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Abstract: Background: The escalating prevalence of obesity underscores the urgent need
for effective and scalable interventions. Global Positioning System (GPS)-enabled technolo-
gies have emerged as promising strategies to promote physical activity (PA) and address
obesity. However, the comparative effectiveness of GPS-enabled PA interventions inte-
grated with dietary components versus PA interventions alone remained unclear. This
study aimed to systematically evaluate and compare the effectiveness of GPS-enabled
PA interventions, with or without dietary strategies, in improving obesity-related out-
comes among adults. Methods: A systematic review and meta-analysis was conducted
in accordance with PRISMA guidelines. Randomized controlled trials (RCTs) published
between January 2000 and April 2025 were retrieved from five databases. Eligible studies
included GPS-enabled PA interventions targeting adults (≥18 years old), and reported at
least one primary obesity-related outcome. Meta-analyses were performed using random-
or fixed-effects models, depending on heterogeneity levels, and subgroup analyses ex-
plored effect modifiers. Results: Nine studies (involving 1363 participants, 424 males and
939 females, aged from 34.5–64.8) were included. GPS-enabled PA interventions signif-
icantly reduced body weight (Hedges’ g = −0.241, 95% CI: −0.356 to −0.127, I2 = 6.5%,
Q = 7.49, p = 0.380) and body fat percentage (BFP) (Hedges’ g = −0.412, 95% CI: −0.804 to
−0.020, I2 = 76.0%, Q = 16.66, p = 0.002). Subgroup analyses revealed that interventions
involving PA alone produced a moderate effect on weight reduction (Hedges’ g = −0.328;
95% CI: −0.616 to −0.039), whereas those combining PA with dietary strategies showed
a slightly smaller yet significant effect (Hedges’ g = −0.208; 95% CI: −0.372 to −0.044).
Short-term interventions (≤3 months) demonstrated greater effects on weight reduction.
Sensitivity and bias assessments supported the robustness of short-term outcomes. Conclu-
sions: GPS-enabled PA interventions were effective for promoting short-term reductions in
body weight and BFP. Notably, the addition of dietary components did not consistently
provide greater benefits compared to PA interventions alone. These findings highlight the
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utility of geospatial technology in enhancing behavioral interventions and support the
development of scalable digital health strategies aligned with public health priorities such
as “Healthy China 2030”.

Keywords: GPS-enabled interventions; physical activity; dietary; obesity control; digital
health; meta-analysis; dietary intervention; wearable technology

1. Introduction
The global rise in overweight people and obesity has become a critical public health

concern, driving the growing burden of chronic diseases such as diabetes, cardiovascular
disorders, and metabolic syndromes [1]. The increasing prevalence highlights the urgent
need for effective and sustainable weight management strategies. Among these, physical
activity (PA) has consistently been identified as a cornerstone intervention, particularly
when combined with dietary modifications and behavioral counseling [2]. However,
maintaining long-term adherence to such lifestyle changes remains challenging, often
hindered by motivational, environmental, and structural barriers [3].

In response to these challenges, there has been increasing interest in leveraging digital
technologies to facilitate engagement in PA. One such promising innovation is the appli-
cation of Global Positioning System (GPS) technology within PA interventions [4]. GPS
enables high-resolution tracking of individuals’ spatial and temporal movement patterns
in free-living conditions, providing objective insights into mobility behaviors [5]. When
integrated with smartphone applications for dietary tracking and self-monitoring, GPS-
based systems offer dynamic features such as real-time feedback, adaptive goal setting, and
social support—components known to improve behavioral adherence and long-term en-
gagement [5,6]. While GPS-based PA strategies provide promising avenues for promoting
physical activity, nutritional intake remains another critical determinant of energy balance
and weight management, particularly when integrated with digital interventions.

In addition to physical activity, dietary intake plays a fundamental role in regu-
lating energy balance and body composition [7]. Obesity typically results from a sus-
tained positive energy balance, where energy intake exceeds expenditure [8]. Nutritional
interventions—such as caloric restriction, structured diet plans, or app-assisted dietary
tracking—have been shown to enhance weight control when combined with physical activ-
ity [9]. Evidence from large-scale reviews consistently demonstrates that multicomponent
programs integrating both diet and PA achieve superior outcomes. For example, Johns et al.
(2014) [10] found that combined behavioral interventions were significantly more effective
in reducing body weight than diet-only or PA-only strategies. Similarly, a Cochrane system-
atic review confirmed that such multicomponent interventions outperform single-modality
approaches in both efficacy and sustainability [9,11].

However, the magnitude of these additive effects may be influenced by factors such
as adherence to dietary protocols, digital literacy, feedback frequency, and the complexity
of self-monitoring tools [12]. In digital health interventions—especially those using GPS-
enabled platforms—these variables may moderate behavioral outcomes [13]. Therefore,
rather than treating dietary components as a homogeneous construct, it is methodologically
important to examine them as distinct modifiers [14]. This rationale underpins our decision
to perform subgroup analyses comparing GPS-enabled PA-alone interventions with those
combining PA and dietary strategies.

Emerging evidence has demonstrated the value of GPS-enabled tools for contextual-
izing PA within the environmental landscape. For instance, Marquet et al. [15] reported
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that greater walkability and greenness in GPS-defined activity spaces were positively as-
sociated with higher levels of moderate-to-vigorous PA and step counts. Similarly, Liu
and colleagues [16] developed a device-agnostic GPS–accelerometer integration algorithm
that accurately distinguished indoor versus outdoor time, achieving over 89% accuracy.
These findings highlight how GPS can be utilized to capture context-sensitive activity pat-
terns, supporting scalable monitoring. However, evidence from GPS-based interventions
targeting individual-level weight loss remains mixed, and few studies have systemati-
cally examined how variations in intervention content (e.g., PA only vs. PA combined
with dietary) influence weight-related outcomes. Although dietary behaviors and PA
are theoretically complementary in weight control, scientific evidence on their combined
effects remains somewhat heterogeneous. A systematic review by Johns et al. [10] showed
that behavioral interventions combining diet and PA resulted in greater weight loss than
single-component interventions. Similarly, a Cochrane meta-analysis [11] confirmed that
multicomponent behavioral programs generally outperform standalone PA or diet strate-
gies. Yet the magnitude of additive effects appears to vary depending on intervention
duration, intensity, participant characteristics, and adherence levels. Whether these addi-
tive benefits are preserved in GPS-enabled, technology-mediated interventions remains
unclear [17].

