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The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China.
Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity
for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear.
Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic
enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but
not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated
ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-
related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results
demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated
through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-,
MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell
migration and nerve regeneration.

1. Introduction

Nerve regeneration is a complex physiological response that
takes place after injury. Neurons can be separated into
central and peripheral nervous systems, which have different
anatomical structures and regeneration ability. In mammals,
the central neurons without a myelin sheath are very difficult
to regenerate. In contrast, the peripheral nervous system
(PNS) with a myelin sheath exhibits easier regrowth [1].
The regrowth ability results from the intrinsic neuronal

activities and surrounding non-neuronal properties in which
Schwann cells provide an essentially supportive activity for
neuron regeneration. Schwann cells differentiate into the
myelin sheath of the PNS and can proliferate and migrate
into the distal end in the injured nerve area to support
axonal regrowth [2]. It has also been reported that Schwann
cell migration, which also occurs at the proximal end of
the injury area, provides a guide for regenerating axons by
interacting with nerve fibers or basal lamina [3]. Schwann
cell migration is crucial for successful axonal elongation
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[3, 4]. Moreover, peripheral nerve injury locally activates
Schwann cells and macrophages to synthesize a cocktail
of neurotrophic factors, adhesion molecules, cytokines and
growth-promoting surface molecules [5, 6]. However, the
factors that regulate Schwann cell migration and their
signaling mechanisms remain unclear.

The mitogen-activated protein kinase (MAPK) family
is a crucial regulator of the pathways involved in cell
proliferation [7] and migration [8]. Extracellular signal-
regulated protein kinase (ERK) is the most extensively
studied MAPK [9]. Recently, several studies found that
after nerve injury, which increased ERK [10] phosphory-
lation, requires ERK to promote neurite outgrowth [11].
However, ERK has also been implicated in the migration
of various cell types, including fibroblasts and carcinoma
cells [12, 13], but not in Schwann cells. Interestingly, to
promote migration, growth cones secrete proteases that are
thought to dissolve cell-cell and cell-matrix adhesions during
peripheral nerve regeneration. These proteases include the
plasminogen activators (PAs), tissue PA (tPA) and urokinase
PA (uPA) and their substrate, plasminogen [14]. Plasmin,
activated by tPA or uPA, can activate MMP-9 and MMP-2
[15]. Many experiments have determined that after injury
PA expression is rapidly induced in neurons [14, 16]. A
lack of plasminogen activators affects MMP-9 and MMP-
2 activity [17]. However, little is known about Schwann
cell migration using MEK/ERK signaling pathways to active
PAs and MMPs. In addition, c-Jun NH2-terminal kinase
(JNK) and p38 are other members of the MAPK super
family. Accumulating evidence has also implicated the JNK
and p38 pathway in cell migration regulation [18]. The
expression of matrix-degrading proteolytic enzymes (PAs
and MMPs) could be regulated by JNK [19] and p38 [20]
signal transduction pathways to promote migration in cells.
Collectively, we investigated the important role of MAPKs
in the regulation of PAs and MMPs activity in response
to earthworm stimuli. Therefore, enhancing the migration
ability of Schwann cells might be another potential approach
to neuron regeneration.

With a history of several thousand years, the pharmacol-
ogy and clinical application of traditional Chinese medicine
has been well documented. Recently, biomedical material
science combined with Chinese herbal medicine has been
applied to nerve regeneration studies. For example, Schwann
cells filled into a silicon rubber chamber can bridge a 15-mm
gap in rat sciatic nerves. Several Chinese medicines have been
identified as enhancing neuron regeneration [21]. Therefore,
neuron regrowth induction using Schwann cells and herbal
medicine has good potential for treating injured nerves.
The earthworm is a widely used Chinese herbal medicine
[22]. It has dense nutritional content because of their soil-
based origin [23]. Extracting medicinal compounds from the
earthworm has traditionally been practiced by indigenous
people throughout the world, more particularly in Asia [24].
Previous earthworm studies have shown its antimicrobial
[25], hepatoprotective [23], anticancer [26] and scar wound-
healing characteristics [27]. The anti-inflammatory activity
together with antioxidant properties seems to be due to
the high polyphenolic content in earthworm tissue [28].

