
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Regularized Least Squares Cancer Classifiers from DNA 
microarray data
Nicola Ancona*1, Rosalia Maglietta1, Annarita D'Addabbo1, Sabino Liuni2 
and Graziano Pesole2,3

Address: 1Istituto di Studi sui Sistemi Intelligenti per I'Automazione, CNR, Via Amendola 122/D-I, 70126 Bari, Italy, 2Istituto di Tecnologie 
Biomediche-Sezione di Bari, CNR, Via Amendola 122/D, 70126 Bari Italy and 3Dipartimento Scienze Biomolecolari e Biotecnologie, Universitá 
di Milano, Via Caloria 26, 20133 Milano, Italy

Email: Nicola Ancona* - ancona@ba.issia.cnr.it; Rosalia Maglietta - maglietta@ba.issia.cnr.it; Annarita D'Addabbo - daddabbo@ba.issia.cnr.it; 
Sabino Liuni - sabino.liuni@ba.itb.cnr.it; Graziano Pesole - graziano.pesole@unimi.it

* Corresponding author    

Abstract
Background: The advent of the technology of DNA microarrays constitutes an epochal change
in the classification and discovery of different types of cancer because the information provided by
DNA microarrays allows an approach to the problem of cancer analysis from a quantitative rather
than qualitative point of view. Cancer classification requires well founded mathematical methods
which are able to predict the status of new specimens with high significance levels starting from a
limited number of data. In this paper we assess the performances of Regularized Least Squares
(RLS) classifiers, originally proposed in regularization theory, by comparing them with Support
Vector Machines (SVM), the state-of-the-art supervised learning technique for cancer classification
by DNA microarray data. The performances of both approaches have been also investigated with
respect to the number of selected genes and different gene selection strategies.

Results: We show that RLS classifiers have performances comparable to those of SVM classifiers
as the Leave-One-Out (LOO) error evaluated on three different data sets shows. The main
advantage of RLS machines is that for solving a classification problem they use a linear system of
order equal to either the number of features or the number of training examples. Moreover, RLS
machines allow to get an exact measure of the LOO error with just one training.

Conclusion: RLS classifiers are a valuable alternative to SVM classifiers for the problem of cancer
classification by gene expression data, due to their simplicity and low computational complexity.
Moreover, RLS classifiers show generalization ability comparable to the ones of SVM classifiers also
in the case the classification of new specimens involves very few gene expression levels.

Background
The advent of the technology of DNA microarrays consti-
tutes an epochal change in the study, treatment, analysis,
classification and discovery of different types of cancer. It
is well understood that cancer classification is a crucial
step for cancer diagnosis and treatment [1,2]. Conven-

tional classification of cancer has been based primarily on
examination of the morphological appearance of tissue
specimens, but this method suffers of serious limitations.
It is subjective and depends on highly trained patholo-
gists. Moreover, tumors with similar histopathological
appearances can follow different clinical courses and
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show different responses to therapy [3]. The information
provided by DNA microarrays allows to approach the
problem of cancer diagnosis and treatment from a quanti-
tative rather than qualitative point of view. The importance
of the information embedded in gene expression data
provided by DNA microarrays for identifying new cancer
classes and for automatically classifying tumors to known
classes was firstly pointed out by Golub in [1]. In tumor
classification, the problem is to assign a label y, for exam-
ple normal or cancerous tissue, to a new gene expression
pattern x, starting from the knowledge of � examples S =
{(x1, y1), (x2, y2),...(x�, y�)} whose association between
the gene expression pattern xi and its relative class label yi
is known in advance. Here x is a vector whose compo-
nents indicate the gene expression levels provided by a
DNA microarray. Under this perspective, the problem of
cancer classification can be seen as a supervised learning
problem, or a learning from examples problem [4], in which
the goal is to determine a separating surface, optimal
under certain conditions, which is able to discriminate
normal from cancer tissues, or to distinguish among dif-
ferent types of tumors. In this paper we focus only on two
class classification problems, since multi-class problems
can be seen as a straightforward generalization of two-
class problems. Before introducing the main aspects of
our work, it is worth to point out that the ultimate goal of
any classifier, and in general of any learning machine, is to
generalize, that is to predict the correct output y relative to
never seen before input patterns x, by using a training set
S composed of a finite number of examples. Thus the cen-
tral problem is not classifying the training data in S,
because any sufficiently complex learning machine could
separate S without errors. The crucial problem is to design
classifiers having low error rate on new data. In the con-
text of classification of DNA microarrays, such a problem
is even more challenging because typically the number of
examples is relatively small and the dimensionality, i.e.
the number of genes whose expression levels are meas-
ured, is very large.