To address this gap, we conducted a systematic review and meta-analysis of GPS-
enabled PA interventions targeting on weight management outcomes (e.g., body weight,
body mass index [BMI], waist circumference, waist–hip ratio [WHR]). We further compared
the effects of interventions that combined PA with dietary components to those that used
PA alone. The findings aim to support the development of scalable interventions that
employ emerging technologies to increase PA and improve weight management outcomes.

2. Materials and Methods
This study was conducted in accordance with the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) guidelines and the Cochrane Collaboration
handbook for Systematic Reviews of Interventions [18]. The study protocol was regis-
tered on the International Prospective Register of Systematic Reviews (PROSPERO, CRD
42024545777).

2.1. Search Strategy

A comprehensive systematic search was conducted to identify randomized controlled
trials (RCTs) evaluating the effects of GPS-enabled behavioral interventions on physical
activity and weight-related outcomes among adults aged 18 years and older. A comprehen-
sive search was performed across five electronic databases: PubMed, Embase, Scopus, Web
of Science, and Medline for studies published from 1 January 2000 to 1 April 2025.

Search strategies combined Medical Subject Headings (MeSH) and free-text terms us-
ing Boolean operators (AND, OR) across four key conceptual domains: (1) GPS and digital
technologies (“Geographic Information Systems” OR “Global Positioning Systems” OR
“Digital Health” OR “Mobile Health” OR “Wearable Devices” OR “Health Wearables” OR
“Consumer Wearables”); (2) physical activity behaviors (“Exercise” OR “Physical Activity”
OR “Lifestyle” OR “Aerobic Exercise” OR “Exercise Training” OR “Step Counts” OR “Inten-
sity” OR “Duration”); (3) study populations (“Adult” OR “Individuals” OR “Participants”
OR “Population”); and (4) obesity-related outcomes and study design (“Overweight” OR
“Obesity” OR “Obese” OR “Body Weight” OR “Body Mass Index” OR “Body Fat” OR
“Waist Circumference” OR “Waist-hip Ratio”) AND (“Randomized Controlled Trial” OR
“Intervention Study” OR “Controlled Clinical Trial”). Additionally, manual searches of the
reference lists of included articles were conducted to capture any additional relevant studies
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not identified through database searches. Grey literature (e.g., dissertations, unpublished
reports, conference abstracts) was not systematically searched.

2.2. Study Selection

The published English full-text studies were included if they met all the following
criteria: (1) were GPS-enabled RCTs and reported sufficient data for effect size calculation;
(2) subjects were ≥18 years old; (3) were required to explicitly incorporated behavioral
change functionalities (e.g., geofencing, real-time activity tracking, or location-triggered
prompts); and (4) reported at least one primary obesity-related outcome (body weight, BMI,
BFP, waist circumference, or WHR).

Exclusion criteria included the following: (1) focused solely on wearable devices for
non-behavioral tracking (e.g., dietary tracking without a focus on changing PA behaviors);
(2) were protocol papers without completed outcome data; (3) primarily compared different
GPS technologies or used GPS as part of a broader multi-component intervention without
isolating the GPS-based PA effect; and (4) involved a single time-point assessment (baseline
or follow-up only), or studies reporting only secondary analyses.

2.3. Data Extraction and Study Quality Assessment
2.3.1. Data Extraction

Two reviewers independently extracted data from each included study using a stan-
dardized extraction form. Extracted information compassed study characteristics (authors,
year of publication, country, population, sample size, participant demographics including
mean age, BMI, and gender), intervention features (type and model of GPS incorporated
devices/techniques), and behavioral components of the intervention. The second reviewer
independently verified all extracted data for completeness and accuracy. Any discrepancies
were resolved through consensus or consultation with a third reviewer.

2.3.2. Study Quality Assessment

The risk of bias for all included studies was assessed independently by two reviewers
using the Cochrane Collaboration’s Risk of Bias Tool (RoB 1.0), as recommended in the
Cochrane Handbook [19] for Systematic Reviews of Interventions. The following seven
domains were evaluated: (1) random sequence generation; (2) allocation concealment; (3)
blinding of participants and personnel; (4) blinding of outcome assessment; (5) incomplete
outcome data; (6) selective reporting; and (7) other potential sources of bias.

Each domain was judged as “low risk” “high risk” or “unclear risk” based on explicit
criteria provided in the Cochrane Handbook. Discrepancies between reviewers were
resolved by discussion or arbitration by a third reviewer if necessary. Consistent with
established practice, risk of bias judgments were not used to exclude studies from the
meta-analysis, but were considered in the interpretation of findings, particularly during
sensitivity and subgroup analyses [20].

2.4. Data Analysis

All meta-analysis and subgroup analyses were performed using Stata version 17.0
(Stata Corp LLC, College Station, TX, USA). Statistical significance was set at a two-tailed
p-value of <0.05. The effect size was calculated using Hedges’ g with corresponding
95% confidence interval [21]. Statistical heterogeneity was assessed using the I2 statistics
(categorized as ≤25% low, 25–50% moderate, 50–75% substantial, >75% considerable). A
fixed-effects model was applied when heterogeneity was (I2 ≤ 25%), while a random-effects
model was used for moderate to considerable heterogeneity (I2 > 25%) [22].

Subgroup analyses were conducted to evaluate the intervention effects by intervention
type, participant gender, and age group. Sensitivity analyses were conducted by excluding
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one study at a time from the meta-analysis. Publication bias was assessed utilizing visual
inspection of funnel plots, along with Egger’s regression test and Begg’s rank correlation
test. A two-tailed p-value < 0.05 was considered indicative of statistically significant
publication bias [23].