Moreover, crude earthworm extract has a thrombolytic effect
that could significantly promote blood circulation to remove
stasis [29]. Lumbrokinase extracted from the earthworm
has been used to treat stroke and cardiovascular diseases
[30]. Lumbrokinase is a group of proteolytic enzymes [31]
that include a plasminogen activator and plasmin [32].
It can dissolve fibrin directly and also activate plasmino-
gen [33]. In healthy human volunteers, oral-administered
earthworm powder increased levels of tPA and fibrinolytic
activity [34]. Earthworm tissue homogenates have revealed
a glycolipoprotein mixture referred to as G-90, composed
of macromolecules. G-90 possesses several growth factors
and also participates in tissue regeneration and wound
healing [35]. In vivo experiments have also found that
a mixed prescription of liquid extracted from earthworm
more obviously improves peripheral nerve regeneration than
icariin [36]. Verified earthworm nerve regenerating and
movement enhancing effects on Schwann cells are unknown.
There is as yet no conclusive explanation for the possible
molecular mechanism involved in Schwann cell migrating
effects. Therefore, this study investigates the molecular
mechanism and signaling pathways of earthworm extract in
neuron regeneration. Our results indicate that earthworm
extract promotes Schwann cell migration through the acti-
vation of PAs and MMPs, namely ERK1/2 and p38MAPK
pathways.

2. Methods

2.1. Earthworm Extraction. Spray-dried earthworm powder,
Pheretima aspergillum (Annelida, Oligochaeta, Lumbricidae),
was purchased from Wann-Guo Pharmaceutical Co., Ltd.,
Tainan, Taiwan, R.O.C. Two grams of earthworm powder
was dissolved in 10 ml of 70% ethanol and left at room
temperature for 24 h. The next day the clear supernatant
fraction was collected after centrifugation at 2000 rpm for
20 min. The solvents were then removed using a water bath
at 37◦C for 4 h. The extract was then centrifuged for 5 min at
5000 rpm at 4◦C. The supernatant was then filtered through
a 0.22 μm microspin filter just prior to the experiments. The
concentrations used in the in vitro model were 0, 31.25, 62.5,
125, 250, 500 and 1000 μg/ml for RSC96 cell treatment. All
solutions were stored at –80◦C.

2.2. Cell Culture and Treatments. RSC96 cells were pur-
chased from American Type Culture Collection (ATCC) and
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 4 mM
L-glutamate, 1.5 g/l sodium bicarbonate and 1% non-
essential amino acids (NEAAs) in a humidified atmosphere
of 5% CO2 and 95% air. RSC96 cells cultures were treated
at the indicated times or concentrations with earthworm
extract.

2.3. Inhibitor. RSC96 cells were treated with several
inhibi-tors, including U0126 (MEK1 and MEK2 inhibitor;
Promega) and SB203580 (p38 MAP kinase inhibitor;
Promega).
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2.4. MTT. Cell viability was estimated using a colorimetric
assay based on tetrazolium dye (MTT) conversion into a
blue formazan product. All procedures were described in our
previous study [37]. After harvesting and washing twice with
PBS, the cells were cultured in phenol red-free DMEM (1 ml)
with MTT (0.5 mg/ml) at 37◦C for 4 h. The cells were then
incubated in iso-propenol (1 ml) with shaking for 10 min,
aspirated and measured spectrophotometerically at 570 nm.

2.5. Migration. We used a Boyden chamber and polyvinyl-
pyrrolidone-free polycarbonate membranes with 8-μm pores
(Neuro Probes, Inc.) for the migration assay. The bottom
wells of the chamber were filled with 10% FBS DMEM
medium. The wells were covered with a membrane sheet, in
which serum-free medium was added into the top chamber.
Membranes were then stained with Giemsa stain (Sigma).
Cells that migrated through the membrane were counted
using a counting grid fitted into a phase contrast microscope
eyepiece.

