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TCR repertoire and transcriptional signatures of circulating
tumour-associated T cells facilitate effective non-invasive

cancer detection

The concept of precision medicine in oncology has dra-
matically transformed the clinical application of tumour
screening, which makes the malignancies more curable if
diagnosed early. Traditional serological tumour biomark-
ers like a-fetoprotein, prostate-specific antigens, carci-
noembryonic antigens, CA19-9 and CA125 have been
widely investigated in clinic, but the specificity has not
reached a satisfactory stage for population level.'”> Novel
technologies utilizing tumour-derived signals from blood
non-invasively provide a new tumour diagnostic strat-
egy called liquid biopsy over the past decades.’ Several
peripheral biomarkers such as cell-free DNA (cfDNA)°®
especially circulating tumour DNA (ctDNA),” circulat-
ing tumour cells (CTCs),'*! circulating micro-RNAs, %!
tumour-derived exosomes'* and cancer cell metabolites'
achieved great progress and showed huge prospects in
tumour screening. However, these methods are all derived
from the modality of tumour and often need predefined
panels or biomarkers for diagnosis, which may be non-
specific and subjective due to the heterogeneous properties
of tumour. The feasibility of using tumour-associated T cell
response involved in tumour initiation and development,
as a supplementary diagnosis choice has not been explored
widely.!%17

Until recently, tumour-infiltrated T lymphocytes (TILs)
were considered to be beneficial tumour-specific T cells.'®
But due to the complex interaction of different immune
components mediated by chemokines or cytokines within
the tumour microenvironment (TME), the majority of pas-
sively expanding TILs cannot recognize tumour-specific
antigens (TSAs) and are thus believed to be bystander
T cells.”®?! These bystander T cells may dilute tumour-
specific signals and make the identification of TSAs-
specific T cells challenging.’*** Programmed cell death
protein 1 (PD-1) is suggested to be a biomarker for tumour-
specific CD8" T cells both in TILs and in peripheral blood
mononuclear cells (PBMCs),*>?>>"%’ but the efficacy needs

to be further validated in practical applications.’*%%°

Tracking the general immunophenotype of T lymphocytes
when they encounter antigens and enrichment of tumour-
associated T cells over a pool of irrelevant signals during
tumour development reflects the overall immune status of
patients and offers opportunities for cancer prevention and
therapy.*”

Next generation sequencing (NGS)-based T cell receptor
(TCR) repertoire quantification has provided methods for
TSA recognition and now is extensively used in the identi-
fication of tumour-reactive T lymphocytes.'®*'>* The past
few years have witnessed a series of studies utilizing T or
B-cell repertoire to pinpoint disease-associated signatures,
and evidences have demonstrated the diagnostic poten-
tial of TCR repertoire in autoimmune diseases,” infec-
tious diseases***” and even cancer.***? Sustained neoanti-
gen stimulation during tumour cell development impels
TCR to shift towards a tumour-specific distribution and to
exhibit different amino acids motifs than those in healthy
cells. >+

Under physiological conditions, naive T cells matur-
ing in the thymus will flow through peripheral blood
or lymphatic vessels and migrate through high endothe-
lial venules into secondary lymphoid organs where they
encounter potential tumour antigens.***> T cell traffick-
ing and circulation theoretically enable these tumour-
specific T cells to be detectable both in tumour sites
and peripheral blood. T lymphocytes circulating among
PBMCs that paired with TILs residing in tumour tis-
sues have been suggested to be highly correlated with T
cell-induced cytotoxicity and to indicate enrichment of
tumour reactive signals.’>#%=! Elucidating the connection
between anti-tumour T cells in the periphery and those
in the TME?>2>444552 may provide clues to design novel
approaches for non-invasive tumour screening. Assessing
overlapping TCRs between PBMCs and TILs and consid-
ering them tumour-specific predictors will not only help
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us comprehensively study T cell circulation and migration
but will alleviate the deficiencies caused by using the TIL
population only, which is enriched with bystander T cells.

