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We developed a predictive model associated with ferroptosis to
provide a more comprehensive view of esophageal squamous
cell carcinoma (ESCC) immunotherapy. Gene expression data
and corresponding clinical outcomes were obtained from the
GEO and The Cancer Genome Atlas (TCGA) databases, and
a ferroptosis-related gene set was obtained from the FerrDb
database. We identified 45 ferroptosis-related genes that were
differentially expressed, including enrichment in genes
involved in the immune system process. We established a
ferroptosis-related gene-based prognostic model based on the
results of univariate Cox regression and multivariate Cox
regression analyses, with an area under the curve (AUC) of
0.76 (3 years). We found that the patients with low-risk scores
showed a higher proportion of CD8+ T cells, CD4+ memory
activated T cells, etc. Finally, a predictive ferroptosis-related
prognostic nomogram, which included the predictive values
of age, gender, grade, TNM stage, and risk score, was estab-
lished to predict overall survival. In sum, we developed a fer-
roptosis-related gene-based prognostic model that provides
novel insights into the prediction of ESCC prognosis and iden-
tifies the relevance of the immune microenvironment for pa-
tient outcomes.

INTRODUCTION
Esophageal carcinoma (ESCA) is a common malignant digestive sys-
tem cancer type that ranks eighth in morbidity and sixth in mortality
worldwide.1 Esophageal adenocarcinoma (EAC) and esophageal
squamous cell carcinoma (ESCC) are the two histopathological sub-
types of ESCA; both subtypes differ in etiology, incidence, and clinical
characteristics.2 In China, 90% of the patients have squamous cell car-
cinoma. The 5-year overall survival (OS) of advanced ESCC is only
18.8%.3,4 Unfortunately, most patients have advanced-stage diseases
at first diagnosis, generally because of the absence of clinical symp-
toms.5 Recently, multidisciplinary therapy methods, including surgi-
cal resection, radiotherapy, chemotherapy, and targeted therapy, pro-
vide new options to prolong OS.6,7 Moreover, the dramatic
development of immune checkpoint inhibitors, such as CTLA-4
and PD-1, suggests amazing therapeutic effects in clinical efficacy.8,9

However, the therapy conditions are not eligible for most ESCC
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patients, which suggests that more studies on the molecular mecha-
nisms’ elucidation and identifying useful biomarkers for immune
checkpoint inhibitors are still urgently needed for cancer
immunotherapy.10,11

Ferroptosis is non-apoptotic regulated cell death (RCD) and an iron-
dependent process that differs from necrosis or apoptosis and results
from iron-dependent lipid peroxide accumulation.12,13 Recently, fer-
roptosis has been elucidated to serve multiple roles in the biological
regulations and signal transduction pathways, leading to tumor initi-
ation and progression.14–16 Many genes have been validated to pro-
mote ferroptosis in tumor cells, such as FBXW7,17 G6PD,12 and
TP53,18,19 while CISD2,20 GPX4,21–23 and SLC7A1124,25 serve as sup-
pressors to prevent ferroptosis. Wang et al.26 demonstrated that fer-
roptosis-specific lipid peroxidation is enhanced by CD8+ T cells
and, in turn, contributes to the anti-tumor efficacy of immuno-
therapy. Thus, understanding the relationship between ferroptosis
and immune cell infiltration may provide a more comprehensive
view of cancer immunotherapy efficacy.

Previous studies on ferroptosis-related prognostic signatures of can-
cers have focused on a few relevant genes, possibly neglecting other
significant factors present within the immune microenviron-
ment.27,28 In the present study, we systematically profiled the
ESCC expression data and clinical outcomes from the GEO and
The Cancer Genome Atlas (TCGA) databases. Furthermore, we
identified ferroptosis-related genes (drivers, suppressors, and
markers) based on data from the FerrDb database.29 We analyzed
the differentially expressed ferroptosis genes between ESCC and
adjacent normal tissues, screened survival-associated signatures,
and built a ferroptosis-genes prognostic model to predict the
outcome of patients with ESCC. Our results underline the associa-
tion between ferroptosis and the immune microenvironment in
ors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. The information of datasets from the GEO database

