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Abstract: Background: There have been concerns regarding increased perioperative mortality, length
of hospital stay, and rates of graft loss in kidney transplant recipients with functional limitations. The
application of machine learning consensus clustering approach may provide a novel understanding
of unique phenotypes of functionally limited kidney transplant recipients with distinct outcomes in
order to identify strategies to improve outcomes. Methods: Consensus cluster analysis was performed
based on recipient-, donor-, and transplant-related characteristics in 3205 functionally limited kidney
transplant recipients (Karnofsky Performance Scale (KPS) < 40% at transplant) in the OPTN/UNOS
database from 2010 to 2019. Each cluster’s key characteristics were identified using the standardized
mean difference. Posttransplant outcomes, including death-censored graft failure, patient death,
and acute allograft rejection were compared among the clusters Results: Consensus cluster analysis
identified two distinct clusters that best represented the clinical characteristics of kidney transplant
recipients with limited functional status prior to transplant. Cluster 1 patients were older in age
and were more likely to receive deceased donor kidney transplant with a higher number of HLA
mismatches. In contrast, cluster 2 patients were younger, had shorter dialysis duration, were more
likely to be retransplants, and were more likely to receive living donor kidney transplants from HLA
mismatched donors. As such, cluster 2 recipients had a higher PRA, less cold ischemia time, and
lower proportion of machine-perfused kidneys. Despite having a low KPS, 5-year patient survival
was 79.1 and 83.9% for clusters 1 and 2; 5-year death-censored graft survival was 86.9 and 91.9%.
Cluster 1 had lower death-censored graft survival and patient survival but higher acute rejection,
compared to cluster 2. Conclusion: Our study used an unsupervised machine learning approach to
characterize kidney transplant recipients with limited functional status into two clinically distinct
clusters with differing posttransplant outcomes.
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1. Introduction

Functional status, or the capacity to perform daily activities to meet basic needs
and maintain health and wellbeing, is recognized as a useful tool for evaluating patients
in various clinical settings, including patients undergoing organ transplantation [1–4].
Among kidney transplant recipients, significant associations between low functional sta-
tus and poor outcomes after kidney transplant have been reported, including increased
mortality [5–9]. In the United States (U.S.), the Karnofsky Performance Scale (KPS), a
physician-reported measure of functional status ranging from 0 to 100%, [10] is routinely
collected among transplant candidates and recipients and has become a requirement by the
Organ Procurement and Transplantation Network (OPTN) for risk adjustment of transplant
outcomes [4,11–14].

Prior studies have demonstrated an association between low KPS scores and poor
outcomes after kidney transplantation, including mortality and all-cause graft loss [4,11].
Additionally, recipients with low functional scores are often found to be ineligible for kidney
transplantation due to a combination of limited transplant resources and anticipation
of a lessened survival benefit post kidney transplantation. As a result, the majority of
kidney transplant surgeries in the U.S. are performed for kidney transplant recipients with
satisfactory functional status [11]. Only 3% of kidney transplant surgeries are performed for
patients with KPS of ≤40% [11]. While patients with a low functional status have a higher
risk of post-operative complications and death following kidney transplant as compared to
those with higher physical functioning scores, this risk is likely still less than remaining on
dialysis [1,11,15]. Furthermore, kidney transplant patients, including recipients with low
functional status, are likely heterogenous, and there are many factors, including recipient,
donor, and transplant-related variables, that can result in varying outcomes contrary to
what has historically been reported in the literature [11,16,17].

Artificial intelligence and machine learning (ML) have been utilized to provide clinical
decision support tools and individualize patient care, including in organ transplanta-
tion [18–24]. Unsupervised consensus clustering is ML applied to discover novel data pat-
terns and distinct subtypes [25–27]. It can discover similarities and heterogeneities among
various data variables and distinguish them into clinically meaningful clusters [25,26].
Recent studies have demonstrated that distinct subtypes identified by the ML consensus
clustering approach can forecast different clinical outcomes [28,29]. Given data on char-
acteristics of kidney transplant recipients with KPS of ≤40% in the U.S. are limited, the
application of ML consensus clustering approach may provide a novel understanding of
unique phenotypes of disabled kidney transplant recipients with distinct outcomes in order
to identify strategies to improve their outcomes.