3. Results
3.1. Main Study Characteristics and Findings

A total of 128 records were initially identified. After screening, 22 full-text articles
were assessed for eligibility [24–45]. Of these, 13 full-text articles were excluded for the
following reasons: irrelevant outcomes (n = 7), use of wearable devices for monitoring
only without intervention (n = 2), protocol-only publications (n = 1), review articles (n = 1),
and interventions based on non-GPS technologies such as web-based platforms or video
games (n = 2). Finally, nine studies met the inclusion criteria and were included in the
meta-analysis [24–32] (Figure 1).

 

Figure 1. Flowchart of literature search and assessment of articles.

Table 1 summarizes the key characteristics of the included studies. All studies were
published between 2015 and 2024, and were conducted across seven countries: Spain
(n = 2), South Korea (n = 1), Netherlands (n = 1), Sweden (n = 1), Belgium and Ireland
joint study (n = 1), Canada (n = 1), and the United States (n = 2). Sample sizes varied
substantially, ranging from 20 to 440 participants, with a median of 110. The mean age
of participants ranged from 34.5 to 64.8 years, and the proportion of female participants
ranged from 18.3% to 100%.
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Table 1. Characteristics of study populations and intervention approaches of the 9 included studies.

Study Country Population Sample Size (n) Mean Age (years) BMI (Mean ± SD)
(kg/m2) Sex N (%) Intervention Design

Alberto
Hernández-Reyes
(2020) [24]

Spain
Adult women with
obesity or classed
as overweight

60 41.5 31.8 ± 5.3 IG: 31 female (100.0%)
CG: 29 female (100.0%)

Approach of intervention: PA + diet
Intervention period: 26 weeks
Control group: PA prescription and
recommendation: without app to
self-monitoring or push notifications
Intervention group: push notifications with
exercise recommendations and diet tips; app
with specific functionalities: self-monitoring
of weight at home, gamification, or
prescription of PA.

Cristina
Lugones-Sanchez
(2020) [25]

Spain
Adult women with
obesity or classed
as overweight

440 IG: 47.4
CG: 48.8

IG: 32.7 ± 3.3
CG: 32.9 ± 3.4

IG: 161 female (69.7%);
70 male (30.3%)
CG: 144 female (65.7%);
65 male (34.3%)

Approach of intervention: PA + diet
Intervention period: 12 weeks
Control group: counselling (5 min) on diet
and PA; without app or smart band; single
session only.
Intervention group: counselling (5 min) on
diet and PA; record daily physical activity
and food intake daily using app and
smart band

Jae-Ho Choi
(2023) [26] Republic of Korea Adult women 30 IG: 39.7

CG: 39.2
IG: 25.5 ± 4.3
CG: 26.0 ± 4.6

IG: 15 female (100.0%);
CG: 15 female (100.0%)

Approach of intervention: PA
Intervention period: 12 weeks
Control group: None
Intervention group: exercise interventions
using the mHealth system; app and smart
band to track physical activity data

Iris den Uijl
(2023) [27] The Netherlands

Adults with obesity and
coronary artery disease
or nonvalvular
atrial fibrillation

201 IG: 59.0
CG: 59.2

IG: 34.4 ± 4.7
CG: 34.1 ± 4.6

IG: 52 female (33.3%);
68 male (66.7%)
CG: 21 female (21.2%);
78 male (78.8%)

Approach of intervention: PA + diet
Intervention period: 48 weeks
Control group: aerobic training with mainly
weight-bearing exercises; without activity
tracker, weekly sessions by a dietitian
Intervention group: aerobic training with
mainly non-weight-bearing exercises and
nutrition education by dietician; app and
activity monitor to track physical
activity data

Daniel Berglind
(2020) [28] Sweden Adults with

mobility disability 110 IG: 35.6
CG: 34.5

IG: 26.3 ± 5.7
CG: 27.2 ± 5.2

IG: 47 female (85.0%);
8 male (15.0%)
CG: 43 female (78.0%)
12 male (12.0%)

Approach of intervention: PA + diet
Intervention period: 12 weeks
Control group: 12-week supervised
aerobic/strength training; lifestyle coaching
(three sessions); without apps or wearable
devices Intervention group: three
consultation sessions;
using apps to track steps and home-based
bodyweight exercise; using food
photography app to monitor diet
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Table 1. Cont.

Study Country Population Sample Size (n) Mean Age (years) BMI (Mean ± SD)
(kg/m2) Sex N (%) Intervention Design

Jomme Claes
(2020) [29] Belgium and Ireland Adults with CVD 120 61.4 27.9 ± 4.5

IG: 11 female (18.3%);
49 male (81.7%)
CG: 11 female (18.3%);
49 male (81.7%)

Approach of intervention: PA
Intervention period: 24 weeks
Control group: verbal lifestyle advice;
without app or remote support
Intervention group: PATHway system,
including PA planning, PA intervention, and
monitor activity data

Maureen C. Ashe
(2015) [30] Canada Inactive adult women 20 IG: 63.1

CG: 64.8
IG: 32.9 ± 6.8
CG: 26.9 ± 6.8

IG: 8 female (100.0%)
CG: 12 female (100.0%)

Approach of intervention: PA
Intervention period: 24 weeks
Control group: monthly non-exercise
education sessions; without PA prescription
or Fitbit; without exercise
professional contact
Intervention group: activity monitor to
record daily step counts, distance walked,
and provides immediate feedback
on activities;
individualized physical activity prescription;
education and incentives

Elizabeth J. Lyons
(2016) [31] USA Adults with obesity or

classed as overweight 40 61.48 30.3 ± 3.5 IG: 17 female (85.0%)
CG: 17 female (85.0%)

Approach of intervention: PA
Intervention period: 12 weeks
Control group: None
Intervention group: activity monitor and app
to set step goals and monitor activity data;
consultation; social interaction