Accession
number Platform Samples Experiment type PMID

GEO:
GSE20347

GPL571 34 expression profiling by array 20955586

GEO:
GSE23400

GPL96;
GPL97

208 expression profiling by array 21385931

GEO:
GSE75241

GPL5175 30 expression profiling by array 29682174

GEO:
GSE53625

GPL18109 358
expression profiling by array;
non-coding RNA profiling by
array

24522499
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ESCC and add to our understanding of the interaction between fer-
roptosis and immune cell abundance in the tumor microenviron-
ment (TME). Our data may suggest that targeting ferroptosis genes
may improve immunotherapy efficacy.

RESULTS
Differentially expressed ferroptosis signatures in ESCC

The information of GEO datasets used is listed in Table 1. Following
the differential gene analysis, 1,367 dysregulated genes were obtained
from GEO: GSE20347, with 896 genes showing upregulation and 471
showing downregulation, and 710 dysregulated genes from GEO:
GSE23400, with 413 genes showing upregulation and 297 showing
downregulation. Finally, we obtained 1,653 dysregulated genes from
GEO: GSE75241, of which 1,125 genes were upregulated and 528
genes were downregulated (Figure 1A). Because the ferroptosis-
related genes obtained from the FerrDb database were experimentally
validated (Table S1), the differentially expressed genes (DEGs) ob-
tained from the GEO datasets were intersected with the ferroptosis-
gene set to obtain “differentially expressed ferroptosis genes.” The
Venn diagram revealed that 45 ferroptosis-related genes intersected
between four datasets (Figure 1B). Relevant details of all gene lists
and overlap are available in Table S2.

To explore the underlying mechanisms of the ferroptosis signatures
in ESCC, we performed a functional analysis using Metascape On-
line. As shown in Figures 1C and 1D, the Gene Ontology (GO) anal-
ysis results suggest that these dysregulated ferroptosis genes are
mainly enriched in response to a stimulus, immune system process,
and cell proliferation. The Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis revealed that these dysregulated
ferroptosis genes were mainly enriched in ferroptosis, interleukin-
4, and interleukin-13 signaling. Thus, these data motivated us to
study the relationship between the ferroptosis-gene set and tumor
immune microenvironment. Furthermore, the protein-protein
interaction (PPI) network and MCODE plugin based on the Meta-
scape Online identified the significant modules in these ferroptosis
genes. Module 1 included six edges and four nodes and involved
SLC7A11, CD44, SLC3A2, and OTUB1. Module 2 included three
edges and three nodes and involved AKR1C1, CAV1, and PGD
(Figure 1E).
The establishment and verification of a ferroptosis-related

prognostic model

Normalized mRNA expression data with corresponding patients’ in-
formationwere obtained fromTCGA-ESCC. To enhance the reliability
and accuracy of the predictive model based on ferroptosis genes, GEO:
GSE53625 from the GEO dataset served as a validation cohort. Univar-
iate Cox regression analysis was first applied to detect the genes that
were significantly associated with prognosis. As shown in Figures
2A–2F, six ferroptosis-related genes were identified as prognosis genes.
A forest plot showing the results of the univariate Cox regression
analysis is shown in Figure 2G. SCP2, MAPK1, and PRKAA1 were
subsequently identified as independent prognostic signatures in a
multivariate Cox regression (Table 2). Thus, a prognostic model was
established based on the multivariate Cox regression. As shown in Fig-
ure 3A, a risk score for each patient was calculated as follows: 1.69 (b1)
� (expression of SCP2) + (�1.05) (b2) � (expression of MAPK1) +
(�0.62) (b3) � (expression of PRKAA1). Then, a high-risk group
(n = 40) and a low-risk group (n = 40) were stratified based on the me-
dian of the risk score. Moreover, t-distributed stochastic neighbor
embedding (t-SNE) and principal-component analysis (PCA) showed
that the patients in different groups were distributed in two directions
(Figures S1A and S1B). The median survival time of patients with a
high risk score was significantly longer than that of the patients with
a low risk score (Figure 3B). Subsequently, we created a receiver oper-
ating characteristic curve (ROC) to evaluate the prognosis prediction
efficiency of the model, and we found the area under the curve
(AUC) was 0.72 (1-year OS), 0.78 (3-year OS), and 0.76 (5-year OS),
indicating the predictive model was well established (Figure 3C).