In this study, we analyzed the United Network for Organ Sharing database (UNOS)/
OPTN database from 2010 through 2019 using an unsupervised ML clustering approach to
identify distinct clusters of kidney transplant recipients whose functional status at transplant
were impaired (KPS of ≤40%) and assess clinical outcomes among these unique clusters.

2. Methods
2.1. Data Source and Study Population

This study was conducted using the UNOS/OPTN database to screen adult kidney-
only transplant recipients in the United States from 2010 to 2019 with low functional status.
Low functional status recipients were defined as having a KPS of ≤40% at the time of
kidney transplantation. This study received approval from the Mayo Clinic Institutional
Review Board (IRB number 21-007698).
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2.2. Data Collection

The following recipient-, donor-, and transplant-related variables in the OPTN/UNOS
database were abstracted for inclusion in cluster analysis: recipient age, sex, race, body
mass index (BMI), kidney retransplant, dialysis duration, causes of end-stage kidney
disease, comorbidities, panel reactive antibody (PRA), hepatitis C, hepatitis B and human
immunodeficiency virus (HIV) serostatus, KPS, working income, insurance, US residency
status, education, serum albumin, kidney donor type, ABO incompatibility, donor age,
sex, race, history of hypertension in donor, kidney donor profile index (KDPI), HLA
mismatch, cold ischemia time, kidney on pump, delay graft function, allocation type,
Ebstein–Barr virus (EBV) and Cytomegalovirus (CMV) status, induction, and maintenance
immunosuppression.

Functional status at the time of transplant for kidney transplant recipients was defined
by center-reported KPS. KPS, as shown in Table S1, is a categorical classification system
with progressive but arbitrary increase in assigned performance status at 10% intervals
without use of the intervening numbers, so it was treated as ordinal for statistical purposes.
Patients were further categorized into four groups: normal (80–100%), capable of self-care
(70%), requires assistance (50–60%), and disabled (10–40%). Among those with KPS of
≤40%, detailed definitions as following: KPS of 40%: disabled and requires special care
and assistance; KPS of 30%: severely disabled, hospital admission is indicated although
death is not imminent; KPS of 20%: very sick, hospital admission and active supportive
treatments are necessary; KPS of 10%: moribund, fatal processes progress rapidly. All
extracted variables had missing data less than 5% (Table S2). Missing data were imputed
through multivariable imputation by chained equation (MICE) method [30].

2.3. Clustering Analysis

Unsupervised ML was applied by conducting a consensus clustering approach to
categorize clinical phenotypes of functionally disabled kidney transplant recipients (KPS at
transplant of ≤40%) [31]. A pre-specified subsampling parameter of 80% with 100 iterations
and the number of potential clusters (k) ranging from 2 to 10 were used to avoid producing
an excessive number of clusters that would not be clinically useful. The optimal number of
clusters was determined by examining the consensus matrix (CM) heat map, cumulative
distribution function (CDF), cluster-consensus plots with the within-cluster consensus
scores, and the proportion of ambiguously clustered pairs (PAC). The within-cluster con-
sensus score, ranging between 0 and 1, was defined as the average consensus value for
all pairs of individuals belonging to the same cluster [32]. A value closer to one indicates
better cluster stability. PAC, ranging between 0 and 1, was calculated as the proportion of
all sample pairs with consensus values falling within the predetermined boundaries [33].
A value closer to zero indicates better cluster stability [33]. The PAC was calculated using
two criteria (1) the strict criteria consisting of a predetermined boundary of (0, 1), where
a pair of individuals who had a consensus value >0 or <1 was considered ambiguously
clustered, and (2) the relaxed criteria consisting of a predetermined boundary of (0.1, 0.9),
where a pair of individuals who had consensus value >0.1 or <0.9 was considered am-
biguously clustered [33]. The detailed consensus cluster algorithms used in this study for
reproducibility are provided in Supplementary Materials.