Bonnie Spring
(2024) [32] USA Adults with obesity or

classed as overweight 342 IG: 40.9
CG: 40.2

IG: 34.5 ± 4.4
CG: 34.3 ± 4.3

IG: 153 female (76.1%);
48 male (23.9%)
CG:152 female (76.4%);
47 male (23.6%)

Approach of intervention: PA + diet
Intervention period: 48 weeks
Control group: WFS: app and activity
monitor with automated feedback to
monitor activity data and self-reported diet;
without coaching; re-randomization
for nonresponses
Intervention group: WFS: app and activity
monitor with automated feedback to
monitor activity data and self-reported diet;
with coaching

Abbreviations: PA, physical activity; BMI, body mass index; IG, intervention group; CG, control group;CVD, cardiovascular disease; WFS, a wireless feedback system; PATHway system,
a multi-component technology platform that integrates the core components of cardiac rehabilitation and incorporates the four key focus areas of telerehabilitation: telemonitoring,
e-learning, telecoaching, and social networking. Notes: age is expressed as mean (years).; BMI is expressed as mean ± SD; n = number of participants.
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All interventions incorporated PA components, with five studies additionally incor-
porating structured dietary interventions [24,25,27,28,32]. Intervention durations ranged
from 3 to 12 months. The intervention group employed wearable technologies or mobile
applications for behavior tracking, such as pedometer apps, smart bands, accelerometers,
or activity monitors. The control group typically received standard care, including gen-
eral lifestyle counseling or education, without access to digital feedback or structured
PA support.

All nine studies assessed obesity-related outcomes, with at least one of the following
reported: body weight (n = 8), BMI (n = 5), BFP (n = 5), fat mass (n = 3), or waist–hip
ratio (WHR) (n = 3) (Table A1). The majority of interventions led to favorable changes in
weight-related outcomes. Specifically, five studies reported significant reductions in fat
mass or BFP, while three reported reductions in BMI. For example, Hernández-Reyes et al.
(2020) [24] observed a significant reduction in fat mass without concurrent changes in BMI
or body weight. Similarly, Lugones-Sanchez et al. (2020) [25] and Choi et al. (2023) [26]
reported meaningful improvements in both BFP and fat mass with the use of smart bands
or AI-driven mHealth systems. In contrast, studies with lower intervention intensity or
without dietary components tended to show limited or non-significant improvements in
BMI and body weight.

Notably, two studies (Claes et al., 2020; Uijl et al., 2023) [27,29] emphasized the
maintenance of cardiometabolic parameters rather than absolute weight loss, highlighting
the role of PA interventions in preserving metabolic stability. Overall, the intervention
group demonstrated consistent benefits for obesity control, with more variable effects on
different obesity-related outcomes.

3.2. Meta-Analysis: GPS-Enabled Effects on Obesity-Related Outcomes
3.2.1. Overall

The meta-analysis demonstrates that GPS-enabled PA interventions incorporating
PA, with or without additional dietary components, were associated with modest but
potentially meaningful improvements in obesity-related outcomes.

Compared with control groups, GPS-enabled PA intervention groups had a signif-
icant reduction in body weight (Hedges’ g = −0.241, 95% CI = −0.356 to −0.127), with
low heterogeneity (I2 = 6.5%, Q = 7.49, p = 0.380). Although there was a trend toward
improvement in BMI, the effect did not reach statistical significance (Hedges’ g = −0.185,
95% CI = −0.375 to 0.005), with moderate heterogeneity (I2 = 26.7%, Q = 5.46, p = 0.243).
A significant reduction in BFP was observed (Hedges’ g = −0.412, 95% CI = −0.804 to
−0.020), although substantial heterogeneity was noted across studies (I2 = 76.0%, Q = 16.66,
p = 0.002) (Figure 2).

3.2.2. Subgroup Analysis

In the subgroup analyses, the short-term effect (≤3 months) resulted in greater re-
duction in body weight (Hedges’ g = −0.239, 95% CI = −0.386 to −0.092) (Figure 3).
Interventions involving PA alone produced a Hedges’ g of –0.328 (95% CI = −0.616 to
−0.039), which was comparable to the effect observed in interventions combining with
dietary strategies (Hedges’ g −0.208, 95% CI = −0.372 to −0.044) (Figure 4).
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(a) Meta-analysis of GPS-enabled PA interventions on body weight (n = 8) 

 
(b) Meta-analysis of GPS-enabled PA interventions on BMI (n = 5) 

(c) Meta-analysis of GPS-enabled PA interventions on body fat percentage (n = 5) 

Figure 2. Forest plot of the effectiveness of physical activity in GPS-enabled strategies on body weight
((a), n = 8), BMI ((b), n = 5), and body fat percentage ((c), n = 5). NI: intervention group sample;
NC: control group sample. Negative Hedges’ g values indicate a higher score in outcomes in favor of
the intervention group.
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Figure 3. Forest plot of the effectiveness of physical activity in GPS-enabled strategies on body
weight change by interventional duration, NI: intervention group sample; NC: control group sample.
Negative Hedges’ g values indicate a higher score in outcomes in favor of the intervention group.

Figure 4. Forest plot of the effectiveness of physical activity in GPS-enabled strategies on body weight
change by type of intervention. NI: intervention group sample; NC: control group sample. Negative
Hedges’ g values indicate a higher score in outcomes in favor of the intervention group.



Nutrients 2025, 17, 1886 11 of 22

Stratification by baseline age demonstrates greater reductions in body weight among
participants aged ≤60 years (Hedges’ g = −0.221, 95% CI = −0.372 to −0.070). Studies
involving only female participants demonstrate comparatively lower weight loss efficacy
than those with mixed-gender samples (Hedges’ g = −0.224, 95% CI: −0.381 to −0.067).
However, female-only interventions achieved significantly greater improvements in BFP
(Hedges’ g = −1.051; 95% CI = −1.495 to −0.606) compared to mixed-gender interventions
(Hedges’ g = −0.090; 95% CI = −0.250 to 0.070) (Table A2).