Statistical learning theory [5] provides a valuable non
asymptotic theory for asking questions about the accuracy
of models built when a limited amount of data is availa-
ble. In this general framework, Support Vector Machine
(SVM) classifiers provide excellent performances in terms
of generalization error in different application domains
such as object detection in images [6,7], odor classifica-
tion [8], pedestrian detection [9], etc. In particular, in the
context of cancer classification from gene expression data
it outperforms many well known approaches [10-13] and
it has to be considered as the method of reference for eval-
uating new techniques. The basic idea of statistical learn-
ing theory is very simple: for a finite set of training
examples, the search for the best model or approximating
function has to be constrained by an appropriately small

hypothesis space, that is the set of functions the machine
implements. If the space is too large, functions can be
found which fit exactly the data, but they will have poor
generalization capabilities on new data. SVM implements
such an idea determining the classifier minimizing both
the error on the training set (empirical risk) and the com-
plexity of the hypothesis space.

Another approach to classification and in general to the
problem of approximating a multivariate function from
sparse data and in the presence of noise is regularization
theory [14-16]. Also in this framework we need to con-
straint the hypothesis space for finding a suitable approx-
imating function from a finite number of training
examples. Such a constraint takes the form of a smooth-
ness functional measuring the complexity of functions
belonging to the chosen hypothesis space. In this general
framework, Regularized Least-Squares (RLS) classifiers
[17] provide a highly viable alternative to SVMs because
they enjoy a number of suitable properties such as sim-
plicity and reliability.

A first comparison between SVM and RLS classifiers can be
found in [18]. In their analysis, the authors used very sim-
ple bench-mark data sets having characteristics very differ-
ent from the ones relative to the cancer classification
problem by gene expression data. In fact, they used data
sets having a ratio between number of examples and
number of components ranging from 3.5 for the sonar
data set to 96 for the pima indian data set. Such ratios are
very far from the ratio of order of 1/100 that is typical for
the problem we are considering here. So from their study
we can not infer any consequence about the performances
of the RLS classifiers on the problem at hand. In this paper
we compare SVM and RLS classifiers for the specific prob-
lem of cancer classification by gene expression data. In the
context of supervised learning models, as the ones we are
considering here, particularly important is the quantity to
measure for comparing two machines. We know that two
machines have similar performances if their generaliza-
tion errors are comparable. As we will show in the next
sections [5], a measure of the generalization error of any
supervised learning machine is the risk and so models
showing the same risk have comparable performances.
However, the risk functional, as usually defined, has not a
practical usefulness because it involves the knowledge of
the probability distribution function underlying the data
that is in general unknown. Nevertheless, we can adopt
the Leave-One-Out (LOO) procedure which uses the
available data for evaluating the generalization error of a
machine. In fact, as the Luntz and Brailovsky theorem
shows [19], the LOO error is an almost unbiased estima-
tor of the risk and so it is a practical procedure for assess-
ing the performances of a supervised learning machine
from a finite number of data. Based on this estimator we
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show that RLS and SVM models have similar generaliza-
tion abilities. The comparison involved three different
data sets described in [1,12,20]. The experimental results
suggest that we can benefit of the simplicity of RLS
machines maintaining the same prediction error of SVM.
The main advantage of RLS machines is that for solving a
classification problem we need to solve a single linear sys-
tem of order equal to either the number of features or the
number of training examples. This is in contrast to SVM
approach which requires the solution of a quadratic pro-
gramming problem with linear constraints. Moreover and
more important, RLS machines allow to get an exact meas-
ure of the leave-one-out error with just one training. In the
case of SVM, such important measure requires the training
of a number of machines equal to the number of training
examples. At the aim of fully assessing both the classifica-
tion models, we analyze their performances with respect
to the number of genes, selected with different gene selec-
tion strategies. Note that the focus here is not on the deter-
mination of the optimal number of genes for classifying
tissues belonging to a given tumor class. For this reason
others and more sophisticated methodologies have to be
adopted which take into account the bias selection prob-
lem [21]. Here we want to show that both models have
comparable performances even when a very few number
of genes is used for classifying. Following the statistical
approach outlined by Golub and its co-workers in
[1,2,12], we adopt non-parametric permutation tests for
studying how many and what genes have to be used for
classifying. The problem of identifying the gene signature
concerning a particular type of cancer is out of the scope
of the present work.

