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Mark Twain once remarked that the reports of his death were
greatly exaggerated. So too, the death of virology.

In certain quarters, it is now fashionable to declare the passing
of virology. “Viruses are retro,” a faculty colleague once told me,
deadly serious.

We have heard this before. In 1967, the U.S. Surgeon General
allegedly proclaimed, “The time has come to close the book on
infectious disease. We have basically wiped out infection in the
United States” (1). This was before the arrival of AIDS and severe
acute respiratory syndrome (SARS) and the discovery of hepatitis
C virus, before the fear of an avian flu pandemic and bioterrorism.

Virology was once held in high esteem. In the first half of the
20th century, plant viruses held center stage. Studies of mosaic
disease of tobacco revealed the existence of a new class of infec-
tious agents smaller than bacteria, and tobacco mosaic virus
taught us that viruses could be crystallized, disassembled, and re-
assembled into an infectious form: “life” could be studied with
chemical approaches (2, 3). In the 1950s and 1960s, viruses that
infect bacteria played a central role in the biological sciences. They
formed the basis of the Hershey-Chase experiment, the first widely
accepted evidence that DNA is the genetic material (4). Bacterio-
phage also led to the discovery of mRNA and the triplet nature of
the genetic code and played a leading role in the birth of molecular
biology (5). The 1970s and 1980s were a golden age for animal
virology. The small genomes of many animal viruses and the ease
of introducing them into cells made them the model organisms of
choice to study eukaryotic cells. mRNA splicing, transcriptional
enhancers, oncogenes, tumor suppressor proteins, antiapoptotic
proteins, cellular trafficking signals and pathways, major histo-
compatibility complex (MHC) restriction, and much fundamen-
tal cell biology and biochemistry were discovered through studies
of animal viruses (6). The roster of Nobel Prizes awarded for stud-
ies of viruses is long and unequaled.

The success of virology enabled the ascendancy of other fields.
Restriction mapping, gene transfer into animal cells, directed mu-
tagenesis, and whole-genome sequencing were developed to ana-
lyze small viral genomes (7–14). These powerful methods ushered
in the recombinant DNA era and were in turn applied to studying
cellular genes as well. In fact, much of genetic engineering, at least
in the early days, centered on converting the much larger cellular
genomes into virus-sized bits of genetic information, which could
then be analyzed by the methods used so successfully on the vi-
ruses themselves. With the adoption of molecular cloning tech-
niques by cell biologists and geneticists, virologists no longer had
a monopoly on insights into the innermost workings of cells. Now
that we can clone and study cellular genes and have sophisticated
methods to analyze cells and whole organisms, so the argument
goes, why settle for studying viruses?

To the cognoscenti, the real attraction of viruses was not only
these methodological advantages but also the intimate relation-
ship of viruses with their host cells. Because viruses depend on
cellular machinery to replicate, they need to manipulate crucial

regulatory nodes of cells to reprogram them into virus-producing
factories (or into safe havens while waiting for the signal to repli-
cate). By studying how viruses work the levers that control cell
growth and behavior, and how cells fight back to maintain their
sovereignty, important cellular processes are revealed. Thus,
many aspects of signal transduction, cell cycle control, regulation
of gene expression, immunology, and carcinogenesis were eluci-
dated by studies of viruses and their interactions with host cells.
Indeed, with their large population sizes, short generation times,
and high rate of mutation, viruses are ideal evolutionary probes of
cells. We may pride ourselves on the power of functional genomics
screens, next-generation DNA sequencing, and sophisticated
bioinformatics and proteomic analysis to dissect cellular activities,
but these tools are no match for millions of years of fast-track viral
evolution.

As well as teaching us about how cells work, viruses provide us
the means to manipulate cells. Virus particles are miniature,
highly efficient gene delivery machines that are used in thousands
of laboratories around the world to transfer genes into cells for
research purposes. Viruses have also been used as vectors to treat
human genetic disease and cancer and are being tested as novel
vaccine platforms (15, 16). Although it is possible to incorporate
genes into chemical nanoparticles and derivatize them with pep-
tides and antibodies to direct them to specific tissues, these are
primitive contraptions, crude Model T’s compared to the sleek
Lamborghiniviridae. And virus-mediated gene transfer is not re-
stricted to the laboratory or the clinic. Viruses can also transfer
genes between cells in nature, opening up new evolutionary op-
portunities. In fact, a large fraction of our own genome originated
from the remnants of ancient viruses (17). These confrontations
between viruses and cells helped mold cellular genomes over evo-
lutionary time and have been captured in flagrante today in wild
koalas, where an infectious retrovirus is becoming established in
the germ line, adopting an endogenous existence (18).

We can also learn from viruses how to alter cell function. Viral
proteins can be used to modulate cell behavior, and the design of
novel proteins modeled on viral proteins is a new frontier in syn-
thetic biology. A small papillomavirus protein has been used as an
all-purpose transmembrane scaffold to reprogram cells to un-
dergo red blood cell differentiation or to resist HIV infection, and
plans are afoot to utilize a small adenovirus protein to manipulate
a wide range of nuclear functions (19–21). Finally, the small size of
viral genomes permits us to construct “designer viruses” in the
laboratory (22). We can resurrect long-dead pathogenic viruses
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(to the dismay of some) to plumb their secrets, and we can cus-
tomize viral genomes to meet our needs, such as the rational at-
tenuation of vaccine strains (23, 24).