2.6. Wound Healing. Cells were initially seeded uniformly in
60-mm culture plates with an artificial “wound” carefully
created at 0 h, using a sterile P-200 pipette tip to scratch
the subconfluent cell monolayer to make an approximately
1.0-mm gap. After 24 h of culture with 125 μg/ml earthworm
concentration, the cell migration was calculated by counting
cell numbers that had advanced into the cell-free space
randomly selected from an area at the initial wound border.
Photographs were taken of the wounded regions using an
inverted Olympus microscope.

2.7. Western Blot. Cultured RSC96 cells were scraped and
washed once with PBS. The cell suspension was then spun
down and cell pellets were lysed for 30 min in lysis buffer
[50 mM Tris (pH 7.5), 0.5 M NaCl, 1.0 mM EDTA (pH 7.5),
10% glycerol, 1 mM BME, 1% IGEPAL-630 and proteinase
inhibitor cocktail (Roche)] and centrifuged at 12 000 g for
10 min. The supernatants were removed and placed in new
Eppendorf tubes for western blot analysis. Proteins from
the RSC96 cells were separated in 12% gradient SDS-
PAGE and transferred onto nitrocellulose membranes. Non-
specific protein binding was blocked in blocking buffer at
RT for 1 h (5% milk, 20 mM Tris-HCl, pH 7.6150 mM NaCl
and 0.1% Tween 20). The membranes were blotted with
specific antibodies and incubated in 4◦C blocking buffer
overnight. For repeated blotting, nitrocellulose membranes
were stripped with Restore Western blot stripping buffer
(Pierce Biotechnology, Inc, Rockford, IL, USA) at room tem-
perature for 30 min. Densitometric analysis of immunoblots
was performed using the AlphaImager 2200 digital imaging
system (Digital Imaging System, CA, USA). Experiments
were performed in triplicate.

2.8. Zymography. MMP-2 and MMP-9 activity was deter-
mined using gelatin zymography. RSC96 cells were treated
with earthworm extract at different times. After incubation
for 0, 4, 8, 12, 16, 20 and 24 h, the cell medium was collected.
Sample medium was electrophoresed on an 8% polyacry-
lamide gel containing 0.1% gelatin. After electrophoresis, the

gel was washed for 30 min two times in washing buffer (2.5%
Triton X-100). The gel was then incubated in incubation
buffer (1% NaN3; 2M Tris-HCl, pH 8.0; 1 M CaCl2) at
37◦C for 24 h with shaking and subsequently stained with
Coomassie blue. The presence of MMP-2 and MMP-9
gelatinolytic activity was identified as clear bands on a blue
background after destaining.

2.9. siRNA. Double-stranded siRNA sequences targeting
MEK and p38 mRNAs were obtained from Dharmacon. A
non-specific duplex (Dharmacon) was used as a control.
RSC96 cells were cultured in 100-mm well plates in DMEM
without FBS and transfected with double-stranded siRNA
using the DharmaFECT Duo Transfection Reagent (Dhar-
macon) according to the manufacturer’s instructions. To
assess gene silencing, the ERK1/2 ans p38 protein level was
detected by western blot.

2.10. Statistical Analysis. Statistical differences were assessed
using one-way ANOVA. P < .05 was considered statistically
significant. Data were expressed as the mean ± SEM.

3. Results

3.1. Effects of Earthworm on Cell Viability. We evaluated the
proliferative effect of earthworm extract on the regenerative
ability of RSC96 cells. During experiments, we first observed
the effect of various earthworm extract concentrations (0,
31.25, 62.5, 125, 250, 500 and 1000 μg/ml) on cell viability
for 24 h. We found that cellular viability was significantly
elevated with the concentration at 125 μg/ml for 24 h
(Figure 1). However, some of the effects were reversed back
to the basal level at doses of 250–1000 μg/ml, indicating
that the toxicity effect of earthworm extract could occur
at high concentrations. These results may elucidate that
treatment with 125 μg/ml earthworm extract appears to
induce cell proliferation. Moreover, the viability of ethanol-
treated Schwann cells was not affected (data not shown).