Methods
Classification models
Due to the particular problem of cancer classification
from gene expression data in which we have a small
number of training examples, each one with very large
dimensionality, we limit our attention to linear classifiers.
Nevertheless the methods we are going to illustrate can be
easily generalized for designing non-linear classifiers.

We are given a training set  of size � where
xi � �n and yi � {-1,1}, for i = 1,2,...,�. In the simplest case
of linearly separable set S, the classification problem con-
sists of determining a hyperplane w·x + b = 0, where w �
�n and b � �, such that: yi = sign(w·xi + b) for i = 1,2,...,�,
where sign (x) is 1 if x ≥ 0 and -1 otherwise. Actually, clas-
sification is an ill-posed problem [14] because an infinite
number of solution exist and then some constraint has to
be imposed to the problem for making the solution
unique.

SVM classification
The constraint imposed by SVM on the classification
problem is the following: the solution has to maximize
the distances with the closest points of S. The optimal sep-
arating hyperplane found by SVM, in the case of linearly
separable set S, is the one maximizing the margin m,
where m = 2/||w|| is the distance between the hyperplane
and the closest points of S. In the general hypothesis of
non linearly separable classes, the optimal separating
hyperplane w*·x + b* = 0 found by SVM is solution of the
following quadratic programming (QP) problem P1 with
linear constraints:

where D is a matrix of size � × �, with Dij = yiyjxi·xj for i,j =
1, 2, ...,� and λ = (λ1, λ2,..., λ�)§ is a vector of � non nega-
tive Lagrange multipliers. The regularization parameter C
is the only free parameter and its value can be chosen by
using cross validation. Let λ* be the solution of the con-
sidered problem P1. So the optimal w* is:

and the optimal b* is given by:

b* = yi - w*·xi  (2)

for each i such that 0 <  <C. The points xi with  > 0
live on the margin of the classes and they are called support
vectors. The classification of a new data x involves the eval-
uation of the decision function:

y = sign(f(x))  (3)

where:

RLS classification
RLS models [14] were proposed mainly for facing regres-
sion problems. The main difference between a regression
and classification problem is that in the former the output
variable y can assume any real value; in the latter, it can
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assume a finite number of possible values. In our case, y
assumes only two values {-1,1}. This means that every
classification problem can be considered as a regression
problem. In the case of linear regression, we want to deter-
mine the function f(x) = w·x, with w � �n, which approx-
imates the examples in S in the least squares sense. This is
equivalent to solving the following constrained minimi-
zation problem P2:

subject to ||w||2 ≤ α

where α � � and ||w|| =  is the Euclidean norm
induced by the scalar product ·. Note that the bias term is
implicitly present in our model by including a component
constant and equal to one to the input vectors. Before
solving the problem P2, some considerations are in order.
The objective function that we minimize, in this particular
case, takes the form of the mean square error of the pre-
dictor y = w·x evaluated on the training data. Here the
error is expressed as the square deviation, εi = (yi - w·xi)2,
between the target value yi and the value of the predictor
w·xi. Let di be the square distance between the generic
input data xi and the approximating hyperplane y = w·x,
where by definition:

This equation shows that the smaller ||w||2, the better the
deviation εi approximates the true distance di. This is the
reason why we introduce the constraint ||w||2 ≤ α. In this
way the optimal approximating hyperplane solution of
the constrained problem is the hyperplane minimizing
the mean square distance with the training points. For
determining w � �n solution of P2, let us consider the
Lagrangian function:

The vector w minimizing (5) is solution of the following
linear system of order n:

(XX§+ λ�In) w = Xy  (6)

where X is a n × � matrix having the examples xi as its col-
umns, y = (y1, y2 ,...,y�)§and In is the n × n identity matrix.

Note that, since the matrix XX§is positive semidefinite,
then for λ > 0 the matrix XX§+ λ�In is definite positive and
therefore invertible. Then the vector w* solution of the
problem P2 exists and it is given by:

w* = (XX§+ λ�In)-1Xy  (7)

It is possible to show that the value of λ controls the influ-
ence of the noise present in the data on the estimation of
the solution w*. The parameter λ, called regularization
parameter, is the only free parameter and its value can be
chosen by using cross validation. Analogously to SVM, the
classification of a new data x involves the evaluation of
the decision function:

y = sign(w*·x)  (8)