3.3. Risk of Bias Assessment

The overall methodological quality of the included studies was moderate. Four studies
demonstrated low or unclear risk of bias in domains such as random sequence generation
and selective outcome reporting. However, four studies were judged to have high risk of
bias with regard to allocation concealment and blinding of outcome assessment (Figure 5).

Figure 5. Summary of the risk of bias assessment of the included studies performed by using the
Cochrane Collaboration tool.

3.4. Sensitivity Analyses

Sensitivity analyses were conducted to assess the robustness of pooled estimates
(Table A3). For body weight, effect sizes remained consistent across all leave-one-out
analyses, indicating high result stability. In contrast, the results for BMI change were
sensitive to the inclusion of specific studies, particularly those by Cristina (2020) [25] and
Jomme (2020) [29], which accounted for most of the observed heterogeneity.

For BFP, sensitivity analyses revealed that studies by Alberto Hernández-Reyes
(2020) [24] and Jae-Ho Choi (2023) [26] were primary key contributors to heterogeneity.
Excluding these studies reduced I2 from 75.0% to 66.0% and 66.5%, respectively, suggesting
that variability in study design or population characteristics may have contributed to
between-study differences

3.5. Publication Bias

There was no indication of publication bias for obesity-related outcomes as indi-
cated by funnel plots (Figure A1). Egger’s and Begg’s tests for body weight (Egger
p = 0.698, Begg p = 0.902), BMI (Egger p = 0.201, Begg p = 0.462), and BFP (Egger p = 0.154,
Begg p = 0.211) (Table A4) reveal no statistically significant evidence of publication bias.
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4. Discussion
This meta-analysis provides scientific evidence supporting the effectiveness of GPS-

based PA interventions, particularly those integrating PA and dietary strategies, in achiev-
ing statistically significant short-term reductions in body weight. The pooled effect size
suggests a modest meaningful benefit, consistent with prior reviews highlighting the poten-
tial of digital tools incorporating location-awareness functionalities in promoting behavior
change [46–48]. While multicomponent interventions combining dietary and PA strate-
gies have shown theoretical and empirical advantages [9,11], our findings suggest that
GPS-enabled PA-alone interventions yielded comparable or even greater improvements in
weight-related outcomes compared to combined PA + diet programs. This counterintuitive
result may reflect several contextual and intervention-specific factors observed across the
included studies.

Unlike conventional digital interventions, GPS-enabled technologies provide real-time
location tracking, geofencing, and feedback grounded in environmental context, facilitating
timely, context-specific prompts and behavioral nudges over the past ten years [49]. Their
ecological validity and spatial personalization have been shown to significantly improve
adherence and promote PA in both experimental and real-world settings [50]. Such systems
exhibit high ecological validity by facilitating the seamless integration of physical activity
into users’ daily routines—through strategies such as location-triggered notifications and
route-specific goal suggestions. This geospatial responsiveness distinguishes GPS-enabled
platforms from traditional “smart” devices, which rely predominantly on inertial sensors
or self-reported data and lack dynamic adaptation to the user’s physical surroundings [51].
However, there remains a relative paucity of systematic evaluations focusing specifically
on the role of GPS-enabled PA interventions in weight management.

First, the comparative analysis of GPS-enabled PA interventions, delivered either
alone or in combination with dietary strategies, reveals important insights into their rela-
tive effectiveness for weight management. Addressing both sides of the energy balance
equation—increasing energy expenditure through PA and reducing energy intake via
diet—remains a foundational principle in weight-control interventions [10]. It is widely
assumed that integrating dietary modifications with PA should yield superior outcomes,
but this meta-analysis suggests otherwise, indicating that GPS-enabled PA interventions
alone may achieve comparable, and in some cases greater, improvements in weight-related
metrics such as body weight, BMI, and BFP. Dietary components were typically delivered
via basic self-report tools or standalone nutrition apps lacking dynamic behavioral feedback,
such as real-time progress monitoring, adaptive goal adjustment, or social reinforcement.
Studies such as Hernández-Reyes [24] and Choi [26], for instance, employed structured PA
interventions supported by feedback-rich systems (e.g., pedometer apps with notifications
or AI-enhanced mHealth platforms), while dietary interventions were often limited to
scheduled counseling or passive food logging apps, potentially reducing user engagement
and adherence. This observation aligns with behavioral science theories suggesting that
single-modality interventions may foster better adherence due to reduced cognitive load
and lower complexity [13,52].

Moreover, participants enrolled in most GPS-enabled-PA-alone interventions were
generally more digitally literate and physically autonomous—typically working-age adults
or women without significant comorbidities—making them more receptive to technology-
mediated PA strategies. In contrast, several GPS-enabled PA + diet studies (e.g., den Uijl,
2023) [27] targeted populations with cardiometabolic diseases or older adults undergoing
rehabilitation, groups inherently more susceptible to cognitive, motivational, or techno-
logical challenges when engaging with complex dietary tracking systems. This user-level
heterogeneity is consistent with established digital health frameworks, which underscore
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the importance of tailoring intervention components to users’ cognitive and contextual
capacities [14].

In addition, a review of the dietary components within GPS-enabled PA + diet in-
terventions indicates that nutritional strategies were often delivered via low-intensity
modalities, including static food logging applications or infrequent, non-personalized
counseling sessions [12,26,27]. These approaches typically lacked dynamic features such as
individualized goal adjustment, real-time feedback, or contextual prompts. Conversely, PA
components were more frequently integrated with interactive features—such as step-count
feedback, adaptive targets, or GPS-enabled activity cues—which likely contributed to
higher adherence rates. This imbalance in behavioral engagement may have diminished
the additive value of dietary strategies. Indeed, limited or absent reporting of dietary adher-
ence was common, and available data indicate modest compliance levels. Prior research in
the literature has shown that passive or cognitively demanding dietary monitoring systems
are associated with reduced long-term engagement and diminished intervention effec-
tiveness [12]. Collectively, these implementation discrepancies suggest that the delivered
“behavioral dose” of dietary intervention was likely subtherapeutic, thereby attenuating
the expected synergistic effects in GPS-enabled PA + diet conditions.

