). Overall, we did not find any contradicting sub-cellular class assignments.

We also compared Wu’s original k-NN algorithm against our TL methods. Wu’s method
was significantly outperformed by our k-NN TL method for the mouse (p = 4e−4) and roots
dataset (p = 4e−3) and by our SVM TL algorithm for the mouse (p = 7e−13), roots (p = 7e−8),
and human (p = 0.004) datasets (see Figs F and G in S5 File).

Discussion
In this study we have presented a flexible transfer learning framework for the integration of het-
erogeneous data sources for robust supervised machine learning classification. We have demon-
strated the biological usage of the framework by applying these methods to the task of protein
localisation prediction fromMS-based experiments. We further show the flexibility of the
framework by applying these methods to the five different spatial proteomics datasets, from
four different species, in conjunction with four different auxiliary data sources to classify pro-
teins to multiple sub-cellular compartments. We find the two different classifiers—the k-NN TL
and SVM TL—perform equally well and importantly both of these methods outperform a single
classifier trained on each single data source alone. We further applied the algorithm to a real-life
use case, to classify a set of previously unknown proteins in a spatial proteomics experiment on
mouse embryonic stem cells, which was validated using the most high resolution map of the
mouse E14TG2a stem cell proteome produced to date [61]. We find integrating data from a sec-
ond data source directly into classifier training and classifier creation results in the assignment
of proteins to organelles with high generalisation accuracy. Finally, we find that using freely
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available data from repositories we can improve upon the classification of experimental and
condition-specific protein-organelle predictions in an organelle-specific manner.

To our knowledge, no other method has been developed to date that allows the incorpo-
ration of an auxiliary data source for the primary task of predicting sub-cellular localisation in
spatial proteomics experiments. In this study we have developed methods that not only allow
the inclusion of an auxiliary data source in localisation prediction, but we have created a flexi-
ble framework allowing the use of many different types of auxiliary information, and further-
more allowing the user complete control over the weighting between data sources and between
specific classes. This is extremely important for the analysis of biological data in general, and
spatial proteomics data in particular, as many experiments are targeted towards resolving spe-
cific biologically relevant aspects (sub-cellular niches in spatial proteomics) and thus users may
wish to control the impact of auxiliary information for aspects that have been specially targeted
for analysis by the primary experimental method. In this context the setting of weights manu-
ally in the k-NN transfer learning classifier allows users complete power to explicitly choose
whether to call upon an auxiliary data source or simply use data from their own experiment,
on an organelle-by-organelle basis.

The effectiveness of using databases as an auxiliary data source will depend greatly on abun-
dance and quality of annotation available for the species under investigation. For example,
human is a well-studied species and there is a large amount of information available in the
Gene Ontology and Human Protein Atlas. Furthermore, some organelles are easier to enrich
for and thus there exists much more information available to utilise as an auxiliary source on a
organelle by organelle basis. The transfer learning methods we present here allow the inclusion
of any type of auxiliary data, provided of course there is information available for the proteins
under investigation.

The integration of auxiliary data sources is a double-edged sword. On the one hand, it can
shed light on (i) the primary classification task by reinforcing weak patterns or (ii) complement
the signal in the primary data. On the other hand however it is easy to dilute valuable signals in
an expensive experiment by shadowing the uniqueness, and hence biological relevance of the
experimental primary data when integration is not performed with care, a phenomenon coined
negative transfer (see Fig H in S5 File). Thus one needs to be cautious with data integration in
general and not overlook the biological relevance of the primary data. Here, we provide a solu-
tion to this issue by using transfer learning: the k-NN transfer learning classifier uses optimised
class-specific weights so as not to penalise any strong signals in the primary, if no signal is
found in the auxiliary; similarly, the SVM transfer learning method uses optimised data-spe-
cific gamma parameters for each data-specific kernel.

The transfer learning framework forms part of the open-source open-development Biocon-
ductor pRoloc suite of computational methods available for organelle proteomics data analy-
sis. Moreover, as the pipeline utilises the formal Bioconductor classes, different data types, for
example from gene expression technologies among others, can be easily used in this frame-
work. The integration of different data sources is one of the major challenges in the data inten-
sive world of computational biology, and here we offer a flexible and powerful solution to unify
data obtained from different but complimentary techniques.