Outcomes

Posttransplant outcomes consisted of death-censored graft survival, patient survival
within 1 and 5 years after kidney transplant, and acute allograft rejection within 1 year
after kidney transplant. We defined death-censored graft failure as the need for dialysis or
kidney retransplant, while censoring patients for death or at last follow-up date reported
to the OPTN/UNOS database.
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2.4. Statistical Analysis

After an individual functionally impaired kidney transplant patient was assigned a
cluster using the consensus clustering approach, statistical analyses were subsequently
performed to compare the characteristics and outcomes among the assigned clusters.
The differences in clinical characteristics among the assigned clusters were tested using
Student’s t-test for continuous variables and Chi-squared test for categorical variables. The
key characteristics of each cluster were determined using the standardized mean difference
between each cluster and the overall cohort with the cut-off of >0.3.

The difference in posttransplant outcomes were evaluated among the assigned clusters.
The hazard ratios (HR) for death-censored graft failure and patient death based on the
assigned clusters were obtained using Cox proportional hazard analysis. Because the
OPTN/UNOS database did not specify the date of allograft rejection occurrence, the
odds ratio (OR) for 1-year allograft rejection based on the assigned clusters was obtained
using logistic regression analysis. The hazard ratio or odds ratio were not adjusted for
the between-cluster difference in clinical characteristics since an unsupervised consensus
clustering approach was conducted to purposefully generate clinically distinct clusters.

All analyses were carried out using R, version 4.0.3 (RStudio, Inc., Boston, MA, USA;
http://www.rstudio.com/, accessed on 21 July 2021), ConsensusClusterPlus package (ver-
sion 1.46.0) for consensus clustering analysis, and the MICE command in R for multivariable
imputation by chained equation [30].

3. Results

There were 158,367 kidney transplant recipients from 2010 to 2019 in the United States.
Of these, 3205 (2%) had severely limited functional status with KPS ≤40% at the time of
kidney transplant. Therefore, consensus clustering analysis was performed in a total of
3205 functionally impaired kidney transplant recipients. Table 1 shows recipient-, donor-,
and transplant-related characteristics of included patients. Most of the included patients
(90%) had KPS of 40%.

Table 1. Clinical characteristics according to clusters of functionally disabled kidney transplant recipients.

All
(n = 3205)

Cluster 1
(n = 2216)

Cluster 2
(n = 989) p-Value

Recipient Age (year) 51.0 ± 13.4 52.8 ± 12.7 47.2 ± 14.2 <0.001

Recipient male sex 1957 (61) 1422 (64) 535 (54) <0.001

Recipient race

<0.001

- White 1521 (48) 854 (39) 667 (67)

- Black 935 (29) 807 (36) 128 (13)

- Hispanic 446 (14) 302 (14) 144 (15)

- Other 303 (9) 253 (11) 50 (5)

ABO blood group

0.02

- A 1176 (37) 798 (36) 378 (38)

- B 432 (13) 325 (15) 107 (11)

- AB 170 (5) 123 (5) 47 (5)

- O 1427 (45) 970 (44) 457 (46)

Body mass index
(kg/m2) 28.4 ± 5.8 28.7 ± 5.7 27.5 ± 5.9 <0.001

http://www.rstudio.com/
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Table 1. Cont.

All
(n = 3205)

Cluster 1
(n = 2216)

Cluster 2
(n = 989) p-Value

Kidney retransplant 392 (12) 89 (4) 303 (31) <0.001

Dialysis duration

<0.001

- Preemptive 275 (9) 124 (6) 151 (15)

- <1 year 331 (10) 162 (7) 169 (17)

- 1–3 years 1860 (58) 1500 (68) 360 (36)

- >3 years 739 (23) 430 (19) 309 (31)

Cause of end-stage
kidney disease

<0.001

- Diabetes
mellitus 1018 (32) 809 (36) 209 (21)

- Hypertension 643 (20) 506 (23) 137 (14)

- Glomerular
disease 585 (18) 399 (18) 186 (19)

- PKD 192 (6.0) 145 (7) 47 (5)

- Other 767 (24) 357 (16) 410 (41)