Furthermore, GPS-enabled tools, with their real-time tracking, geofencing, and person-
alized feedback mechanisms, which facilitate seamless integration of physical activity into
daily routines and enhance behavioral engagement [53]. In contrast, the addition of dietary
components often introduces variability in adherence and effectiveness, due to factors
such as dietary literacy, intervention burden, and heterogeneity in dietary protocols [12].
However, few studies including those in our review provided detailed information on
participant adherence. This remains a critical gap that future research should address to
enhance the reliability and applicability of intervention findings. A significant reduction in
BFP was observed, whereas the downward trend in BMI did not reach statistical signifi-
cance, possibly due to the limited number of studies reporting this outcome. Notably, BFP
data were mainly obtained from studies involving female participants, who may respond
more readily due to higher baseline fat levels. Moreover, the relatively short duration of
interventions may have further constrained the ability to detect meaningful changes [54].

Second, intervention duration emerged as a critical factor moderating intervention
effectiveness. A systematic review indicated that short-term, multicomponent interven-
tions (lasting six months or less) were effective in achieving weight loss among adults
with obesity or classed as overweight [55]. This pattern likely reflects broader trends
observed in digital health interventions, where participant engagement typically de-
clines over time due to motivation decay and diminished novelty effects. Our review
extends these insights by demonstrating that the most pronounced weight loss effects oc-
curred within the first three months of GPS-enabled PA interventions (Hedges’ g = −0.286,
p < 0.001), while outcomes at six months were attenuated and not statistically significant
(Hedges’ g = −0.221, p = 0.080). This difference may reflect not only the natural decline
in participant engagement over time—a phenomenon well-documented in digital health
interventions—but also the limited number of long-term studies included in our analysis
(n = 4 for six months vs. n = 4 for three months), reducing the statistical power to detect
longer-term effects. Importantly, many of the six-month interventions lacked continuous
adaptive support mechanisms (e.g., tailored feedback or social connectivity features), which
have been shown to sustain behavioral changes beyond the initial engagement period [14].
These findings reinforce the idea that short-term interventions (particularly within three
months) may optimize weight loss outcomes, likely benefiting from higher user retention,
novelty effects, and intensified behavioral engagement. Taken together, these findings high-
light that the apparent superiority of PA-alone interventions observed in this meta-analysis



Nutrients 2025, 17, 1886 14 of 22

should not be interpreted as undermining the role of diet. Rather, it reflects the differential
implementation quality and contextual integration of PA and dietary components within
GPS-enabled digital frameworks. Future GPS-enabled PA interventions should prioritize
integrating adaptive reinforcement strategies, social support components, and seamless
alignment with broader lifestyle routines to sustain long-term efficacy [56,57].

Third, assessment of publication bias revealed no statistically significant asymmetry
based on Egger’s and Begg’s tests, however, the relatively small number of included stud-
ies per outcome (n < 10) limits the statistical power of these evaluations and necessitates
cautious interpretation [58]. Notably, in the subgroup analysis of BFP, heterogeneity among
mixed-gender studies was completely eliminated (I2 = 0.0%) following stratification by sex.
This finding suggested that gender composition may moderate intervention effects, poten-
tially masked in aggregated analyses that fail to disaggregate by sex. These findings are
consistent with previous evidence suggesting sex-based differences in response to weight
loss interventions, potentially due to hormonal profiles, metabolic flexibility, psychosocial
determinants, or engagement patterns [58,59]. Nonetheless, caution is warranted, as the
small number of female-only studies (n = 2) limits the robustness of these conclusions.

Finally, sensitivity analyses revealed that long-term outcomes for body weight and
BFP were disproportionately influenced by a small number of studies, including those
by Hernández-Reyes (2020) [24] and Choi (2023) [26], both of which employed relatively
intensive interventions with structured feedback and personalized activity goals. These
studies also tended to involve female-only samples and shorter durations, consistent with
our stratified findings showing enhanced intervention effects in these contexts. Future
studies should account for these variables in both design and analysis phases. Specifically,
stratified reporting by sex, planned subgroup analyses, and transparent disclosure of
intervention intensity and engagement strategies will be essential to clarify heterogeneous
effects and advance tailored intervention design.

This study comprehensively evaluated GPS-enabled PA interventions for weight man-
agement, addressing a critical gap in prior digital health research by integrating real-time
spatial tracking with behavior change strategies. Through rigorous synthesis and subgroup
analyses, the review not only assessed overall intervention efficacy but also dissected effect
modifiers such as intervention type, duration, age, and sex, offering valuable insights
for precision-tailored intervention design. The findings underscore the public health rele-
vance and scalability of GPS-enabled PA interventions, particularly in supporting global
initiatives like “Healthy China 2030”, which prioritize personalized, technology-driven
strategies for health promotion. However, several limitations must be acknowledged.
From 2000 to 2025, only nine small-scale RCTs, involving a total of 1363 participants, were
eligible for inclusion in our review, highlighting the limited application of GPS-enabled
PA interventions for weight management. This scarcity likely reflected several practical
barriers rather than a lack of research interest. GPS technologies typically require more
advanced hardware, higher energy consumption, and greater costs compared to standard
wearable technologies, thereby limiting their scalability in clinical-based trials [53]. Further-
more, continuous location tracking raises privacy and data security concerns, potentially
deterring participant enrollment and engagement [60]. The external validity of this re-
view is constrained by substantial heterogeneity across study populations, intervention
modalities, and geographic settings. Notably, the majority of included trials predominantly
enrolled adults with obesity or classed as overweight, characterized by a mean baseline
age of approximately 50.1 years and an average BMI of 30.4 kg/m2. This demographic
homogeneity may limit the extrapolation of the findings to broader populations, including
younger individuals, those with normal weight, or cohorts from different sociocultural and
geographic backgrounds. These challenges must be carefully addressed in future research
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and implementation efforts to fully harness the potential of GPS-enabled strategies for
scalable public health impact. Future research should explore the potential of integrating
machine learning algorithms to enhance the personalization of GPS-enabled interventions
and to dynamically tailor PA prompts in response to real-time behavioral and environ-
mental data. In addition, long-term, large-scale RCTs are needed to validate the sustain-
ability, scalability, and cost-effectiveness of these technologies across diverse populations
and settings.