As equation (7) shows, determining w* requires the solu-
tion of a linear system of n order, where n is the number
of components of each xi. In some cases n could be
extremely large and so any direct method can be adopted
for estimating w*. This occurs in the problem at hand
where the number of genes n of each specimen is order of
tens of thousand and the number � of specimens is order
of ten or hundred. We will show that the models we are
describing allow to rewrite a linear system of n order as a
linear system of � order, overcoming the difficulties con-
nected to problems with a huge number of features. At
this aim, let us suppose w to be expressed as linear combi-
nation of the vectors xi for i = 1,2, ...,�. This means that
there exist � coefficients c = (c1, c2,...,c�)§such that:

w = Xc  (9)

Substituting (9) in (6) we have:

(K + λ�I�) c = y  (10)

where K = X§X is a � × � matrix with generic element Kij =
xi·xj and I� is the identity matrix of � order. Also in this
case, since K is a positive semidefinite matrix, then for λ >
0 the matrix K + λ�I� is positive definite and so invertible.
Then the vector c* � �l solution of (10) is given by:

c* = (K + λ�I�)-1y  (11)

obtained by solving a linear system of � order. Note that
the normal w* to the optimal approximating hyperplane
can be recovered by using (9). In this case the classifica-
tion of a new data x involves the evaluation of the deci-
sion function:
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Comparison between SVM and RLS classifiers
Numerous differences exist between these two classifica-
tion models, but we will only mention some of these
which are relevant for our discussion. The first difference
consists in the method employed for determining the
optimal w. SVM requires the solution of a QP problem
with linear constraints of order �, while RLS requires the
solution of a system of linear equation of order � or n. In
the former, the complexity in solving problem P1 is inde-
pendent of n. Moreover, when the number � of examples
is extremely large, decomposition methods can be applied
for determining the exact solution [22]. In the latter, the
complexity depends on � and n. When both these quanti-
ties assume large values, iterative schemes have to be
adopted for solving the system (6) or (10), so providing
only approximated solutions.

The second difference consists in the representation of the
optimal w. In SVM (see equation (1)), the solution is
sparse meaning that it is expressed as linear combination
of a fraction of the training examples (support vectors). In
RLS (see equation (9)), on the contrary, the solution is
dense meaning that it is expressed as linear combination of
all training examples.

Leave-one-out error
As we have already said in the introduction, the ultimate
goal of a supervised learning machine y = f (x, α) is to gen-
eralize, that is to correctly predict the output y correspond-
ing to never seen before input patterns x. Here α is a
parameter vector which the machine depends on, for
example C in SVM and λ in RLS classifiers. Then a compar-
ison between different classification models has to
involve the comparison of their generalization errors. A
measure of the generalization error of such a machine f is
the risk R[f] defined as the expected value of the loss func-
tion V(y,f(x, α)) (see [5]):

R[f] = ∫V(y, f(x, α))p(x, y)dxdy  (13)

where p(x, y) is the probability density function underly-
ing the data. The particular form of the loss function
depends on the problem at hand. In classification prob-
lems, the loss takes the form of:

In general the probability density function p(x, y) is
unknown and so we are not able to evaluate the risk. The
only data we have are � observations (examples)

 of the random variables x and y drawn
according to p(x, y). The leave-one-out (LOO) error pro-
vides a measure of the generalization error of a learning
machine by using the � observations in S. In fact, as the
Luntz and Brailovsky theorem shows [19], the LOO error
is an almost unbiased estimator of the risk (13) and it
allows of assessing the performances of a supervised
learning machine from a finite number of data. The com-
putation of the LOO error is very simple. For every i = 1,
2, ..., �, let  be the machine trained on the set Si = {(x1,
y1),...,(xi-1, yi-1), (xi+1, yi+1),...,(x�, y�)} obtained from S
removing the i-th example. Test the function  on the
left out example (xi, yi) and measure the value of the loss
function V(yi,  (xi, α)). Repeat this procedure for each
of the � examples of the training set and sum the errors
made. This number is the LOO error:

Note that  is the quantity that we have to compute
for measuring the performances of any supervised learn-
ing machine, because it provides an estimate of the risk or
generalization error associated to the selected machine.
Moreover, this is the procedure of choice for estimating
the unknown parameter vector α which the machine
depends on. In fact, for a fixed training set, the generaliza-
tion error of the machine is a function of α. Then, the best
parameter vector α* will be the one minimizing .