Comorbidity

- Diabetes
mellitus 1258 (39) 958 (43) 300 (30) <0.001

- Malignancy 285 (9) 174 (8) 111 (11) 0.002

- Peripheral
vascular
disease

485 (15) 368 (17) 117 (12) <0.001

PRA (%), median
(Q25, Q75) 0 (0, 41) 0 (0, 17) 15 (0, 88) <0.001

Positive HCV
serostatus 158 (5) 120 (5) 38 (4) 0.06

Positive HBs antigen 68 (2) 53 (2) 15 (2) 0.11

Positive HIV
serostatus 27 (1) 26 (1) 1 (0) 0.002

Functional status

0.04

- 10% 94 (3) 69 (3) 25 (2)

- 20% 92 (3) 54 (3) 38 (4)

- 30% 122 (4) 76 (3) 46 (5)

- 40% 2897 (90) 2017 (91) 880 (89)

Working income 267 (8) 161 (7) 106 (11) 0.001

Public insurance 2641 (82) 1902 (86) 739 (75) <0.001

US resident 3192 (99) 2205 (99) 987 (99) 0.23
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Table 1. Cont.

All
(n = 3205)

Cluster 1
(n = 2216)

Cluster 2
(n = 989) p-Value

Undergraduate
education or above 1433 (45) 965 (43) 468 (47) 0.04

Serum albumin
(g/dL) 3.8 ± 0.6 3.8 ± 0.6 3.7 ± 0.6 <0.001

Kidney donor status

<0.001

- Non-ECD
deceased 2067 (64) 1587 (72) 480 (49)

- ECD deceased 373 (12) 334 (15) 39 (4)

- Living 765 (24) 295 (13) 470 (47)

ABO incompatibility 5 (0) 0 (0) 5 (1) 0.003

Donor age (year) 39.8 ± 15.1 40.3 ± 15.5 38.6 ± 14.0 0.004

Donor male sex 1753 (55) 1265 (57) 488 (49) <0.001

Donor race

<0.001

- White 2289 (71) 1555 (70) 734 (74)

- Black 419 (13) 330 (15) 89 (9)

- Hispanic 382 (12) 258 (12) 124 (13)

- Other 115 (4) 73 (3) 42 (4)

History of
hypertension in

donor
710 (22) 588 (27) 122 (12) <0.001

KDPI

<0.001

- Living donor 765 (24) 295 (13) 470 (48)

- KDPI < 85% 2267 (71) 1762 (80) 505 (51)

- KDPI ≥ 85% 173 (5) 159 (7) 14 (1)
HLA mismatch,

median (Q25, Q75) 4 (3, 5) 5 (4, 5) 2 (1, 3) <0.001

Cold ischemia time
(hours) 13.8 ± 9.8 15.3 ± 9.5 10.3 ± 9.5 <0.001

Kidney on pump 1271 (40) 1059 (48) 212 (21) <0.001

Delay graft function 742 (23) 616 (28) 126 (13) <0.001

Allocation type

<0.001

- Local 2703 (84) 1937 (87) 766 (77)

- Regional 226 (7) 150 (7) 76 (8)

- National 276 (9) 129 (6) 147 (15)

EBV status

0.08

- Low risk 79 (3) 46 (2) 33 (3)

- Moderate risk 2782 (87) 1926 (87) 856 (87)

- High risk 344 (11) 244 (11) 100 (10)
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Table 1. Cont.

All
(n = 3205)

Cluster 1
(n = 2216)

Cluster 2
(n = 989) p-Value

CMV status

0.001

- D−/R− 540 (17) 342 (15) 198 (20)

- D−/R+ 863 (27) 608 (27) 255 (26)

- D+/R+ 1251 (39) 903 (41) 348 (35)

- D+/R− 551 (17) 363 (16) 188 (19)

Induction immuno-
suppression
-

Thymoglobulin 1893 (59) 1306 (59) 587 (59) 0.82

- Alemtuzumab 346 (11) 230 (10) 116 (12) 0.26

- Basiliximab 631 (20) 446 (20) 185 (19) 0.35

- Other 82 (3) 56 (3) 26 (3) 0.87

- No induction 326 (10) 238 (11) 88 (9) 0.11

Maintenance Im-
munosuppression

- Tacrolimus 2967 (93) 2050 (93) 917 (93) 0.83

- Cyclosporine 38 (1) 23 (1) 15 (2) 0.25
-

Mycophenolate 2909 (91) 2012 (91) 897 (91) 0.93

- Azathioprine 25 (1) 13 (1) 12 (1) 0.06

- mTOR
inhibitors 18 (1) 12 (1) 6 (1) 0.82

- Steroid 1987 (62) 1372 (62) 615 (62) 0.88
Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D: Donor, EBV: Epstein–Barr virus, ECD: Extended
criteria donor, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immunodeficiency virus, KDPI:
Kidney donor profile index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel
reactive antibody, R: Recipient. SI conversion: Serum albumin: g/dL × 10 = g/L.