5. Conclusions
In conclusion, this study provided a comprehensive evaluation of GPS-enabled PA

interventions, marking one of the first systematic efforts to highlight the distinct contribu-
tions of geospatial functionalities to weight management outcomes. Our findings suggest
that GPS-enabled interventions, particularly in short-term applications, could achieve
meaningful reductions in body weight and body fat percentage (BFP). Future research
should focus on standardizing intervention protocols, extending durations, and optimizing
user-centered designs to maximize the potential of geospatial data for personalized and
scalable behavior change. In parallel, policy integration and infrastructure support will
be critical to ensure equitable access, protect data privacy, and maximize the public health
impact of GPS-enabled technologies, aligning with national health priorities such as the
“Healthy China 2030” initiative.
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Appendix A

Table A1. Characteristics of physical activity and dietary intervention and key findings of the
9 included studies.

Study
PA and Dietary Intervention Effect of Intervention on

Weight Status Key Findings
PA Diet BW BMI BFP WHR BFM

Alberto
Hernández-Reyes
(2020) [24]

Push notifications:
exercise
recommendations;
app: specific
functionalities:
self-monitoring of
weight at home,
gamification, or
prescription of PA

Push notifications:
health tips, such as
nutritional properties
of specific foods

→ → ↓ NR NR

The intervention group
achieved significantly greater
fat mass loss compared to the
control group, though weight
and BMI reductions were
similar between groups.

Cristina
Lugones-Sanchez
(2020) [25]

Counselling: gave
advice on
physical activity
App and smart band:
record daily
physical activity

Counselling: gave
advice on
healthy diet
App: food
intake daily

↓ ↓ → → →

The mHealth intervention
combining a smartphone app
and smart band
demonstrated greater
reductions in weight, BMI,
body fat percentage, and fat
mass compared to standard
counseling alone. No
significant changes were
observed in
waist-to-hip ratio.

Jae-Ho Choi
(2023) [26]

App and smart band:
track physical
activity data;
mHealth system:
exercise interventions

NA → → ↓ → ↓

The 12-week mHealth
exercise intervention
significantly reduced body fat
percentage and fat mass in
obese women but did not
significantly affect body
weight, BMI, or
waist-to-hip ratio.

Iris den Uijl
(2023) [27]

Group intervention:
aerobic training
with mainly
non-weight-
bearing exercises
App and activity
monitor: track
physical activity data

Group intervention:
nutrition education
by dietician

→ NR NR NR NR

The intervention
demonstrated short-term
(3 month) improvements in
weight loss and physical
activity compared to standard
CR, but these benefits were
not sustained long-term.

Daniel Berglind
(2020) [28]

App: step tracking,
home-based
bodyweight exercise

App: food
photograph → ↓ NR NR →

Both the app-based and
supervised exercise
interventions showed
comparable improvements in
waist circumference and fat
mass, with no significant
between-group differences in
weight or BMI after 12 weeks.
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Table A1. Cont.

Study
PA and Dietary Intervention Effect of Intervention on

Weight Status Key Findings
PA Diet BW BMI BFP WHR BFM

Jomme Claes
(2020) [29]

PATHway system:
encourage to achieve
the PA goal, activity,
and monitor
activity data

NA NR → → → NR

The intervention helped
maintain stable
cardiovascular risk factors,
including body weight, BMI,
body fat percentage, and
waist-hip ratio, while these
measures showed
unfavorable trends in the
usual care group over six
months. No significant
between-group differences
were observed in absolute
changes, though the
intervention group
demonstrated better stability
in metabolic health markers.

Maureen C. Ashe
(2015) [30]

Individualized
physical activity
prescription;
activity monitor:
provides immediate
feedback on activities
and monitor
activity data

NA ↓ NR NR NR NR

The intervention group
showed significant
improvements in weight and
diastolic blood pressure
compared to the control
group, suggesting that
reducing sedentary behavior
and increasing daily activity
may positively influence
body composition and
cardiovascular health.

Elizabeth J Lyons
(2016) [31]

Activity monitor and
app: set step goals,
idle alert, and
monitor activity data

NA → NR → NR NR

The intervention showed
small but favorable effects on
weight and body composition
(BMI, body fat), though
changes were not statistically
significant.

Bonnie Spring
(2024) [32]

App and activity
monitor: monitor
activity data and
automated feedback

App: self-
reported diet ↓ NR NR NR NR

Participants using the
wireless feedback system
(WFS) with coaching
achieved greater weight loss
and BMI reduction compared
to WFS alone, though no
significant differences were
observed in step-up
interventions for
non-responders.

Abbreviations: PA, physical activity; BW, body weight; BMI, body mass index; WHR, waist-to-hip ratio; BFP,
body fat percentage; BFM, body fat mass; NR, not reported; NA, not application; PATHway system, a multi-
component technology platform that integrates the core components of cardiac rehabilitation and incorporates
the four key focus areas of telerehabilitation: telemonitoring, e-learning, telecoaching, and social networking.
Note: ↓, or → = If the study had a control group, significant worsening or no effect on outcome was compared the
intervention group with the control group; if the study did not have a control group, significant improvement,
worsening, or no effect on outcome at pre and post the intervention.
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Table A2. Meta-analysis of GPS-enabled PA interventions on weight reduction by the characteristic
of interventions.