Furthermore, to evaluate the reliability and accuracy of the predictive
model, we validated the power of the model in GEO: GSE53625. As
shown in Figure 3D, the Kaplan-Meier plots revealed that the ferrop-
tosis-related predictive model could successfully stratify patients with
ESCC into a long-term and a short-term OS group. The AUC of the
ROC curves of this model was 0.7 in the GEO: GSE53625 (3-year OS)
(Figure 3E). Additionally, as shown in Figure S1C, we visualized the
distribution of the ferroptosis genes considering the risk scores, stage,
grade, gender, and age by using the R package “pheatmap.”

Assessment of the immune microenvironment in ESCC

We assigned 80 patients with gene expression profiles and clinical
characteristics obtained from TCGA-ESCC to calculate the immune
score, stromal score, and estimate score using the estimate algorithm.
The immune scores were distributed between �1,081.35 and
2,038.01, while stromal scores ranged from �1,748.87 to 1,310.88.
We then divided ESCC patients into low immune/stromal/estimate
and high immune/stromal/estimate groups according to their corre-
sponding immune/stromal/estimate scores. Then, the Kaplan-Meier
plot revealed that all the groups were statistically significant, with p
values of 0.033 (immune group), 0.048 (stromal group), and 0.0015
(estimate group) (Figures 4A–4C).

Besides calculating the relevant score of the immune microenviron-
ment, there is a need to understand the proportion of immune
Molecular Therapy: Oncolytics Vol. 21 June 2021 135

http://www.moleculartherapy.org


Figure 1. Overview of the differentially expressed ferroptosis signatures in ESCC

(A) Expression profiles of ferroptosis-related genes in normal and tumor samples in GEO: GSE20347, GSE23400, and GSE75241 datasets. Genes were clustered according

to their expression. Red color represents high expression, and blue color represents low expression. (B) Venn diagram showing the dysregulated ferroptosis genes common

to the four datasets. (C and D) Graph showing the GO and KEGG analysis based on the Metascape Online, bar plot, and network showing the distribution and relationship of

the different functions. (E) PPI network and MCODE showing the hub genes in the ferroptosis gene set.
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landscapes in the tumor. We applied the CIBERSORT algorithm to
explore the proportion of immune cells in TCGA-ESCC and GEO:
GSE53625 datasets based on the gene expression data. As shown in
Figure 5A, macrophages, including the M0, M1, and M2 subsets, ac-
136 Molecular Therapy: Oncolytics Vol. 21 June 2021
counted for a large proportion of infiltrating immune cells in TCGA-
ESCC. Moreover, violin plots were used to visualize the immune cell
subset distribution between the low- and high-risk score groups (Fig-
ure 5B). We found that the proportions of CD8+ T cells, CD4+



Figure 2. Kaplan-Meier plots and forests plot of the prognostic ferroptosis signature

(A–F) Kaplan-Meier plots showing the ferroptosis genes with prognostic value. (G) The forest plot showing the results of the univariate Cox regression analyses.
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memory activated T cells, and M0, M1, and M2 macrophages were
statistically significant. The same analysis was performed on the
GEO: GSE53625 cohort. As shown in Figures S2A and S2B, macro-
phages are the primary immune components in the TME. Addition-
ally, the proportions of M0, M1, and M2 macrophages were statisti-
cally significant, with a similar trend as found for TCGA-ESCC.