Figure 1A shows the CDF plot consensus distributions for each cluster of functionally
disabled kidney transplant recipients. The CDF curve showed the best stability for 2 clus-
ters with the curve being flat in the middle part. The delta area plot shows the relative
change in the area under the CDF curve (Figure 1B). The largest changes in area occurred
between k = 2 and k = 4, at which point the relative increase in area became noticeably
smaller. As shown in the CM heat map (Figure 1C, Supplementary Figures S1–S9), the ML
algorithm identified cluster 2 with clear boundaries, indicating good cluster stability over
repeated iterations. The mean cluster consensus score was highest in cluster 2 (Figure 2A).
In addition, favorable low PACs by both strict and relaxed criteria were demonstrated
for 2 clusters (Figure 2B). Thus, using baseline variables at the time of transplant, the
consensus clustering analysis identified 2 clusters that best represented the data pattern of
our recipients with the KPS of ≤40% at kidney transplant.
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3.1. Clinical Characteristics of Each Functionally Impaired Kidney Transplant Clusters

There were two distinct clinical clusters identified using consensus clustering analysis.
Cluster 1 had 2216 patients (69%), whereas cluster 2 had 989 patients (31%). There were
several clinical characteristics between the two clusters, as shown in Table 1 and Figure 3.
Kidney transplant recipients in cluster 1 were older in age and more likely to be on dialysis
longer prior to transplant and receive a locally allocated standard KDPI deceased donor
kidney. In contrast, cluster 2 recipients were younger, had shorter dialysis duration, were
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more likely to be retransplants, and receive living donors with a lower number of HLA
mismatches. Cluster 2 recipients had a higher PRA, less cold ischemia time, and lower
proportion of machine-perfused kidneys.
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ranges from two to ten). (B) The PAC values assess ambiguously clustered pairs.

Overall, very few recipients in clusters 1 and 2 had a working income (8%). Less than
half (43% cluster 1, 47% cluster 2) had an undergraduate education or higher. Despite
having a low functional status, the majority of recipients received young non-ECD standard
KDPI deceased donor kidneys. Only 12% received kidney transplants from ECD donors;
high KDPI kidneys were used in 5% of transplants. Thymoglobulin was the most commonly
used induction agent (59%).
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Figure 3. The standardized differences across two clusters for each of baseline parameters. The x axis
is the standardized differences value, and the y axis shows baseline parameters. The dashed vertical
lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI: Body mass
index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed graft function, DM: Diabetes mellitus, EBV:
Epstein–Barr virus, ECD: Extended criteria donor, ESKD: End stage kidney disease, GN: Glomeru-
lonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immunodeficiency virus,
HLA: Human leukocyte antigen, HTN: Hypertension, KDPI: Kidney donor profile index, mTOR:
Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive antibody, PVD:
Peripheral vascular disease, R: Recipient.
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Supplementary Figure S10 and Table S3 showed the proportion of cluster 1 and cluster
2 based on the OPTN regions. OPTN Regions 7 (12.6%, n = 404), 2 (10.2%, n = 382), 5 (9.3%,
n = 299) and 10 (9.2%, n = 296) had the highest number of cluster 1 recipients. Regions
2 (6.0%, n = 193), 2 (7.1%, n = 226), and 10 (3.7%, n = 117) had the highest number of
cluster 2 recipients. Regions 7 (19.7%), 5 (13.4%), and 10 (12.9%) had the highest number
of recipients from clusters 1 and 2 while regions 6 (0.4%), 1 (2.6%), and 11 (3.8%) had the
overall lowest number.