Materials and Methods

Primary data
Five datasets, from studies on Arabidopsis thaliana [7, 15], Drosophila embryos [17], human
embryonic kidney fibroblast cells [20], and mouse pluripotent embryonic stem cells
(E14TG2a) [56] were collected using the standard LOPIT approach as described by Sadowski
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et al. [12]. In the LOPIT protocol, organelles and large protein complexes are separated by
iodixanol density gradient ultracentrifugation. Proteins from a set of enriched sub-cellular frac-
tions are then digested and labelled separately with iTRAQ or TMT reagents, pooled, and the
relative abundance of the peptides in the different fractions is measured by tandemMS. The
number of measurements obtained per gradient occupancy profile (which comprises of a set of
isotope abundance measurements) is thus dependent on the reagents and LOPIT methodology
used.

The first Arabidopsis thaliana dataset [7] on callus cultures employed dual use of four iso-
topes across eight fractions and thus yielded 8 values per protein profile. The aim of this experi-
ment was to resolve Golgi membrane proteins from other organelles. Gradient-based
separation was used to facilitate this, including separating and discarding as much nuclear
material as possible during a pre-centrifugation step, and carbonate washing of membrane
fractions to remove peripherally associated proteins, thereby maximising the likelihood of
assaying less abundant integral membrane proteins from organelles involved in the secretory
pathway.

The second Arabidopsis thaliana dataset on whole roots is one of the replicates published by
Groen et al. [15], which was set up to identify new markers of the trans-Golgi network (TGN).
The TGN is an important protein trafficking hub where proteins from the Golgi are trans-
ported to and from the plasma membrane and the vacuole. The dynamics of this organelle are
therefore complex which makes it a challenge to identify true residents of this organelle. For
each replicate, sucrose gradient fractions were subjected to a carbonate wash to enrich for
membrane proteins and four fractions were iTRAQ labelled. Following MS the resultant
iTRAQ reporter ion intensities for the four fractions were normalised to six ratios and then
each protein’s abundance was further normalised across its six ratios by sum. In Groen’s origi-
nal experiment the iTRAQ quantitation information for common proteins between the three
different gradients were concatenated to increase the resolution of the TGN [23].

The aim of the Drosophila experiment [17] was to apply LOPIT to an organism with hetero-
geneous cell types. Tan et al. [17] were particularly interested in capturing the plasma mem-
brane proteome (personal communication). There was a pre-centrifugation step to deplete
nuclei, but no carbonate washing, thus peripheral and luminal proteins were not removed. In
this experiment four isotopes across four distinct fractions were implemented and thus yielded
four measurements (features) per protein profile.

The human dataset [20, 67] was a proof-of-concept for the use of LOPIT with an adherent
mammalian cell culture. Human embryonic kidney fibroblast cells (HEK293T) were used and
LOPIT was employed with 8-plex iTRAQ reagents, thus returning eight values per protein pro-
file within a single labelling experiment. As in the LOPIT experiments in Arabidopsis and Dro-
sophila, the aim was to resolve the multiple sub-cellular niches of post-nuclear membranes,
and also the soluble cytosolic protein pool. Nuclei were discarded at an early stage in the frac-
tionation scheme as previously described, and membranes were not carbonate washed in order
to retain peripheral membrane and lumenal proteins for analysis.

The E14TG2a embryonic mouse dataset [56] also employed iTRAQ 8-plex labelling, with
the aim of cataloguing protein localisation in pluripotent stem cells cultured under conditions
favouring self-renewal. In order to achieve maximal coverage of sub-cellular compartments,
fractions enriched in nuclei and cytosol were included in the iTRAQ labelling scheme, along
with other organelles and large protein complexes as for the previously described datasets. No
carbonate wash was performed.