3.2. Earthworm Promotes the Migration of RSC Cell. The
property of RSC96 cells to migrate along the growth
direction, leading to regenerating damaged nerves is impor-
tant in helping the damaged peripheral nerve regeneration
[38]. Therefore, we further performed an in vitro wound-
healing experiment to evaluate the migration potential
of RSC96 cells. As shown in Figure 2(a), treatment with
125 μg/ml earthworm extract for 24 h significantly enhanced
the mobility of RSC96 cells. Moreover, the same treatment
also strongly promoted cell migration in either water- or
ethanol-treated controls in Boyden chambers. These samples
were stained and counted (Figure 2(b)). These observations
provide evidence of earthworm extract-induced RSC96 cell
proliferation and migration to enhance nerve regeneration.

3.3. Role of MAPKs in Earthworm Induced RSC Cell
Migration. We further examined the Schwann cell migra-
tion mechanisms using earthworm extract. As shown in
Figure 3(c), the protein levels were measured using western



4 Evidence-Based Complementary and Alternative Medicine

0

100

200

300

400

500

600

700

800

900

∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗∗∗∗

∗∗∗∗

31.25 62.5 125 250 500 1000C

C
el

lv
ia

bi
lit

y
(%

of
co

n
tr

ol
)

(µg/mL)

Figure 1: Effect of earthworm extract on RSC96 cell viability.
Schwann cells were treated with 0–1000 μg/ml earthworm extract
for 24 h. Cell viability, measured by MTT assay, was described under
materials and methods section. Data are shown as the mean of three
independent experiments ± SE. ∗∗∗∗ denote significant differences
from control values with P < .0001.

blotting. The MAPK signal pathway activation mechanism
results for RSC96 cells treated with earthworm extract show
a time course effect. In contrast to ERK1/2 and p38, JNK
phosphorylation began to decline in the same time period as
ERK and p38 activity increased. We suggest that earthworm
extract could induce the phosphorylation of ERK1/2 and
the p38 signal pathway to promote migration in Schwann
cells. Moreover, uPA and tPA proteins also rapidly increase
and conversely the PAI-1 protein level gradually decreases.
Interestingly, the maximal tPA expression was observed early
at 4 h in Schwann cells treated with earthworm extract.
RSC96 cells exposed to earthworm extract also induced the
expression of MMP9 and MMP2 proteins, their activity
(Figure 3(d)), and decreased TIMP1 and TIMP2 levels. These
results indicate that earthworm extract might be mediated
through the activation of ERK1/2 and p38 pathways to
induce PAs and MMP2/9, resulting in Schwann cell migra-
tion.

3.4. RSC Cell Migration Enhanced by Earthworm Is ERK1/2
and p38 Signalingdependent In Vitro. It has been demon-
strated that earthworm extract can significantly activate
ERK1/2 and p38. We then examined whether earthworm-
induced cell migration indeed occurred through ERK1/2
and p38 MAPK. We used specific MAPK cascade inhibitors:
U0126, and SB203580. Schwann cells were pretreated with
U0126 and SB203580 pharmacological inhibitors, followed
by incubation with earthworm extract at 125 μg/ml concen-
tration for 24 h. Our data reveal that ERK1/2 and p38 inhibi-
tion activity significantly blocked earthworm-increased cell
migration (Figures 4(a)–4(c) and Figures 4(e)–4(g)). The
downstream substrate of ERK1/2 and p38 in the signaling
activated by earthworm extract was blocked (Figures 4(d)

and 4(h)). To further confirm the role of ERK and p38
in earthworm extract enhanced cell migration, we chose to
deplete ERK and p38 using siRNA (Figure 5). Most impor-
tantly, reduced ERK expression with siRNA also markedly
attenuated earthworm-induced migration compared with
the control. Similarly, p38 siRNA at the same concentration
did reduce cell migration. Western blots showed that there
was a significant reduction in the pERK and p-p38 protein
level in Schwann cells transfected with MEK or p38 siRNA.
Consistent with the inhibitor effect, cell migration induced
by earthworm extract was clearly reduced in the presence
of ERK1/2 and p38 MAPK siRNA. Therefore, our results
demonstrate that earthworm extract-induced Schwann cell
migration occurs by activating the PAs and MMPs dependent
on the ERK1/2 and p38 MAPK pathways.