In this study, we defined a group of circulating T lym-
phocytes in PBMCs that shared TCRs with TILs as tumour-
associated T cells (TATs). Using the CDR3 sequences
of TATs with those in healthy TCRs as input data, we
trained a binary model to distinguish TATs from healthy
clones. Applying this model on several independent clin-
ical datasets, we acquired the number of TAT sequences
in PBMCs for each individual. We then designed a TCR
repertoire risk score (TRRS) as the number of TATs our
model predicted in the PBMCs divided by the number
of detected healthy TCRs from healthy individuals. We
demonstrated that the TRRS separated tumour patients
from healthy donors effectively. Next, we characterized the
transcriptional signatures of TATs in the PBMC popula-
tions using multiple single cell RNA sequencing (SCRNA-
seq) coupled with TCR sequencing datasets and found that
T cell activation pathway was significantly up-regulated in
TATs. Combining the TCR repertoire and transcriptional
signatures of TATs,” we developed an integrated frame-
work for non-invasive tumour screening using only PBMC
samples. Furthermore, we performed bulk TCR and RNA
sequencing of PBMC samples from 11 tumour patients and
six healthy donors and validated the performance of this
tumour screening strategy with these data and another
independent cohort. Our study proves the principle of
using TATs as an alternative non-invasive tumour screen-
ing biomarker and broadens the liquid biopsy application
from the view of the immune landscape.

T cells with identical TCR sequences are thought to be
derived from a single naive T cell, which migrates and
circulates among different tissue types and may undergo
a functional state transition upon antigen stimulation.>*
Based on the TCR-sharing relationship of TILs and
PBMCs, we first divided TCR clonotypes in PBMCs and
TILs into four different compartments (Figure 1A). TCR
clonotypes of PBMCs that are identical to those of TILs
are called PBMCs_Shared compartment, while clonotypes
of TILs that are identical to those of PBMCs are called
TILs_Shared compartment. These two compartments have
the same TCR clonotypes, but their tissue sources dis-
tinguish them. Due to different tissue environment, the
frequency of each clonotype and the degree of clonal-
ity between the two compartments may differ. There-
fore, we specifically named the T cells among PBMCs
that share TCRs with TILs as circulating Tumor Asso-
ciated T cells (cTATs). In contrast, the TCR clonotypes
that are unique to TILs are in the TILs_only compart-
ment, and the TCR clonotypes observed only in PBMCs
are in the PBMCs_Only compartment. We believe that the
PBMCs_Only compartment most likely represents naive,

effector or memory T cells in periphery that are not related
to the tumour immune response. T cells in the TILs_Only
compartment may largely represent tissue-resident T cells,
which are not in the set of T lymphocytes prevalent in cir-
culation. It should be noted that due to the technical lim-
itation of TCR repertoire sequencing, both TILs_Only and
PBMCs_Only compartments actually contain a proportion
of overlapped clonotypes that cannot be detected sensi-
tively at present.

This framework allowed us to use TCR sequences as
molecular barcodes to track and analyse the function of
TATs among TILs and PBMCs. We collected a series of
TCR CDR3 g chain sequencing data of paired PBMCs
and tumour tissues from the same patient (Table S1) and
assigned each T cell clonotype to one of the four compart-
ments using the aforementioned definitions. After remov-
ing non-functional TCRs, we found that, among the differ-
ent compartments, most (91%) of the TCR CDR3 sequences
were 12~17 amino acids in length (Figure 1B). In addition,
the CDR3 sequence length distribution in the TILs resem-
bles that in the PBMCs, indicating that there is no CDR3
length difference between these cells in the two different
tissue types.

Next, because TCR beta chain variable (TCRBV) genes
contributed the most diversity to CDR3 sequences, we
analysed the TCRBV gene usage in the different compart-
ments. We found that TRBV genes, such as TRBV06/14/
15/20/25, are expressed more frequently in the shared
compartments than in the non-shared compartments*’
(Figure 1C), which suggests that the antigen specificities
of TCRs may differ between these compartments. In the
following analysis, subsets with CDR3 sequences of 12~17
amino acids were analysed, and TCRs with excessively
long or short CDR3 regions were removed.