Moreover, we explored the expression of PD-1 and CTLA4 in the
low- and high-risk groups and found that patients in the low-risk
group exhibited a lower expression of PD-1 and a relatively higher
expression of CTLA-4 in TCGA-ESCC cohort (Figures 5C and 5D).
However, we noticed that the expression of CTLA4 showed no statis-
tical significance between the two groups, and PD-1 exhibited consis-
tency with TCGA-ESCC cohort (Figure S2C).

Construction of the nomogram

A predictive ferroptosis-related prognostic nomogram was estab-
lished using the results of the multivariate analysis. To identify the
Molecular Therapy: Oncolytics Vol. 21 June 2021 137
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Table 2. Multivariate Cox regression analysis of signature in TCGA-ESCC

cohort

Variable Coef Exp(coef) Se(coef) Z p value

SCP2 1.689629 5.417472 0.566988 2.98001 0.002882

MAPK14 �1.04552 0.351509 0.693474 �1.50766 0.021316

PRKAA1 �0.61953 0.538199 0.373189 �1.66009 0.03969
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predictive value of age, gender, grade, TNM stage, and risk score, we
used nomograms to predict the 1-, 2-, and 3-year OS (Figure 6A). As
shown, this nomogram was able to assess several variables to predict a
patient outcome, which is based on patient characteristics, including
age, gender, TNM stage, and risk score. Additionally, the predictive
accuracy for OS is shown by the calibration curves. A calibration
curve for the predictive probability showed an accordant agreement
for the 3-year OS (Figure 6B).
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DISCUSSION
Selective induction of cancer cell death is the most effective anticancer
therapy.30,31 Increasing evidence has shown that ferroptosis, a
recently discovered type of programmed cell death, plays a crucial
role in tumorigenesis and cancer therapeutics efficacy.31 Wang
et al.26 elucidated that the cell ferroptosis was regulated by CD8+

T cells and, in turn, can influence the efficacy of cancer immuno-
therapy. Thus, understanding the relationship between ferroptosis
and the complex tumor immune microenvironment in ESCC may
help identify novel biomarkers for prognosis and targeted therapy.
Currently, surgical resection, chemotherapy, and radiotherapy are
the three primary treatments for patients with ESCC. Although sur-
gical resection is considered an effective treatment for improving
the survival of early-stage patients, the treatment for many patients
with advanced-stage disease is not satisfactory. Cancer immuno-
therapy provides novel therapeutic options for the comprehensive
treatment of advanced resectable ESCC.
Figure 3. The predictive model construction

according to the multivariate Cox regression

analysis

(A) The calculations for the model according to the

multivariate Cox regression analyses. (B) The predictive

ferroptosis-related prognostic model established from

three survival-associated ferroptosis genes in TCGA-

ESCC cohort. (C) The ROC curve of the three ferroptosis

genes with the AUC in TCGA-ESCC cohort. (D) The

predictive ferroptosis-related prognostic model was es-

tablished from three survival-associated ferroptosis

genes in the GEO: GSE53625 cohort. (E) The ROC curve

of the three ferroptosis genes with the AUC in the GEO:

GSE53625.



Figure 4. The prognostic significance of immune score, stromal score, and estimate score in TCGA-ESCC

(A) The Kaplan-Meier plot showing the overall survival for immune score. (B) The Kaplan-Meier plot showing the overall survival for stromal score. (C) The Kaplan-Meier plot

showing the overall survival for estimate score.
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In the present study, we focused on ferroptosis-related genes and
investigated their influence on prognosis. We aimed to understand
the relationship between the ferroptosis-related prognostic model
and the immune microenvironment to further identify potential
biomarkers for prognosis detection and target therapy. First, we
analyzed DEGs from the GEO: GSE20347, GSE23400, and
GSE75241 datasets, assessed intersection with a validated gene set
of ferroptosis obtained from the FerrDb database, and found 45 fer-
roptosis-related genes were received. Of note, we did not take the
intersection of four datasets because few genes were obtained, but
we summarized the intersection of each GEO dataset and a vali-
dated gene set of ferroptosis. Then, functional analysis was per-
formed based on the 45 ferroptosis-related genes, and this revealed
that these genes were associated with the immune system process.
Univariate Cox and multivariate Cox regression analyses were
used to identify the ferroptosis genes with poor prognosis and build
a ferroptosis-based prognostic model. Subsequently, we studied the
immune cell infiltration of the TME using the CIBERSORT and ES-
TIMATE algorithms. We found that the proportions of CD8+

T cells, CD4+ memory activated T cells, and M0, M1, and M2 mac-
rophages were statistically significant.