LOO-error for RLS classifiers
Although the LOO error enjoys several interesting proper-
ties, its computation is tremendously expensive because it
requires of training a number of machines equal to the
number of training examples. In the case of RLS classifiers,
the LOO error can be calculated in an exact way just train-
ing a single machine by using all the training examples. In
fact it can be showed [15] that:

where fs is the machine trained on S and G = (K + λ�I�)-1.
This is a fundamental property of the RLS classifiers
because it allows to evaluate the generalization ability of
a classifier without any additional cost.
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Gene selection
A very important question in cancer classification prob-
lem is determining which genes are the most relevant in
identifying a specimen or a particular disease. This is an
open problem, relevant for several reasons both biological
and computational. Finding genes which expression lev-
els correlate with a particular disease is important for
understanding the disease and for choosing the most
appropriate treatment. Furthermore, classifying a speci-
men on the basis on few expression levels could in princi-
ple improve the performances of the classifier,
eliminating the noise associated to irrelevant genes. Gene
selection is a particular instance of a more general prob-
lem known in machine learning as feature selection. In
general, the methods for selecting features can be grouped
in two main categories: filter methods and wrapper meth-
ods [23]. Filter methods select features by using criteria
independent of the ones used in the classification stage.
Wrapper methods, on the contrary, use the same or simi-
lar criteria as the ones used by the classifier. In this paper
we focus on two different feature selection approaches.
The first one [1,2], known as signal-to-noise (S2N), is a fil-
ter method and it is based on the following statistic:

where j is the gene index. (µ+1(j),σ+1(j)) and (µ-1(j),σ-1(j))
are the mean and the standard deviation of the expression
levels of the j-th gene in the positive and negative exam-
ples respectively. Genes xj highly correlated with the class
label or more relevant for classifying are expected to pro-
vide large values of |TS2N(j)| The second approach we con-
sider is a variant of recursive feature elimination (RFE)
strategy proposed in [24]. It is a wrapper method and it is
based on the following statistic:

Tw(j) = wj  j = l,2,...,n  (18)

where w is the normal of the optimal separating hyper-
plane found by SVM or RLS methods. The idea underlying
this approach is very simple. We know that the label y
associated to a new input x is given by

. So, if the gene expression levels
have similar ranges, genes having large values of |wj| are
more important than others in determining the class
label. Instead of using a recursive approach for selecting
the most relevant genes as suggested in [24], we use a
more greedy strategy consisting in training the machine
one time only by using all the available genes and select-
ing the most informative features according to the
obtained w. For this reason we call our approach not-RFE
(NRFE). In both strategies, the genes are ranked in

decreasing order according to the selected statistic and the
highest values correspond to the most relevant genes.

Number of relevant genes
So far we have described two statistics for ranking genes
based on their expression levels in both classes. Now, in
order to determine how many genes are really important
for classifying a given specimen, we apply a common
method in classical statistics named hypothesis testing
(see [1]). The idea is to hypothesize that there is no
dependency between expression levels and class labels,
and to consider relevant for the classification those genes
which reject such hypothesis. At this aim, we define the
null hypothesis H0 in which we assume that the random
variables x and y are independent or equivalently that the
class conditional probability density functions are identi-
cal. The goal of hypothesis test is to reject H0 at a given
level of significance α, where α is the probability of reject-
ing the null hypothesis when it is true, that is of declaring
that the x and y are uncorrelated when they are not. Let t0
be the observed value of the statistic T as computed on the
data set S, t0 = T(x1, y1, x2, y2,...,x�, y�), and let p0 = PT(T ≥
t0) be the corresponding p-value, that is the probability
that T is grater than or equal to t0. Note that PT is the dis-
tribution function of the random variable T under the null
hypothesis. If p0 ≤ α then we reject H0 at level of signifi-
cance α.

The application of the hypothesis testing method requires
the knowledge of the density or distribution function of
the adopted T statistic under the null hypothesis. When
the density of the adopted statistic is unknown or when
the data do not verify the hypotheses which the statistic is
based on, then we have to the invoke nonparametric per-
mutation tests [25]. This nonparametric technique allows
to estimate the probability density function of any statis-
tic, under the null hypothesis, from the available data. The
reason which justifies this procedure for estimating the
density pT(t) is that under the null hypothesis, since the
random variables x and y are independent, all the training
set generated through permutations are equally likely to
be observed.