4. Discussion

The overall aim of this study was to investigate the mech-
anism in which earthworm extract regulates Schwann cell
migration. We demonstrated a specific signaling migration
pathway in earthworm-stimulated Schwann cells, inducing
the activation of uPA and tPA mediated through the
ERK1/2 and p38 (Figure 6). When cells-treated earthworm
extract resulted in ERK1/2 and p38 phosphorylation, the
expression of uPA and tPA occurred in a time-dependent
manner, leading to elevated MMP9 and MMP2 levels and
activity. Using inhibitors and siRNA, the migrative effects of
earthworm extract on Schwann cells were further identified
to beERK1/2 and p38 signaling dependent.

Chinese herbal medicines have attracted a great deal of
attention as alternative and supplemental medicines [39].
For thousands of years the earthworm has been used as a
drug for various diseases in China and the Far East [34].
Schwann cells in the injured nerve area migrate and form a
Büngner band, supporting axonal regrowth [2]. The func-
tion of earthworm extract on nerve regeneration is unknown
and migratory Schwann cell mechanism with earthworm
extract treatment is totally obscure. Recently studies have
demonstrated that MAPKs, including JNK, p38 and ERK1/2,
play crucial roles in nerve cell migration [40]. This further
demonstrated that earthworm extract stimulated ERK1/2
and p38, but not JNK activation in a time-dependent man-
ner, leading to Schwann cell migration. Earthworm-induced
Schwann cell motility and phosphorylation of ERK1/2 and
p38 were both attenuated by pretreatment with MEK1/2
(U0126) and p38 (SB203580) inhibitors. Transfection with
siRNA of MEK1/2 and p38 significantly reduced migration
in response to earthworm extract in Schwann cells as well.
These assays, allow us to examine the individual steps in
the complex signaling cascades and clearly illustrate direct
earthworm extract effects on Schwann cell migration.

It has been reported that the highly expressed uPA in the
epidermis of damaged tissue is regulated by the fibroblast
growth factor (FGF-2) which affects MAPK kinase (MEKK-
1) and MEKK-1’s downstream ERK1/2 for controlling uPA
expression [41]. The p38 MAPK pathway also participates in
endothelial cell migration by regulating uPA expression [42].
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Figure 2: The migrative effect of earthworm extract on RSC96 cell. Schwann cells were treated with 125 μg/ml earthworm extract for 24 h
as indicated, and cell migration as measured by wound healing analysis (a) and Boyden chambers (b) were described under materials and
methods. Data are shown as the mean of three independent experiments ± SE. ∗∗∗ denote significant differences from control values with
P < .001.

We further identified that earthworm extract enhances
uPA expression directly through the ERK1/2 and p38
signaling pathway. To promote migration, cells secrete
proteases that are thought to degrade matrix molecules
and cell adhesion. These proteases include tPA and Upa
[14]. In contrast to PAs, PAI-1 is thought to be the major
inhibitor. Our data clearly shows that the phosphorylation
of ERK1/2 and p38 accompanies the increased expression
of uPA. Conversely, PAI-1 expression is gradually decreased.
Interestingly, tPA levels reached the maximal early at 2 h and
then started to slightly decline until 20 h. We suggest that
the maximum expression of tPA occurred early following
4-h treatment, because tPA is the main PAs in the nerve
growth cones [43]. tPA is consequently rapidly induced by
earthworm extract. Pittman and Dibenedetto reported that
overexpressing tPA regenerates neurites to a greater extent
and migrates faster than control cells in complex extracellular
matrix [44]. Ulfhammer et al. found that tPA activation
could be mediated through p38 pathways, leading to an
increase in tPA expression [45]. Our experiments further
show that SB203580 inhibited p38 phosphorylation and
suppressed tPA protein expression in Schwann cells. Thus,

tPA activation occurs not only through ERK1/2 activation,
but also through the p38 signaling pathway.