To estimate the degree of TCR sequence overlap in
PBMCs and TILs, we calculated the relative proportion of
TCRs shared by both TILs and PBMCs in each sample. We
found that the proportion of TCRs in the TILs_Shared com-
partment (approximately 22.56%, 95% confidence interval
(CI): 12.82%-37.51%) was significantly higher (p < le™)
than the proportion in the cTATs of the PBMC popula-
tion (approximately 3.08%, 95% CI: .64%-5.15%, Figure 1D),
which indicated that TILs show higher shared TCR enrich-
ment than PBMCs possibly due to the close interaction
of T lymphocytes with TSAs in the TME. This result is
consistent both at the TCR clone and TCR sequence level
(Figure 1D). The same analysis based on single-cell TCR
sequencing (TCR-seq) data showed no significant differ-
ences (p > .05) in the proportion of shared TCRs at either
the clone or sequence level, possibly due to the limited
number of cells captured in single cell TCR-seq datasets,
and many shared clones might be labelled as not shared
(Figure S1A).
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FIGURE 1 T cell receptor repertoire (TCR) sharing relationship between the tumour microenvironment, and the periphery defines four

different compartments. (A) Schematic overview of TCR sharing relationship between PBMCs and tumour-infiltrated T lymphocytes (TILs)

and the definition of the four TCR compartments. (B) Length distribution of the CDR3 beta chains within the four different TCR

compartments. (C) V gene usage of the CDR3 beta chains in different TCR compartments. (D) Proportion of shared TCRs among different

tissue types (TILs or PBMCs) at both sequence level and clone level. (E-F) The indices of clonality and Gini coefficient among different TCR
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TCR sequences with a high degree of similarity and
clonal expansion are more likely to recognize TSAs
effectively. We found the indices of clonality and Gini
coefficient in the PBMCs_Shared compartment were
higher (p < 1le™*) than those in PBMCs_Only compart-
ment (Figure 1E,F). The same trend was also observed
in the PBMC population when single cell TCR-seq data
were analysed (Figure S1B). These results indicate that
TATs are more likely to undergo clonal expansion and
to represent functional tumour-reactive T cells. Adding a
healthy donor cohort PBMC dataset®® as the control (see
Methods), we found that the clonality and Gini coefficient
of the healthy samples were lower (p < 1le~3) than those
of the shared compartments and higher than those of the
tissue-only compartments (Figure 1E,F), possibly due to
the baseline immune activity that developed against com-
mon antigens in the surrounding environments, such as
influenza virus or human cytomegalovirus (HCMV). Our
results suggest T cell clones in the shared compartment
are more likely to be tumour reactive and are different
from those induced by non-tumour antigens commonly
present in healthy individuals.

Moreover, we found that the proportion of TATs in
blood, which is observable only when tumour tissue is
sequenced, was highly correlated with the overall T cell
clonality and Gini coefficient of PBMCs, which were
obtained non-invasively; however, such correlation was
not observed in TILs (Figure 1G,H). These results highlight
the potential of using the T cell clonality and Gini coeffi-
cient of PBMCs as indicators of cancer development. TATs
among PBMCs are more likely to reflect the clonal expan-
sion of T lymphocytes in periphery, and a higher degree of
shared TCR clones among PBMCs may indicate that more
neoantigen-specific T cells pre-exist in the PBMCs.