Results
Data sets description
The above mentioned classification techniques have been
applied to different cancer diagnosis problems. Three
benchmark data sets have been considered. The first one,
named 'Leukemia data set' [1], concerns the classification
of acute leukemias into acute myeloid leukemia (AML)
and acute lymphoblastic one (ALL). It consists of 38 bone
marrow samples (11 AML, 27 ALL) obtained from acute
leukemia patients at the time of diagnosis (i.e. before that
any treatment was used). These samples are used as train-
ing set. An additional set, composed of 14 AML and 20
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ALL samples, is utilized to test the classifiers. Each sample
is a vector composed by 7129 elements, each one corre-
sponding to the log10 normalized expression value of a
gene. This data set has been extensively analyzed in litera-
ture [2] also by using machine learning techniques [10].
Much more details about this data set and a complete
breakdown of microarray composition can be found on
the web site http://www.genome.wi.mit.edu/MPR. The
second data, named 'Colon data set' [20], regards the
problem of classifying tumor and normal colon tissues. It
is composed by 40 tumor and 22 normal colon tissue
samples. Each sample consists of 2000 human gene
expression levels. The data set and more detailed informa-
tion on it are available on the web at site http://www.mol
bio.princeton.edu/colondata. The last analyzed data set is
relative to the classification of different malignancies sam-
ples against normal tissue ones [12], it will be identified
as 'Multi-cancer data set'. It is composed by 280 samples:
190 examples are relative to cancer tissues, spanning 14
common tumor types, the remaining 90 samples repre-
sent normal tissues. Each example in this data set consists
of the expression levels of 16063 genes. Complete details
regarding patient samples, pathology, molecular biology
protocols, data analysis and additional information are
available at site http://www.genome.wi.mit.edu/MPR/
GCM.html. It is worth nothing that, in the present work,
this data set is analyzed in order to perform a two-class
classification problem (i.e. to discriminate between dis-
eased and normal samples).

Results on the Leukemia data set
First of all, we used all of 7129 gene expression levels
present in each specimen. We trained SVM classifiers on
the 38 samples in the training set for different values of C
parameter, measuring for each one the empirical risk and
the LOO error given by equation (15). The training set is
linearly separable and the LOO error reaches its minimum
value of 1 (see table 1) in correspondence of C = 1e - 6.
Then the best SVM classifier on this training set is the one
obtained with C = 1e - 6 because it is the machine mini-
mizing the LOO error. We tested such machine on the 34
points in the test set obtaining 1 error (see table 1). The
same results are reported in [10], where the authors also
noted that using SVM with polynomial kernel functions
did not improve the performances.

The same procedure was carried out by using RLS
machines. We trained RLS classifiers on the training set for
different values of λ parameter and for each one we meas-
ured the empirical risk and the LOO error by using equa-
tion (16). The training set is linearly separable for each λ
in the considered range. Moreover, the LOO error reaches
its minimum value of 1 (see table 1) in correspondence of
λ = 1. Then the best RLS classifier on this training set is the

one obtained with λ = 1. We tested such machine on the
test set obtaining 1 error as reported in table 1.

Successively, in order to carry out a most accurate analysis
and to have a most complete insight about the perform-
ances of SVM and RLS machines on this data set, we have
computed the LOO errors on the whole data set obtained
putting together training and test examples. The values of
the free parameters, corresponding to the best machines,
are C = 45 and λ = 10 respectively. The LOO errors
obtained by the best machines are reported in table 1
where clearly results that SVM and RLS behave exactly the
same. In order to understand the influence of irrelevant
genes on the performances of the classifiers, we consid-
ered some subsets of features. We established the number
of genes to select applying permutation tests to the data,
by using TS2N and Tw statistics. Figure 1 depicts the values
of TS2N statistic as computed on the actual data set and on
randomly permuted class labels. The number of permuta-
tions of the labels was 1500. Genes more highly expressed
in ALL are shown in the left picture, and those more
highly expressed in AML are shown in the right picture.
The large number of genes highly correlated with the class
distinction is clear from the picture. Moreover, in both
pictures, the curve of the observed statistic intersects the
5% curve about at 1000 genes, indicating that in the data
set there are 1000 genes which reject H0 at significance
level of α = 5%. Then we ranked the genes according to the
absolute value of TS2Nand chose the top k genes, with k
equal to 1000, 100, 50, 40, 30, 20, 10, 5 and 3 genes. A
similar analysis has been effectuated by using Tw statistic.
Here w was the parameter vector corresponding to the
best RLS classifier, that is the one minimizing the LOO
error on the current data set1. As picture 2 shows, Tw is
unable to disclose the correlation existing between gene
expression level and class label, as TS2N does. Nevertheless,
we equally measured the performances of SVM and RLS
classifiers on genes selected by Tw statistic. In fact, as noted
in [2], in some particular cases, some genes may be truly
predictive of the class label despite the lack of statistical
significance in permutation tests. At the aim of testing this
experimental evidence, we ranked the genes according to

Table 1: Minimum LOO error on the Leukemia training set 
(composed of 38 examples), error on the test set (34 examples) 
and minimum LOO error on the whole Leukemia data set (72 
examples).