The development and regeneration of the PNS is highly
dependent on the migration of Schwann cells and the exten-
sion of axons toward their distant targets. PAs are associated
with several neural cell types where they are believed to
mediate localized degradation of the extracellular matrix
(ECM), thus facilitating cell motility [46]. Degradation of the
ECM is associated with the development of tumor metastasis
and neuron tissue growth. One of the key regulators of
this process is the serine protease, uPA, acting on a wide
variety of ECM components [47]. The cell proliferation
[48] and angiogenesis [49] processes are events involving
uPA catalytic ECM degradation. Interestingly, several studies
have reported that Schwann cells also produce some growth
factors, which are crucial for peripheral nerve repair, such
as FGF-2. FGF-2 is one of the mediators of uPA activity,
and induces signals to control uPA expression and function
[41]. We suggest that ERK1/2 and p38 phosphorylation could
promote uPA expression in earthworm extract-treated cells,
which could be mediated through the modulation of FGF-
2. Another family of proteases, the matrix metalloproteases
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Figure 3: MAPK signal pathway activation time course for Schwann cells treated with earthworm extract. Schwann cells were treated with
125 μg/ml earthworm for different time as indicated, and then the cells were harvested and extracted for the western blot analysis. The protein
expression of the MAPK signal pathway was determined by western blot (a)–(c). α-Tubulin was used as a loading control. Further to confirm
the MMP-9 and MMP2 activity by gelatin zymography (d). Lane 1: FBS as positive marker (P).

(MMPs), are also implicated in peripheral nerve regeneration
[50], and involved in many cell migration phenomena and
produced by many cell types, including neurons [51]. MMPs
are secreted as inactive molecules and require activation via
other proteases [52]. Plasmin, activated by tPA or uPA, can
activate MMP-9 and MMP-2 [15]. Our results also show
the elevated protein expression and activity of MMP2 and
MMP9.

Earthworm extract is commonly used in Chinese
medicine. It has a dense nutritional content because of its
soil-based origin [23]. Lumbrokinase (LK) is a group of
six novel proteolytic enzymes derived from the earthworm
Lumbricus rubellas [53], as a strong fibrinolytic enzyme [54].
Recent studies have shown that the fibrinolytic enzymes
could dissolve blood fibrin clots and inhibit platelet acti-
vation and aggregation [55]. Its therapeutic and preventive
effects for thrombosis-related disease have been clinically
confirmed [56]. A novel fibrinolytic enzyme also found
from Pheretima aspergillum can dissolve human thrombi
and fibrin directly and strongly, and also activate human
plasminogen to plasmin. This enzyme showed little toxic
side effects in animal tests [33]. Several experiments have
indicated that earthworm fibrinolytic enzyme acts as a
plasminogen activator [57], suggesting a tPA-like function