3.2. Posttransplant Outcomes of Each Functionally Disabled Kidney Transplant Cluster

Table 2 shows cluster-based posttransplant outcomes. The 1-year and 5-year death-
censored graft survival was 95.9 and 86.9% in cluster 1, and 97.9 and 91.9% in cluster 2
(p < 0.001) (Figure 4A). Cluster 1 had lower death-censored graft survival than cluster 2
with HR of 1.92 (95% CI 1.21–3.22) at 1 year and 1.75 (95% CI 1.28–2.40) at 5 years. The
1-year and 5-year patient survival was 93.7 and 79.1% in cluster 1 and 96.5 and 83.9% in
cluster 2 (p < 0.001) (Figure 4B). Cluster 1 had lower survival than cluster 2 with HR of 1.82
(95% CI 1.26–2.72) at 1 year and 1.45 (95% CI 1.15–1.82) at 5 years. The incidence of 1-year
acute allograft rejection was 6.7% in cluster 1, and 3.8% in cluster 2 (p = 0.001). Cluster
1 had more acute allograft rejection occurred within 1 year after kidney transplant than
cluster 2 with OR of 1.80 (95% CI 1.25–2.60).

Table 2. Post-transplant outcomes according to the clusters of functionally disabled kidney trans-
plant recipients.

Cluster 1 Cluster 2

1-year death-censored graft failure 4.1% 2.1%

HR for 1-year death-censored graft failure 1.92 (1.21–3.22) 1 (ref)

5-year death-censored graft failure 13.1% 8.1%

HR for 5-year death-censored graft failure 1.75 (1.28–2.40) 1 (ref)

1-year death 6.3% 3.5%

HR for 1-year death 1.82 (1.26–2.72) 1 (ref)

5-year death 20.9% 16.1%

HR for 5-year death 1.45 (1.15–1.82) 1 (ref)

1-year acute rejection 6.7% 3.8%

OR for 1-year acute rejection 1.80 (1.25–2.60) 1 (ref)
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4. Discussion

Studies have demonstrated poor clinical outcomes after kidney transplant among
patients with impaired functional status including reduced patient and allograft sur-
vival [1,5,7,8,15–17]. As a result, in combination with limited transplant resources, kidney
transplant surgeries are uncommonly performed for kidney transplant recipients with
severely limited functional status [11]. However, not all kidney transplant recipients with
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low functional status, including those with KPS ≤40% at the time of transplant, have poor
outcomes. Moreover, even for these high-risk recipients, their overall mortality risk remains
less when compared to remaining on dialysis [1,11,15]. In this study, unsupervised ML
consensus clustering was successfully used to identify two groups of kidney transplant
recipients with limited functional status in the U.S. Although small in overall number, these
recipients have distinct characteristics and satisfactory post-transplant outcomes and reflect
a unique subgroup of kidney transplant recipients.

The majority (91% in cluster 1 vs. 89% in cluster 2) of patients had KPS of 40% at the
time transplant; very few recipients had a KPS <40% (10%, n = 308). The overall average
recipient age was 51 years. Very few recipients in clusters 1 and 2 had a working income
(8%), and less than half (43% cluster 1, 47% cluster 2) had an undergraduate education or
higher. Despite having a low functional status, the majority of recipients received young
non-ECD standard KDPI deceased donor kidneys. Only 12% received kidney transplants
from ECD donors; high KDPI kidneys were used in 5% of transplants. Thymoglobulin was
the most commonly used induction agent for both clusters (59%).

Despite the above similarities between the two clusters, there were significant dif-
ferences in baseline characteristics. Cluster 1 recipients were older compared to cluster 2
(mean 53 years vs. 47 years). Similarly, there was a striking difference in the racial mixture
of these recipients; while the number of non-white recipients was low in both groups,
cluster 2 had a higher number of white recipients (67 vs. 39%) and significantly lower Black
recipients (13 vs. 36%). Compared to cluster 1, cluster 2 recipients had a higher proportion
of living donor transplants (48 vs. 13%), less ABDR mismatches (2 vs. 5), and lower cold
ischemia times (10 vs. 15 h). The higher number of HLA matches for cluster 2 likely is
reflective of living-related kidney donation.