SVM RLS

LOO error on training set 1 1
Test error 1 1
LOO error on the whole data set 1 1
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the absolute value of Tw and chose the top k genes, with k
equal to 1000, 100, 50, 40, 30, 20, 10, 5 and 3 genes. In
table 2 we report the performances of SVM and RLS clas-
sifiers obtained on the Leukemia data set, for various
number of genes selected by S2N and NRFE methods.

Results on the Colon data set
First of all note that in this case, as in the following data
set, we do not have the distinction between training and
test set, because we have a single data set. For this reason,
we do not report the test error but the LOO error only. We
have primarily evaluated the performances of SVM and
RLS classifiers on the Colon data set by using all the gene
expression levels present in each specimen, successively
we have consider opportune subsets of genes. The experi-

mental results on the whole and reduced data sets are
summarized in table 3.

The behavior of the empirical risk and of the LOO error of
SVM and RLS classifiers evaluated for different values of
the regularization parameter are depicted in figure 3 for
the whole Colon data set. Note that the data set is linearly
separable. These plots give also a precious hint to fully
understand the role of free parameters (C in SVM and λ in
the RLS machines) by observing the empirical risk curves.
In fact, increasing C in SVM the empirical risk decreases,
whereas increasing λ in RLS the empirical risk increases.
These behaviors of the empirical risk curves can be fully
justified reminding that, in SVM, the C parameter can be
thought of as the cost the machine pays for each training
error. On the contrary, in the RLS machines, the same role
is played by  (see equation 5).

In order to determine the number of relevant genes to be
considered in the feature selection process, we have com-
puted the TS2N statistic on the actual data set and in the
hypothesis that H0 holds true. The number of label per-
mutations was 2000. The observed statistic intersects the
5% curve in correspondence of 500. So 500 is the maxi-
mum number of genes which reject the null hypothesis at
significance level of 5%. Then we ranked the genes accord-
ing to the absolute value of TS2N and chose the top k genes,
with k equal to 500, 400, 300, 200, 100, 50, 10 and 5
genes. A similar analysis has been effectuated by using Tw
statistic. Also in this case, this statistic shows poor capacity
of revealing the existing correlation in the data. As in the
previous analysis, we ranked the genes according to the

1
λTable 2: Minimum LOO error computed on Leukemia data set 

(composed of 72 examples), for various number of genes, selected 
with S2N and NRFE statistics.

SVM RLS

genes S2N NRFE S2N NRFE

1000 1 1 2 1
100 1 0 1 0
50 1 0 2 0
40 2 0 2 0
30 2 0 2 0
20 2 0 2 0
10 2 1 2 0
5 1 1 2 2
3 4 3 4 2

Observed Ts2N(j) distribution computed on the Leukemia data set, compared to randomly permuted class distinctionsFigure 1
: Observed Ts2N(j) distribution computed on the Leukemia data set, compared to randomly permuted class distinctions. The 
number of genes highly expressed in a) ALL and b) AML is shown on y-axis.
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absolute value of Tw and chose the top k genes, with k
equal to 500, 400, 300, 200, 100, 50, 10 and 5 genes.

Results on the Multi-cancer data set
Primarily, the 16063 gene expression levels of each speci-
men have been used for classifying. The experimental
results are summarized in table 4.

The data set is linearly separable. The best SVM corre-
sponds to C = 3. The best RLS classifier corresponds to λ =
20.

It is important to note that the errors obtained on this data
set are much greater than the one achieved in the data sets
previously analyzed, probably reflecting the large com-

plexity of the data due to the great degree of biological var-
iability in gene expressions.

The non parametric permutation test was carried on the
Multi-cancer data set, performing 1000 random permuta-
tions of the class labels. The maximum number of genes
which rejects the null hypothesis at significance level of
5% is 1400. Then we ranked the genes according to the
absolute value of TS2N and chose the top k genes, with k
equal to 1400, 1000, 500, 300, 200, 100, 50 and 10 genes.
The same numbers of genes were selected by using the Tw
statistic. The results on the reduced data sets are reported
in table 4.