We collected the ferroptosis-related genes from the FerrDb data-
base. Notably, all the genes we selected had been validated. Previ-
ously, SCP2 has been shown to play significant roles in trafficking
peroxidized lipids to mitochondria, and inhibition of SCP2 de-
creases the activity of ferroptosis.21 Poursaitidis et al.32 have demon-
strated that blockade of mitogen-activated protein kinase (MAPK)
signaling protects cells from ferroptosis, which in turn inhibits tu-
mor growth. Moreover, Song et al.33 found that inhibition of
PRKAA1 reduced ferroptosis through diminishing erastin-induced
BECN1 phosphorylation. Thus, the ferroptosis-related genes in the
prognostic model have been validated to be involved in ferroptosis
in different studies.
In addition to this study, we noticed that Liang et al.28 and Liu
et al.27 studied the ferroptosis-related genes in hepatocellular
carcinoma and glioma, respectively. Liang et al.28 identified ferrop-
tosis-related genes and built a predictive model for OS. Although
they also studied the immune functions of the ferroptosis genes,
the approaches we used were different. Additionally, Liu et al.27

studied the ferroptosis-related gene signature to predict the OS of
patients with glioma and performed experiments to validate the
expression and function of ferroptosis-related genes. As multiple
studies have focused on ferroptosis in tumorigenesis and progres-
sion, we believe our study may help to provide novel insights
into cancer immunotherapy.

In summary, our study identified a ferroptosis-related gene-based
prognostic model that is independently associated with OS. Further-
more, the analysis of the ferroptosis-related prognostic model and
immune profiles identifies the relevance of the immune microenvi-
ronment in affecting ESCC outcomes.

MATERIALS AND METHODS
Data source

The RNA expression data from accession numbers GEO:
GSE20347,34 GSE23400,35 and GSE75241,36 which contained
normal and tumor tissues, and the RNA expression data, as well
as patients’ clinical outcomes from GEO: GSE53625,37 were down-
loaded from the GEO database (https://www.ncbi.nlm.nih.gov/
geo). All data were quantile normalized via log2-scale transforma-
tion to ensure standardization. The gene symbols that were de-
tected in more than one probe were calculated using their mean
expression levels. Additionally, the level three RNA sequencing
(RNA-seq) data of ESCC, named TCGA-ESCC, were obtained
from TCGA database (https://www.cancer.gov/tcga/). Both counts
and fragments per kilobase of transcript per million mapped reads
(FPKMs) and matched patients’ clinical information were
Molecular Therapy: Oncolytics Vol. 21 June 2021 139
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Figure 5. Immune cell landscape in different ferroptosis risk score groups in TCGA-ESCC cohort

(A) The bar plot showing the proportion of infiltrated immune cells calculated by the CIBERSORT algorithm. (B) The violin plot showing the difference between 22 infiltrated

immune cells in the tumor microenvironment. (C and D) Graph showing different expressions of PD-1 and CTLA4 in TCGA-ESCC cohort.
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downloaded for further analysis. Although the clinical information
contained 96 patients, only 80 patients matched the expression in-
formation according to the sample names.
140 Molecular Therapy: Oncolytics Vol. 21 June 2021
A total of 149 ferroptosis-related genes, including drivers, suppres-
sors, and markers, obtained from the FerrDb database (http://www.
zhounan.org/ferrdb/)29 were selected as candidate genes, and details
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Figure 6. Proposed nomogram to predict 1-, 2-, and 3-year OS for ESCC

Locate patient’s variable on the corresponding axis. (A) To calculate survival probability, identify patient values on each axis and then for each draw a vertical line upward to the

points axis. Add the points for all variables and locate this sum on the total points line. (B) Calibration curve for the probability of 3-year OS.
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are shown in Table S1. This study followed the publication guidelines
of the GEO and TCGA databases.