For validation of the predicted localisations made using the transfer learning classifiers on
the E14TG2a dataset above, a new high resolution mouse map was used as a gold standard
[61]. This high resolution map was generated using hyperplexed LOPIT (hyperLOPIT), a
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novel technique for robust classification of protein localisation across the whole cell. The
method uses an elaborate sub-cellular fractionation scheme, enabled by the use of Tandem
Mass Tag (TMT) 10-plex and application of a recently introduced MS data acquisition tech-
nique termed synchronous precursor selection MS3 (SPS)-MS3 [68], for high accuracy and pre-
cision of TMT quantification. The study used state-of-the-art data analysis techniques [56, 67]
combined with stringent manual curation of the data to provide a robust map of the mouse
pluripotent embryonic stem cell proteome. The authors also provide a web interface to the data
for exploration by the community through a dedicated online R shiny [69] application (https://
lgatto.shinyapps.io/christoforou2015).

All datasets are freely distributed as part of the Bioconductor [55]pRolocdata data pack-
age [56].

Auxiliary data
The Gene Ontology. The Gene Ontology (GO) project provides controlled structured

vocabulary for the description of biological processes, cellular compartments and molecular
functions of gene and gene products across species [4]. For each protein seen in every LOPIT
experiment the protein’s associated Gene Ontology (GO) cellular component (CC) namespace
terms were retrieved using the pRoloc package [56]. Given all possible GO CC terms associ-
ated to the proteins in the experiment we constructed a binary matrix representing the pres-
ence/absence of a given term for each protein, for each experiment.

Human Protein Atlas. The Human Protein Atlas (HPA) [57] (version 13, released on 11/
06/2014) was used as an auxiliary source of information to complement the human LOPIT
dataset. The sub-cellular HPA provides protein expression patterns on a sub-cellular level
using immunofluorescent staining of human U-2 OS cells. We used the hpar Bioconductor
package [60] to query the atlas. The data was encoded as a binary matrix describing the locali-
sation of 670 proteins in 18 sub-cellular localisations. In the HPA the reliability of annotated
protein expression data is given a status of supportive or uncertain, dependent on similarity to
immunostaining patterns and consistency with available experimental gene/protein characteri-
sation data in the UniProtKB database. Here, we only localisations that have been supportively
identified.

YLoc classifier features. YLoc [58, 59] is an interpretable web server developed by Briese-
meister and co-workers for the prediction of protein sub-cellular localisation. The YLoc classi-
fier uses numerous features derived from sequence and annotation. A summary of the features
included in the YLoc classifier is shown in Table 1. These features provide a source of comple-
mentary auxiliary data for the high quality MS based datasets described above. To use these fea-
tures as an auxiliary source of information, a large-scale correlation-based feature selection
(CFS) approach [70], as described in [58, 59], was used with the markers from the mouse data-
set to find the set of the most important features.

Protein-protein interaction data. The STRING (Search Tool for the Retrieval of Interact-
ing Genes/Proteins) database [54] contains known and predicted protein interactions and
quantitatively integrates interaction data from direct (physical) and indirect (functional) asso-
ciations for a large number of organisms, including human. We have queried the STRING
database (version 10) with protein accessions and retrieved the interaction partners of proteins
in the human LOPIT data. For each of these proteins, an interaction was recorded and scored
using the STRING combined interaction score which was then used to construct an interaction
contingency matrix to use as an auxiliary data source. For the 1371 proteins in our human
dataset, 520 proteins (99 markers) displayed interactions, which were used in classifier testing.
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The creation of the auxiliary datasets are documented and demonstrated using executable
code in the pRoloc-transfer-learning vignette.

The definition of primary and auxiliary is not defined algorithmically by the quality or the
size of the data, but rather by the data and question at hand. Here, LOPIT was considered the pri-
mary data because it represented the experiment of interest that was to be complemented by the
auxiliary data. In fact, from an algorithmic point of view, primary and auxiliary are reciprocal.

Markers
Spatial proteomics relies extensively on reliable sub-cellular protein markers to infer proteome
wide localisation. Markers are proteins that are defined as reliable residents and can be used as
reference points to identify new members of that sub-cellular niche. Here, marker proteins are
selected by domain experts through careful mining of the literature. Markers for each LOPIT
experiment were specific to the system under study and conditions of interest and are distrib-
uted as part of the Bioconductor [55] pRoloc package [56].