Table 4: Minimum LOO error computed on Multi-cancer data 
set (composed of 280 examples), for various number of genes, 
selected with S2N and NRFE statistics.

SVM RLS

genes S2N NRFE S2N NRFE

16063 105 90
1400 46 40 59 49
1000 42 41 57 50
500 50 41 57 56
300 51 38 57 54
200 51 50 55 50
100 63 97 51 58
50 59 76 43 61
10 63 74 59 73

Table 3: Minimum LOO error computed on Colon data set 
(composed of 62 examples), for various number of genes, 
selected with S2N and NRFE statistics.

SVM RLS

genes S2N NRFE S2N NRFE

2000 6 6
500 6 6 7 6
400 7 6 6 6
300 6 6 6 6
200 7 6 7 4
100 9 5 7 4
50 8 4 6 1
10 6 6 7 5
5 7 8 7 8

Observed Tw(j) distribution computed on the Leukemia data set, compared to randomly per-mutated class distinctionsFigure 2
: Observed Tw(j) distribution computed on the Leukemia data set, compared to randomly per-mutated class distinctions. The 
number of genes highly expressed in a) ALL and b) AML is shown on y-axis.
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Discussion
Some conclusions on the two classification algorithms
can be drawn. The first and more important one is that,
when the whole data sets are considered, both machines
provide generalization errors comparable as the tables 1,
3 and 4 show. This indicates that RLS approach is able to
determine classifiers with good generalization ability even
in the case of very small training set, with a huge number
of features.

Concerning the computational time, both techniques
require a few seconds for determining the optimal classi-
fier because, in the present context, the training involves
only a few examples. The second consideration concerns
the role of λ in RLS machines. This parameter de-facto
controls the generalization ability of the RLS classifiers,
exactly as C does in SVM ones. The figure 3 depicting the
behavior of the LOO error shows this fact. We have
observed similar behaviors of this quantity in all the
experiments carried out which do not show for lack of
space. Moreover, our analysis shows that standard least-
square machines, obtained setting λ = 0, have very poor
generalization abilities. In fact for λ = 0 all the considered
RLS classifiers separate correctly the training data, but they
show a very large LOO error. The main problem in
machine learning is not to correctly classify the training
data. The main problem is to generalize and RLS classifiers
guarantee high generalization ability for appropriate val-
ues of the regularization parameter λ.

The performances of SVM and RLS classifiers continue to
be comparable even though the number of genes used for

classifying a specimen is extremely reduced. Tables 2, 3
and 4 confirm such a result. Moreover, as noted in all
three data set, also a statistic which is not able to reveal
statistically significant differences in the data can however
select genes which increase the performances of the classi-
fier. This is not surprising. The fact that a gene is relevant
for classifying a given specimen does not involve the sta-
tistic, it involves the classification process. So, a gene is rel-
evant for a classifier if its usage reduces the generalization
error of the classifier, as measured by the LOO error. Any
gene selection strategy has to guarantee that the subset of
genes selected is the most appropriate for the chosen clas-
sifier, that is it is the subset of features minimizing the
LOO error of the classifier. In this sense feature selection
and parameter selection are two instances of the same
problem which has as ultimate objective the one of reduc-
ing the generalization error of any learning machine.

Conclusion
In this paper we have shown that RLS classifiers have per-
formances comparable to the ones of SVM classifiers for
the problem of cancer classification by gene expression
data. The comparison has been carried on measuring the
Leave-One-Out errors relative to each classifier obtained
on three different real data set. The classification perform-
ance analysis involved the whole set of genes as well as
suitable subsets of genes selected by different gene selec-
tion strategies. Our analysis suggests that RLS classifiers
are a valuable alternative to SVM classifiers for the prob-
lem at hand due to their simplicity and low computa-
tional cost. Moreover, RLS classifiers show generalization
errors comparable to the ones of SVM classifiers also in

LOO error (dotted line) and empirical risk (solid line) w.r.t the regularization parameter obtained on Colon data set by using a) SVM and b) RLS classifiersFigure 3
: LOO error (dotted line) and empirical risk (solid line) w.r.t the regularization parameter obtained on Colon data set by using 
a) SVM and b) RLS classifiers.
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the case the classification of new specimens involve very
few gene expression levels.

List of abbreviations used
SVM: Support Vector Machines. RLS: Regularized Least
Square. LOO: Leave One Out.

Note
1Note that the Tw statistic can be considered a filter
method when the features it selects are input to SVM clas-
sifiers, and a wrapper method when the features are input
to RLS classifiers.
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