Identification of differentially expressed ferroptosis genes and

functional analysis

GEO: GSE20347, GSE23400, and GSE75241 were used to detect the
DEGs between tumor and adjacent normal tissues via the R package
“limma” in RStudio (version 1.2.5001), with the following cutoff for
adjustment: p value < 0.05 and |log2FC|R 1. The R package “pheat-
map” was applied to visualize the degree range of differences in the
three datasets. Then, the ferroptosis-related genes were obtained by
taking the intersection of candidate genes and DEGs.

Functional analysis was performed using Metascape Online (https://
metascape.org/gp/index.html#/main/step1).38 The ferroptosis-related
genes were loaded into Metascape to conduct functional analysis and
construct a PPI network.We performedMCODE to further reveal the
densely connected regions. p <0.05 was used as a cutoff value.

Construction and validation of the ferroptosis-related gene

prognostic model

TCGA-ESCC and GEO: GSE53625 datasets were used to establish a
ferroptosis-related gene prognostic signature, with TCGA-ESCC be-
ing the training cohort and the GEO: GSE53625 being the validation
cohort. Univariate Cox analysis of OS was first performed to identify
the survival-related ferroptosis genes with a significant prognosis
value. A p value <0.05 was considered statistically significant. Then,
multivariate Cox regression was performed to construct the ferropto-
sis-related variable-based predictive model to confirm that the re-
maining genes were independent prognostic factors. The signature
was established from the independent prognostic genes according
to their corresponding coefficients.
Patients from TCGA-ESCC dataset were divided into low- and high-
risk groups weighted by the risk score obtained from the multivariate
Cox regression. We performed t-SNE and PCA to explore the distri-
bution of the different groups by using the R packages “Rtsne” and
“stats,” respectively. Finally, the ROC curve was created with R pack-
age “time ROC,” and the AUC was used to evaluate the efficiency of
the prognostic signature.

Evaluation of the TME and infiltrated immune cells

The ESTIMATE algorithm is a method that can transform gene
expression data to detect the tumor purity and activity of immune
and stromal cells in the TME.39 Here, we used the R package “es-
timate” to calculate the immune score and used Kaplan-Meier sur-
vival curves to evaluate the relationship between immune score and
patients’ survival in TCGA-ESCC dataset. The immune score could
be used for the estimation of immune cells infiltrating. The two
groups were selected according to the risk score of the prognostic
model.

Additionally, the CIBERSORT algorithm, which is a robust method
that has the capacity to characterize the composition of immune cells
of complex tissues based on gene expression data, was applied to
calculate the infiltrated immune cells in TCGA-ESCC tissues.40 The
corresponding survival data were combined with the immune cell
infiltration levels to identify the relationship between the prognostic
signature and infiltrated immune cells.

Clinical relevance investigation and a nomogram construction

To study the correlation between the ferroptosis-related prognostic
model and clinical characteristics, including age, gender, TNM stag-
ing system, grade, as well as PD-1 (also named PDCD1, CD279),
CTLA4 expression profiles and immune cell scores were arranged
Molecular Therapy: Oncolytics Vol. 21 June 2021 141
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for differential analysis into two groups that were determined accord-
ing to the risk score of the predictive model.

Furthermore, a nomogram, which provided the survival probability
of a specific outcome, was designed to integrate the risk score of the
model as a prognostic factor to evaluate the predictive probability
of 1-, 2-, and 3-year OS.41 A calibration curve depicting the 3-year
OS was plotted to visualize the observed rates against the nomo-
gram-predicted probabilities. The R package “rms” was used to plot
the nomogram and calibration curves.
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