Notation
The primary MS-based experimental datasets P consist of multivariate protein profiles. The
auxiliary data A is a presence/absence binary matrix of Gene Ontology Cellular Compartment
(GO CC) terms. Data are annotated to either (i) a single known organelle (labelled data), or (ii)
have unknown localisation (unlabelled data). Thus we split P and A into labelled (L) and unla-
belled (U) sections such that P = (LP, UP) and A = (LA, UA).

The labelled examples for P and A are represented by LP = {(xl, yl)|l = 1, . . ., |LP|} where

xl 2 R
S, and LA = {(vl, yl)|l = 1, . . ., |LA|} where vl 2 R

T . Thus each lth protein is described by
vectors of S and T features (generally, S<< T, for P and A respectively. Each dataset shares a
common set of proteins that is annotated to one of the same yl 2 C = {1, . . ., |C|} sub-cellular
classes, where jCj 2 N is the total number of sub-cellular classes. Unlabelled data, UP and UA

are represented by UP = {xu|u = 1, . . ., |UP|} where xu 2 R
S and UA = {vu|u = 1, . . ., |UA|} where

vu 2 R
T , respectively.

The labelled data for the ith organelle class, with Ni indicating the number of proteins for the
ith organelle class, is given for P by gPi ¼ fðx; yÞ 2 LPjy ¼ ig and for A by
gAi ¼ fðv; yÞ 2 LAjy ¼ ig. The labelled dataset of all available proteins over the |C| different
sub-cellular classes is given for P by LP ¼ [jCj

i¼1g
P
i and for A by LA ¼ [jCj

i¼1g
A
i .

Transfer learning using a k-nearest neighbours framework
We adapt Wu and Dietterich’s [6] classic application of inductive transfer using experimental
quantitative proteomics data as the primary source (P) and GO CC terms as the auxiliary
source (A). We aim to exploit auxiliary data to improve upon the sub-cellular classification of
proteins found in MS-based LOPIT experiments in an organelle-specific way, using the base-
line k-nearest neighbours (k-NN) algorithm in a transfer learning framework.

In k-NN classification, an unknown example is classified by a majority vote of its labelled
neighbours, with the example being assigned to the class most common among its k nearest
neighbours. Independent of the transfer learning classifier we compute the best k for each data
source for values k 2 {3, 5, 7, 9, 11, 13, 15} through an initial 100 rounds of 5-fold cross-valida-
tion using each set of labelled training data for P and then independently for A (as imple-
mented in pRoloc). We denote by kP the best k for P, and by kA the best k for A.

Having obtained the best k for each data source, the transfer learning algorithm works as
follows. For the uth protein (xu,vu) we wish to classify in U, we start by finding the kP and kA
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labelled nearest neighbours for xu and vu in LP and LA, respectively. Denote these sets NP
u and

NA
u . We then define the vectors pT

u ¼ ðpu1; . . . ; pujCjÞ and qT
u ¼ ðqu1; . . . ; qujCjÞ to contain counts

for each class in the sets of nearest neighbours; that is,

pui ¼ jfðx; yÞ 2 NP
u jy ¼ igj

qui ¼ jfðv; yÞ 2 NA
u jy ¼ igj:

For each protein, let p̂u ¼ pu=kP and q̂u ¼ qu=kA be normalized vectors with elements sum-
ming to 1 and representing the distribution of classes among the sets of nearest neighbours for
each protein. Finally, let NNP ¼ fp̂uju ¼ 1; :::; jUPjg and NNA ¼ fq̂uju ¼ 1; :::; jUPjg.