It has been reported that a greater degree of PBMC-
TIL TCR repertoire overlap indicates an improved immune
response and is associated with better clinical outcome
of immunotherapy.***”#>>> We believe that this compart-
ment largely represents tumour reactive T cells and may
serve as a biomarker to distinguish blood samples of can-
cer patients from those of healthy individuals. In this study,
we sought to build a deep learning binary classifier to pre-
dict tumour-reactive TCR sequences. To construct a train-
ing dataset for the model, we first downloaded a pub-
licly available TCR sequencing data obtained from PBMC
samples of healthy individuals*® as the control dataset
and only used data from HCMV-negative individuals to
exclude potential tumour-irrelevant immune signals. Two
datasets of healthy cohorts were included in the analy-
sis, and we named these sets Healthy351 and Healthy69
according to the number of samples after filtering. Since
the Healthy351 included more healthy donors and TCRs
(more than 30 million), we considered the TCRs in this

cohort to be a healthy TCR pool and used these data to
identify the TCR sequences that overlapped with those
in the PBMCs from cancer patients. Then, we extracted
TAT TCRs in PBMC samples from TIL-PBMC-paired TCR
sequencing datasets described above and filtered TCRs
that were also detected in Healthy351.

We labelled the remaining TAT TCRs as positive sam-
ples and the TCRs in Healthy351 as negative samples. The
schematic workflow and experimental design are sum-
marized in Figure S2A. Deep convolutional neural net-
works (CNNs) generally performed better in TCR pattern
recognition studies *°%; therefore, we encoded the CDR3
beta chain using the one-hot encoding method and built
a three-layer CNN to distinguish the TCRs of TATs from
those of healthy individuals. The output of the CNN is the
probability of each input TCR sequence being the TCR of
a TAT. Next, we generated a TRRS for each PBMC sample
summarizing the number of TATs our model had predicted
in PBMC relative to the number of healthy TCRs that had
been detected in the Healthy351 dataset. We evaluated the
performance of the TRRS for non-invasive cancer detec-
tion with several independent PBMC datasets obtained
from cancer patients using Healthy69 as negative sam-
ples. The detailed illustration of model construction is pre-
sented in the Methods.

We first selected the same number of negative TCRs
as that of TATs and used five-fold cross validation to test
the generalization ability of our CNN model. Consider-
ing the heterogeneity of cancer patients, the data were
split at the patient level rather than at the TCR sequence
level to ensure that the model did not learn sample-specific
confounding effects. Both the receiver operating char-
acteristic curve (ROC) curve and precision-recall curve
(PRC) (Figure 2A,B) showed the model performed mod-
estly well in differentiating TCRs of TATs from TCRs of
healthy samples (ROC: .699-.706, PRC: .446-.787) and are
not influenced by human leukocyte antigen (HLA) haplo-
types (Methods, Figure S2B,C). Because we randomly split
patients into the training and test dataset and high vari-
ation in the number of TATs exists in different patients,
the PRC shows high variability across the different itera-
tions of random splits. The final model was trained and
validated using the entire data, and as the number of train-
ing epochs increased to about 60, the loss and accuracy
had reached a plateau (Figure 2C). Further inspection of
the prediction probability distribution of different CDR3
length indicated a significant difference between the TCRs
of TATs and those of healthy samples (Figure 2D).

Then, to test whether the TAT prediction probability
of our model can be used as a biomarker for differenti-
ating tumour patients from healthy donors, we obtained
seven independent datasets™°~%* containing PBMC TCR
sequencing data of patients with different cancer types
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(Figure S2A). The Healthy69 cohort was used as the nega-
tive controls set. We used a TRRS (Methods) to estimate the
degree of TAT enrichment in the PBMC population of each
sample. Briefly, we counted the number of TATs our model
has predicted and then divided it by the number of healthy
TCRs in PBMCs that overlapped with the Healthy351
pool.