Compared to cluster 2, cluster 1 recipients had a 1.75-fold increased risk for five-year
death censored graft failure and 1.45-fold higher five-year increased risk of death. Inferior
outcomes in cluster 1 could potentially be explained by older age and lower rates of preemp-
tive and living donor transplantation. While cluster 2 had higher rate of retransplantation
and both clusters received comparable immunosuppression, one-year acute rejection was
higher in cluster 1. This finding is possibly a reflection of higher HLA mismatches and
longer cold ischemia time in cluster 1 recipients although the observed rates of rejection
within both clusters were within the expected standard for kidney transplantation. Higher
HLA mismatches are well-known risk factor of acute rejection [34–36]. In addition, longer
cold ischemia time can lead to increased ischemia reperfusion injury resulting in increased
endothelial damage and exposure to donor HLA antigens, and acute rejection [37–40]. It is
also possible that cluster 2 recipients had access to better support and more resources as
compared to cluster 1 recipients, given their clinical characteristics of shorter dialysis time
and access to living donation.

To our knowledge, this is the first ML clustering approach successfully applied to
kidney transplant recipients low KPS scores in the U.S. Through our use of ML clustering
approach, without human intervention or assistance, we were able to identify two distinct
clusters of functionally disabled kidney transplant recipients. Cluster 2 recipients do well
and have excellent outcomes, which, in itself, is not commonly reported for functionally
disabled kidney transplant recipients. These findings from ML clustering approach provide
additional understanding towards individualized medicine and opportunities to improve
care for vulnerable groups of functionally disabled kidney transplant recipients. Further-
more, there are different cluster distributions among 11 geographic OPTN regions. Regions
7 (19.7%), 5 (13.4%), and 10 (12.9%) had the highest number of recipients from clusters 1
and 2 while regions 6 (0.4%), 1 (2.6%), and 11 (3.8%) had the overall lowest number. When
looking at geographic distribution by cluster regions 7 (12.6%), 2 (10.2%), 5 (9.3%), and 10
(9.2%) had the highest number of cluster 1 recipients and regions 2 (6.0%), 7 (7.1%), and 10
(3.7%) had the highest number of cluster 2 recipients.

Inherent to the source of these data, which came from the UNOS database, there are
some limitations to this study. Although individuals were able to be identified as having
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a low functional status, KPS ≤40%, there is a lack of additional detail regarding these
recipients specific to what their limitations were, criteria that centers used to determine
their suitability for transplant and information regarding caregiver support. The mean
recipient age was relatively low for both clusters 1 and 2 and implies that the nature of
the low functional status of these individuals may differ, compared to what is observed
for older kidney failure patients with low functional status. Only 39% had diabetes, and
15% had peripheral vascular disease. In addition, we lacked information on interventions
and management strategies used by different centers for recipients with low functional
status [4,41]. It is also unknown if cluster 2 recipients who received living donors were
only offered transplantation through this option. Thus, future studies are required to assess
the impacts of interventions and management strategies on changes in functional status
and posttransplant outcomes among these two different clusters of functionally disabled
kidney transplant recipients. While kidney transplant recipients with lower functional
status had an increased mortality after kidney transplant when compared to those with
higher functional status [1,11,15], the findings of our study provide further insights into the
different allograft and patient outcomes among the unique phenotypic subtypes of kidney
transplant recipients with lower functional status, in which those with cluster 1 subtype
had the worst posttransplant outcomes in term of death-censored graft failure, death, and
allograft rejection. Patients with functionally disabled kidney transplant recipients have
different characteristics and should be counseled about their risk of lower posttransplant
survival differently.

5. Conclusions

In summary, our ML clustering approach successfully identified two unique pheno-
typic clusters of kidney transplant recipients with low functional status in the U.S. Each
cluster had different characteristics with distinct posttransplant outcomes consisting of
allograft rejection, allograft loss, and patient mortality. These findings from ML cluster-
ing approach provide additional understanding towards individualized medicine and
opportunities to improve transplant opportunities for kidney transplant recipients with
low functional status. In addition, our study also showed a varying geographic distribution
of these low functional status kidney transplant recipients in the different OPTN Regions
in the U.S. Future studies are required to identify strategies to improve outcomes among
kidney transplant recipients with lower functional status, especially those with cluster
1 subtype.
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