To include both the primary and auxiliary data in the set of potential neighbours we took a
weighted combination of the votes in NNP and NNA for each sub-cellular class. Class weights
are defined by the parameter vector θT = (θ1, . . ., θ|C|) with values yi 2 f0; 1

3
; 2
3
; 1g chosen by

optimisation through a prior 100 independent rounds of 5-fold cross-validation on a separate
training partition of the labelled data. For the uth unknown protein (xu,vu) in U, the voting
scores for each class i 2 C are calculated as

VðiÞ ¼ yip̂
u
i þ ð1� yiÞq̂u

i ð1Þ

and the protein is assigned to the class c 2 Cmaximizing V(i)

c ¼ arg max
i

VðiÞ:

The class weights θi in Eq 1 control the relative importance of the two types of neighbours for
each class i 2 C. This differs fromWu and Dietterich’s [6] original approach as they only
weight the data sources and not the classes and the data sources. In this paper we select each
class weight θi from the set f0; 1

3
; 2
3
; 1g; however, the algorithm allows us to use any real-valued

θi 2 [0, 1]. If θi = 1, then all weight is given to the primary data in class i and only primary near-
est neighbours in class i are considered. Similarly, if θi = 0, then all weight is given to the auxil-
iary data in class i and only auxiliary nearest neighbours in class i are considered. If 0< θi < 1
then a combination of neighbours in the primary and auxiliary data sources is considered.

Transfer learning using an SVM framework
Linear programming SVMs. The method is based on the use of the linear programming

formulation of the SVM (lpSVM). This formulation promotes classifiers that are sparse, in the
sense that where possible only a few parameters obtained through training are non-zero; for a
detailed introduction see Mangasarian [72].

We begin by describing the standard lpSVM used for classical two-class classification prob-
lems with a single labelled training set. We use the multiple-class version of this approach with
the individual primary and auxiliary sets P and A as a comparison later in the paper; we present
the method here assuming that the primary set P is being used and can be set up as a binary
classification problem; for example, we might wish to predict whether or not a protein should
be assigned to a single specified sub-cellular class. For binary classification problems with class
labels y 2 {+1, −1}, and given labelled data LP = {(xl, yl)|l = 1, . . .,m} wherem = |LP| the classi-
fier takes the form

hðxÞ ¼
þ1 if f ðx;αP; bÞ � 0

�1 otherwise

(
ð2Þ
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where f is the latent function

f ðx;αP; bÞ ¼
Xm
l¼1

yla
P
l K

Pðxl;xÞ þ b:

Here, KP is a kernel (Shawe-Taylor and Cristianini [73]) associated with the primary data and
αT

P ¼ ðaP1 ; . . . ; aP
mÞ and b are parameters determined by training.

For any vector xT = (x1, . . ., xn) let |.|1 denote the 1-norm

jxj1 ¼
Xn

i¼1

jxij:

The training algorithm requires that we solve the linear programme

min
αP ;ξ;b

jαPj1 þ Cjξj1 ð3Þ

such that for each i = 1, . . .,m

yif ðxi;αP; bÞ þ xi � 1

and αP, ξ� 0. The parameters ξ and C act in the same way as the corresponding parameters in
the standard SVM: ξ contains the slack variables allowing some examples to be misclassified,
and C controls the extent to which such misclassifications are penalized during training.

Note that it is possible for the linear programme to have no solution, although we found
this to be extremely rare. When this was the case the classifier reverted to predicting the most
common class in the labelled data.

Transfer learning for binary classification. Once again we adapt the method of Wu and
Dietterich [6] to our problem. The original method requires adaptation as it is designed for data
having two important differences compared with ours. First, it does not require examples in the
labelled data sets LP and LA to be in correspondence and for corresponding training examples
to share the same label. Second it assumes that P and A share the same number of features.
While the first of these differences is easily dealt with as our data is a special case that is already
covered, the second is more problematic. If we now introduce the labelled auxilliary data LA =
{(vl, yl)|l = 1, . . .,m} a direct application of the approach in [6] requires us to evaluate kernels of
the form K(x, v). As P and A contain data with different numbers of features this presents a
problem for any SVM-type method, as kernels are usually required to satisfy the Mercer condi-
tions (Mercer [74]), one of which is that they are symmetric, such that K(x, x0) = K(x0, x). While
research on the use of asymmetric kernels has appeared—see for example [75]—even if we
relax this requirement a kernel is essentially a measure of the similarity of its arguments, and
the question arises of how one might sensibly measure the similarity of a protein profile with a
presence/absence vector of GO CC terms. This problem does not arise withWu and Dietterich’s
data as the two sets they use have the same dimension and are derived in a way that makes mea-
suring similarity straightforward.