Sample Size Number of
Studies

Meta-Analytic Effect Size Heterogeneity

Effect Size (95% CI) Z-Value p-Value I2 (%) Q p-Value a

A. BW

Total 1243 8 −0.241 (−0.356, −0.127) −4.133 <0.001 6.5% 7.49 0.380
Intervention type

PA 90 3 −0.328 (−0.616, −0.039) −2.228 0.026 0.0% 0.21 0.902
PA + diet 1153 5 −0.208 (−0.372, −0.044) −2.481 0.013 42.1% 6.91 0.141

Gender
Male and female 1133 5 −0.224 (−0.381, −0.067) −2.791 0.005 44.0% 7.14 0.128
Only female 110 3 −0.275 (−0.653, 0.102) −1.429 0.153 0.0% 0.32 0.853

Age *
≤60 1183 6 −0.221 (−0.372, −0.070) −2.877 0.004 31.2% 7.26 0.202
>60 60 2 −0.304 (−0.618, 0.010) −1.899 0.058 0.0% 0.07 0.791

Intervention
period

≤3 month 623 4 −0.239 (−0.386,−0.092)- −3.182 0.001 0.0% 2.10 0.552
≥6 month 620 4 0.221 (−0.469, 0.026) −1.751 0.080 44.2% 5.38 0.146

B. BMI

Total 760 5 −0.185 (−0.375, 0.005) −1.911 0.056 26.7% 5.46 0.243
Intervention type

PA 150 2 −0.182 (−0.504, 0.141) −1.105 0.269 0.0% 0.01 0.919
PA + diet 610 3 −0.152 (−0.477, 0.172) −0.920 0.358 62.8% 5.38 0.068

Gender
Male and female 670 3 −0.153 (−0.440, 0.134) −1.044 0.296 63.1% 5.42 0.067
Only female 90 2 −0.199 (−0.614, 0.215) −0.941 0.347 0.0% 0.03 0.866

Age *
≤60 640 4 −0.161 (−0.424, 0.102) −1.202 0.229 44.7% 5.42 0.143
>60 120 1 −0.190 (−0.551, 0.171) −1.033 0.302 - - -

Intervention
period

≤3 month 580 3 0.163 (−0.211, 0.538) −0.699 0.485 63.1% 5.42 0.066
≥6 month 180 2 −0.202 (−0.496, 0.093) −1.343 0.179 0.0% 0.01 0.914

C. BFP

Total 690 5 −0.412 (−0.804, −0.020) −2.059 0.039 76.0% 16.66 0.002
By type of
intervention

PA 190 3 −0.425 (−1.091, 0.240) −1.253 0.210 75.8% 8.27 0.016
PA + diet 500 2 −0.477 (−1.292, 0.338) −1.147 0.251 88.0% 8.34 0.004

Gender
Male and female 600 3 −0.090 (−0.250, 0.070) −1.103 0.270 0.0% 0.18 0.912
Only female 90 2 −1.051 (−1.495, −0.606) −4.631 <0.001 0.0% 0.59 0.441

Age *
≤60 530 3 −0.716 (−1.492, 0.061) −1.807 0.071 87.1% 15.56 <0.001
>60 160 2 −0.067 (−0.374, 0.240) −0.430 0.667 0.0% 0.16 0.692

Intervention
period

≤3 month 510 3 −0.427 (−1.032, 0.178) −1.385 0.166 76.2% 8.39 0.015
≥6 month 180 2 −0.459 (−1.344, 0.425) −1.017 0.309 86.8% 7.56 0.006

PA, physical activity; BW, body weight; BMI, body mass index; BFP, body fat percentage; I2 > 50% or p value < 0.10
was considered evidence of heterogeneity; p value a referred to the results of Cochran’s Q test for heterogeneity
within each subgroup. * The determination was based on the median or mean of the baseline age.

Table A3. Sensitivity analysis of weight, BMI, and body fat percentage.

Study ES [95% Conf. Interval] I2 (%) p

A. BW

Alberto Hernández-Reyes (2020) [24] −0.238 −0.369, −0.106 19.8 0.279
Cristina Lugones-Sanchez (2020) [25] −0.226 −0.382, −0.069 19.6 0.280
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Table A3. Cont.

Study ES [95% Conf. Interval] I2 (%) p

Jae-Ho Choi (2023) [26] −0.232 −0.357, −0.107 16.3 0.306
Iris den Uijl (2023) [27] −0.288 −0.405, −0.171 0.0 0.684
Daniel Berglind (2020) [28] −0.266 −0.379, −0.154 0.0 0.449
Maureen C. Ashe (2015) [30] −0.238 −0.397, −0.180 19.7 0.279
Elizabeth J Lyons (2016) [31] −0.225 −0.360, −0.091 17.5 0.296
Bonnie Spring (2024) [32] −0.188 −0.312, −0.063 0.0 0.631

B. BMI

Alberto Hernández-Reyes (2020) [24] −0.162 −0.401, 0.076 45.1 0.141
Cristina Lugones-Sanchez (2020) [25] −0.070 −0.291, 0.150 0.0 0.509
Jae-Ho Choi (2023) [26] −0.175 −0.399, 0.049 44.6 0.144
Daniel Berglind (2020) [28] −0.287 −0.443, −0.133 0.0 0.872
Jomme Claes(2020) [29] −0.161 −0.424, 0.102 44.7 0.143

C. BFP

Alberto Hernández-Reyes (2020) [24] −0.257 −0.615, 0.101 66.0 0.032
Cristina Lugones-Sanchez (2020) [25] −0.558 −1.136,0.021 77.7 0.004
Jae-Ho Choi (2023) [26] −0.256 −0.558, 0.076 66.5 0.030
Jomme Claes(2020) [29] −0.562 −1.116, −0.007 80.8 0.001
Elizabeth J Lyons (2016) [31] −0.483 −0.960, −0.006 82.0 <0.001

ES, effect size; BW, body weight; BMI, body mass index; BFP, body fat percentage; I2 > 50% or p < 0.10 was
considered evidence of heterogeneity.

Table A4. Assessment of publication bias by Egger’s test and Begg’s test.

BW BMI BFP

p (Egger’s test) 0.698 0.201 0.154
p (Begg’s test) 0.902 0.462 0.221

BW, body weight; BMI, body mass index; BFP, body fat percentage.

Figure A1. Assessment of publication bias by funnel plot. Each dot represented an individual study.
The vertical solid line indicated the overall effect size (Hedges’ g), and the dashed lines represented
the 95% confidence limits. Symmetry suggested low risk of publication bias.
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