And viruses are not static. They are mutating, recombining,
and reassorting to generate new combinations of genes and pro-
teins with altered properties. We have long known that two influ-
enza viruses infecting the same animal can exchange genes to gen-
erate more-virulent strains that can sweep across the globe (25).
But such events are not restricted to closely related viruses. A
hybrid virus was recently discovered that contains genes from
papillomaviruses and polyomaviruses, two unrelated DNA tumor
viruses (26). This virus was isolated from bandicoots, a terrestrial
marsupial whose name means “pig-rat,” an etymology that should
have alerted us to this sort of unnatural consort.

Viruses also have esthetic appeal. Who is not moved by beau-
tiful viral capsids? Fly low over them, and you will see an endless
landscape of ridges, valleys, canyons, pockets, grooves, protru-
sions, and knobs. Who is not thrilled by the miniature cranes and
derricks of viral fusion proteins, swinging into position? And who
is not delighted by the marvelous ways that viruses repurpose
cellular molecules to support virus replication? That is not a
tRNA, it is a primer for reverse transcription (27)!

But there is a dark side. Viruses can cause serious disease. From
smallpox to polio to pandemic influenza to AIDS, many of hu-
manity’s greatest scourges have been viral diseases. Some of these
viruses have tormented us for millennia; others are mere arrivistes.
How do these viruses replicate, how do they affect cellular bio-
chemistry, and how do they cause disease? And what is a virus
disease, anyway? Viruses cause not only highly contagious diseases
with a clear infectious basis, but they can also trigger some chronic
diseases with no obvious infectious component. At least 15% of all
cancer deaths worldwide are associated with virus infection occur-
ring years and even decades earlier (28). Such a link is cause for
celebration, because we have strategies to combat viral infections:
surveillance, screening, vaccination, and antiviral agents. The de-
velopment and deployment of vaccines that inhibit infection by
hepatitis B virus and by certain strains of human papillomavirus,
both highly prevalent human carcinogens, are among the most
important public health advances of the past 30 years. Viruses are
also suspected of playing a role in autoimmune diseases, chronic
neurologic diseases, and chronic fatigue syndrome. Obesity has
also been associated with viral infection. Mice infected with hu-
man adenovirus type 36 become obese, and there is an epidemio-
logical link between infection with this virus and obesity in hu-
mans (29). And if viruses can trigger a pathogenic process and
then depart without leaving a physical trace of the viral genome in
the host, a so-called hit-and-run mechanism, then the roster of
viral diseases may expand tremendously.

New viruses are constantly being discovered, ranging from gi-
gantic viruses of algae with enormous genomes to minimalistic
circoviruses with barely any genome at all (30, 31). Despite the
large number of known viruses, the inventory of viruses that can
infect humans is incomplete. Viruses exist in animal reservoirs
that are sometimes breached, causing a disastrous spill into the
human population, particularly if the new agent can efficiently be
transmitted from human to human. So, with increasing frequency
a new viral agent suddenly emerges and threatens us anew (32).
HIV, SARS coronavirus, Ebola virus, Marburg virus, Lassa fever
virus, Nipah virus, hantavirus, avian influenza viruses. Climate
change appears to be expanding the geographic range of some

viruses and their insect hosts, driving dengue virus and Chikun-
gunya virus and the diseases that they cause into more temperate
regions (33). Most recently, Chikungunya virus has leaped to Eu-
rope and now to the Western Hemisphere, and Middle East respi-
ratory syndrome (MERS) coronavirus has entered the human
population, causing death in approximately 40% of people with
severe respiratory symptoms (34). The MERS virus has been cir-
culating in camels for years, but sequencing studies suggest that
the proximate animal host prior to transmission to humans may
have been the Egyptian tomb bat (35). The 3,200-year-old
mummy of Pharaoh Ramses V bears smallpox scars, so it would be
fitting if this bat was the source of the most recent emergent viral
disease.

How many viruses can potentially infect humans? From repet-
itive sequencing of a sentinel bat species, the Indian flying fox, it is
estimated that mammals may harbor several hundred thousand
different viruses, the vast majority of which have never been iso-
lated and have unknown pathogenicity (36). And of course, non-
mammalian species can also harbor deadly viruses, with avian
influenza viruses being the most obvious examples. Recent se-
quencing of environmental samples has revealed a new universe of
viruses and virus-like elements, millions in a drop of water or
sewage (37, 38). Many of the proteins encoded by these viruses
bear no obvious resemblance to known proteins and cannot yet be
assigned a function. What new wonders and horrors await us?

Is virology dead? Hardly. Scientific fields that do not adapt
become moribund and eventually die, but virology is remarkably
adaptable. When viruses were first discovered, they attracted at-
tention because of the diseases that they cause. Indeed, the pres-
ence of disease is usually the first clue that a virus exists. Since then,
virology has been at the forefront of successive waves of biological
inquiry: the appreciation that chemistry can be applied to the
study of life, the birth of molecular biology, the development of
gene manipulation and transfer technology, the application of
whole-genome sequencing, the growth of immunology, and the
acquisition of numerous new insights in cell biology and bio-
chemistry. Today, the threat of emerging virus diseases looms
large and suggests that the attention of many virologists may shift
from the use of viruses as tools for studying cells back to the study
of these novel agents themselves. If history is any guide, as we
discover the mechanisms of replication and pathogenesis of these
new viruses, new and interesting aspects of the biology of cells will
emerge.

Within the next several decades, cells will yield most of their
secrets. The eukaryotic genome, although large, is finite and rela-
tively stable, and our tools are powerful. But the variability, diver-
sity, speed of replication, and hidden reservoirs of viruses ensure
that virology is not dead but rather robust, growing, adapting, and
evolving. Acting, in fact, like a virus.
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