We therefore simplify the original method as follows. We maintain the machinery employed
above for the primary data, and introduce a separate kernel KA and parameter vector αA for
the auxilliary data. A vector to be classified now contains both a protein profile x and a GO vec-
tor v. The latent function becomes

f ðx;v;αP;αA; bÞ ¼
Xm
l¼1

yl½aP
l K

Pðxl; xÞ þ aAl K
Aðvl;vÞ� þ b
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and training requires us to solve the linear program

min
αP ;αA ;ξ;b

jaPj1 þ jaAj1 þ Cjxj1 ð4Þ

such that for each i = 1, . . .,m

yif ðxi;vi;αP;αA; bÞ þ xi � 1

and αP, αA, ξ� 0.
Note that this differs from the method ofMultiple Kernel Learning (MKL) (Lanckriet et al.

[76], Gönen and Alpaydin [77]) in that in MKL the single kernel K is replaced in the usual
SVM formulation by a weighted sum of kernels

Kðx1;x2Þ ¼
XD

i¼1

diKiðx1;x2Þ

where di� 0 and
PD

i¼1 di ¼ 1. The di are then included with α and b in a more involved con-
strained optimisation problem. Our approach has the advantages that it remains a straightfor-
ward linear program and in fact introduces fewer constraints on the form of the latent function
f.

Throughout our experiments we used for KP and KA the Gaussian kernel

Kðx1;x2Þ ¼ exp ð�gjjx1 � x2jj2Þ

where ||.|| denotes the 2-norm jjxjj ¼ ð
X

i
x2i Þ1=2. We optimized over the value of C, and also

separate values γP and γA for the two kernels as described below, with C in the range {0.125,
0.25, 0.5, 1, 2, 4, 8, 16} and γP, γA in the range {0.01, 0.1, 1, 10, 100, 1000}.

Multiple classes, class imbalance and probabilistic outputs. As a baseline comparison in
our experiments we used a standard SVM as implemented in the package LIBSVM (Chang and
Lin [78]). In extending our transfer learning technique to deal with multiple classes and proba-
bilistic outputs we therefore maintained as close a similarity as possible to the methods used by
that library.

SVMs and lpSVMs are in their basic form inherently binary classifiers. In order to address
multiple-class problems using non-probabilistic outputs such as the one presented here we use
the method of Knerr et al. [79]. We train a binary classifier to separate each pair of classes. In
order to classify a new example we then take a vote among these binary classifiers, assigning
the example to the class with the most votes.

As we typically have several sub-cellular classes the binary classification problems used in
constructing the multiple-class classifier are inherently unbalanced. We adjust for this using
the method of Morik et al. [80]. In each binary problem let n+ denote the number of positive
examples and n− the number of negative examples. In the linear programme objective func-
tions (Eqs 3 and 4) we replace the single value for C with the adjusted values

Cþ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�=nþ

p
C� ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ=n�

p
for the positive and negative examples respectively. Let S+ denote the set of indices of the posi-
tive examples and S− the set of indices for the negative examples. The term C|ξ|1 in Eqs 3 and 4
becomes

Cþ
X
i2Sþ

jxij þ C�
X
i2S�

jxij:

Learning from Heterogeneous Data Sources

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004920 May 13, 2016 20 / 26



Finally, we prefer to employ probabilistic outputs rather than simply thresholding as in Eq 2.
Once again we employ the same techniques as LIBSVM. The method for binary classifiers is
presented by Platt [81] and Lin et al. [82], and for multiple-class classifiers by Wu et al. [6].