[58]. A biologically active glycolipoprotein extract from
a whole earthworm tissue homogenate was isolated and
named G-90 [59]. It is neither mutagenic nor cancerogenic
[60]. It was recently shown that G-90 is neither allergic
nor toxic, and possesses antibacterial activity [61] and
antioxidative effects [62]. G-90 exhibits many biological
functions important in the proliferation [63] and adhesion
[64] of cells. The G-90 mixture contains insulin like growth
factors, immunoglobulin-like growth factor, serine proteases
and epidermal growth factor (EGF) [6, 35, 59, 61, 63, 64].
Furthermore, it also contains molecules to activate signal
transduction pathways, which in vivo help the tissue regen-
eration process; that is, wound healing. In vivo experiments
showed stimulation of EGF and FGF synthesis in skin
wounds using G-90 [65]. In cell cultures, after treatment with
H2O2 for 4 h, G-90 allows the cells to recover and stimu-
lated their growth. G-90 could be a useful wound-healing
agent [62]. The neural cell adhesion molecule (NCAM)
is a member of the immunoglobulin superfamily. Several
studies showed that NCAM-induced neurite outgrowth
depends on Ras-mitogen-activated protein (MAP) kinase
pathway activation [66]. NCAM-dependent cell migration to
fibronectin required an intact MEK-ERK signaling pathway
[67]. The adhesins of the immunoglobulin superfamily from
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from control values with P < .0001. ∗∗∗∗ denote significant differences treated with earthworm extract only values with P < .0001.
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Figure 5: ERK1/2 and p38 signaling required for earthworm-induced cell migration. RSC cells were transiently transfected with ERK1/2
siRNA (100 nM) or p38 MAPK siRNA (100 nM) for 8 h, then treated with 125 μg/ml earthworm extract for 24 h. After incubation with
earthworm extract, migration was assayed using Boyden chambers ((a)–(d)). Cells that migrated through the membrane were counted
using a counting grid fitted into a phase contrast microscope eyepiece. The results shown are the mean number of migrating cells per field
performed in triplicate (e). After treatment with earthworm extract for 24 h to prepare protein lysates and following western blot assay using
anti-pERK or p-p38 antibody (f). #### denote significant differences from untreated control values with P < .0001. ∗∗∗∗ denote significant
differences from treated with earthworm extract only values with P < .0001.

earthworm extract could promote migration by MEK-ERK
pathway activation. These bioactive compounds may indi-
rectly cause ERK activation or directly activate plasminogen
to plasmin by fibrinolytic enzyme, resulting in Schwann
cell migration promotion in nerve regeneration. Based on
these facts, we suggest that earthworm extract or some
of its components could have cell migration promotion
potential. Our results demonstrate that earthworm extract
can stimulate Schwann cell migration and up regulate
PAs and MMP2/9 expression mediated through the MAPK
pathways, ERK1/2 and p38. Further analyses are needed

to determine the presence of bioactive compounds that
promote cell migration in earthworm extract.

The findings of our study provide another neuron
regeneration novel function. However, the nerve growth-
suppressing action by high doses of earthworm extract
at concentrations of 250–1000 mg/ml, indicates that an
excessive earthworm extract load in the medium could
provoke an adverse response to neuron regeneration recov-
ery. The data agree with the results of Boyd and Gra’s
study [68], demonstrating that excessive supplement could
saturate the neurotrophin receptor, p75, to block the neuron
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Figure 6: Schematic model of earthworm extract migrative effects on RSC96 Schwann cells. Stimulation of Schwann cells with earthworm
activates ERK1/2 and p38 signaling, leading to upregulating uPA and tPA, and contributing to activating MMP9 and MMP2, enhancing
the Schwann RSC96 cell migration. NCAM, neural cell adhesion molecule; GDNF, glial cell line-derived neurotrophic factor; BDNF,
brain-derived neurotrophic factor; FGF, fibroblast growth factor; NGF, nerve growth factor; ICAM-1, intercellular adhesion molecule-
1; JAK1/STAT1, janus kinase1/signal transducers and activators of transcription1; GSH, glutathione; GPx, glutathione peroxidase; CAT,
catalase; EGF, epidermal growth factor. Dotted lines indicate the hypothetical molecular mechanism of the bioactive compound present in
earthworm powder.

regrowth promoting function. Excessive nerve growth factor
administration could delay the neurotrophic factor, growth-
associated protein 43 (GAP 43) induction and early phase
peripheral nerve regrowth [69]. Therefore, an appropriate
dose of earthworm extract should be carefully selected
to reach the highest potential for enhanced Schwann cell
migration. Earthworm extract might serve as a promising
migration inducing and/or therapeutic drug for nerve regen-
eration.
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