Assessing classifier generalisation accuracy
In order to evaluate the generalisation accuracy of each transfer learning classifier we employed
the following schema in all experiments. A set of LOPIT profiles labelled with known markers,
and their counterpart auxiliary GO CC profiles, were separated at random into training (80%)
and test (20%) partitions. The split was stratified, such that the relative proportions of each
class in each of the two sets matched that of the complete set of data. The test profiles were
withheld from classifier training and employed to test the generalisation accuracy of the trained
classifiers. On each 80% training partition 5-fold stratified cross-validation was conducted to
test all free parameters via a grid search and select the best set of parameters for each classifier.
In each experiment, for each dataset, this process of 80/20% stratified splitting, training with
5-fold stratified cross-validation on the 80% and testing on the 20% was repeated 100 times in
order to produce 100 sets of macro F1 scores and class-specific F1 scores. The F1 score (He
[83]) is a common measure used to assess classifier performance. It is the harmonic mean of
precision and recall, where

precision ¼ tp
tp þ fp

; recall ¼ tp
tp þ fn

and tp denotes the number of true positives, fp the number of false positives, and fn the num-
ber of false negatives. Thus

F1 ¼ 2� precision � recall
precision þ recall

:

A high macro F1 score indicates that the marker proteins in the test data set are consistently
correctly assigned by the algorithm.

To assess whether incorporating an auxiliary data source into classifier training and classi-
fier creation was better than using primary or auxiliary data alone, we conducted three inde-
pendent experiments for each data source and for each transfer learning method. We used the
above schema to assess the generalisation accuracy of using (1) the transfer learning k-Nearest
Neighbours (k-NN) classifier, (2) the primary LOPIT data alone, using a baseline k-NN, (3) the
auxiliary GO CC data alone, using a baseline k-NN. We repeated this for the lpSVM transfer
learning classifier and used a standard SVM with an RBF kernel for single data source experi-
ments. Using these experiments we were able to compare using a simple k-NN versus the trans-
fer learning k-NN, and also the use of a standard SVM versus the combined transfer learning
lpSVM approach.

A two-sample two-tailed t-test, assuming unequal variance, was used to assess whether,
over the 100 test partitions, the estimated generalisation performance using the optimised
class-specific fusion approach was better than using either primary data alone, or auxiliary data
alone. A threshold of 0.01 was used in all t-tests to determine significance.

Optimised parameters for the mouse pluripotent embryonic stem cell data. To classify
the 722 unlabelled proteins in the E14TG2a mouse stem cell dataset we performed 100 rounds
of stratified 5-fold cross validation on the training partition as detailed above. The best parame-
ters were found to be k = 5 for the k-NN classifier and for the k-NN TL classifier kP = 5, kA = 5

and the best class weights were found to be θ ¼ 1
3
; 2
3
; 2
3
; 1; 1

3
; 1; 1; 1

3
; 2
3
; 0

� �
for the 40S ribosome,

60S ribosome, cytosol, endoplasmic reticulum, lysosome, mitochondria, nucleus—chromatin,
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nucleus—non-chromatin, plasma membrane and proteasome, respectively. For the SVM clas-
sifier we found the best parameters to be C = 16 and γ = 10. For the SVM TL classifier we
found C = 16, γP = 1 and γA = 0.1. Using these parameters with their associated algorithms we
classified the 722 unlabelled proteins in the dataset and obtained a classifier score for each
protein.

Supporting Information
S1 File. Supporting figures for the k-NN transfer learning experiments. Visualisations of the
k-NN transfer learning results for human, plant callus, plant roots and fly datasets. Including
bubble plots displaying the distribution of the optimised class weights, principal components
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the estimated generalisation performance of the SVM transfer learning algorithm applied to
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S4 File. Additional figure and tables for biological application. Boxplots displaying the dis-
tribution of classification scores assigned to the unknown proteins in the mouse dataset for
each of the 4 classifiers. Principal components analysis plot displaying the protein classification
results from applying the k-NN transfer learning algorithm on the unlabelled data in the
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unlabelled proteins amongst the 10 known sub-cellular classes in the data from applying each
transfer learning method. the mouse stem cell dataset highlighting the new localistions found
by the k-NN transfer learning method.
(PDF)
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auxiliary dataset, including the total number of proteins identified in each LOPIT dataset and
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(PDF)
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