At a threshold above .66, the TRRS can differen-
tiate PBMC samples of normal individuals from
those of patients with various cancer types effectively
(Figure 2E,F), indicating the feasibility of using TRRS
of TATs for non-invasive tumour screening. We found
that our result is robust by setting the threshold at dif-
ferent levels (Figure S3A-F). To provide evidence that
the prediction of our model was not simply a generic
active cell-mediated immune response, we introduced
an experimentally validated HCMV positive cohort with
TCR-seq data from their PBMC samples (Table S1). We
calculated the TRRS for these individuals and compared
them with that of the cancer patients. We show that the
TRRS of HCMV positive cohort is lower than that of the
cancer patients, indicating our model is able to distin-
guish individuals with cancer from those with infectious
diseases. Based on the TRRS, we divided the samples
in the independent validation cohort into high-risk and
low-risk group separated at the 50% quantile. We found
that the clonality and Gini coefficient in the high-risk
group were significantly higher (p < 1le~3) than those in
the low-risk group (Figure 2G,H), implying that the TCRs
in the high-risk group were associated with more clonal
expansion and active immune functions. In addition,
we analysed sequence motif enrichment in TCRs with
the top 25% and bottom 25% probabilities of being a TAT
(Figure 21,J). We found that CDR3 sequences in the high
probability group showed an enrichment of serine in the
second position, while those in the low probability group
tended to have an alanine in this position. Sending pub-
licly available databases of virus/bacterial TCR sequences
into the prediction model shows that CDR3 sequences
among different lengths tended to have an alanine in the
second position, which indicates that features specifically
associated with the TCR of clonally expanded TATSs
are not enriched in virus/bacteria TCRs (Figure S3L).
In summary, we used TCR sequences from TATs and
healthy donors to build a binary predictive CNN model
and designed a TRRS based on the model prediction for
effective non-invasive cancer screening with PBMCs.

Single-cell-RNA-multiplexed-TCR-sequencing (sScCRNA-
TCR-seq) technology makes it possible to not only trace
the TCR clone sharing relationship between tumour and
paired PBMCs samples, but also quantify the transcrip-
tomics patterns at the single cell level.****%-% We per-
formed a comprehensive literature review and obtained 14

high-quality scRNA-TCR-seq datasets that met our crite-
ria (Table S2). We found no significant difference (p > .05)
in the CD4"/ CD8" ratio between PBMCs from cancer
patients and healthy donors (Figure 3A), implying that
the relative ratio of CD4% and CD8" T cells remains
unchanged after tumour initiation, in contrast to the ratio
in patients with acute infection, which is usually lower
than that in uninfected healthy samples.”’~’> However,
the proportion of clonal T cells (clone frequency > 2)
was higher (p < 1e73) in tumour patients than in healthy
donors (Figure S4A), indicating a higher clonal expansion
of T cells in cancer patients. Moreover, we found that the
CD4*%/ CD8" ratio was significantly lower in TATs than in
non-clonal T cells (clone frequency = 1) in patient PBMCs
(Figure 3B), suggesting that the expansion of CD8* T cell
is greater than that of the CD4* cells upon tumour antigen
stimulation.

Next, to provide further evidence that TATs represent
tumour-specific T cells among PBMCs, we performed
clustering analysis utilizing both single-cell RNA and
TCR information of T cells among tumour and healthy
donor PBMCs by the TCR functional landscape esti-
mation supervised with scRNA-seq analysis (TESSA)”
algorithm. We found that tumour-specific clusters had a
higher proportion of TATs than normal specific clusters
(p < 1e™*) in nearly all the 14 datasets (Figure 3C, Meth-
ods), indicating that TATs in the blood of patients with
various types of cancer are tumour specific and dissimilar
to T cells in the blood of healthy donors. To integrate
datasets from various sources, we used a label transfer
method” by taking one clear cell renal cell carcinoma
(ccRCC) dataset” as the reference due to its detailed cell
type annotation information. Then we projected the cells
from other datasets onto the reference map to transfer the
cell type annotation. We found that most T cells in the
non-clonal group were CD4" naive/proliferating/effector
T cells, while most TATs were CD8" NK-like/effector T
cells (Figure 3D). These results demonstrated that TATs
are mostly activated CD8" T cells and may exert cytotoxic
functions upon tumour stimulation.

To further explore transcriptional signatures of TATSs
among PBMCs, we performed differential gene expression
analysis between CD8* TATs and non-clonal T cells in
each dataset. To prevent potential batch effects caused by
using different data sources and guarantee a robust analy-
sis, genes that were differentially expressed in more than
10 of the 14 datasets were selected to generate the TAT
signature genes (Figure 3E). Enrichment analysis of TAT
signature genes indeed implies a T lymphocytes activa-
tion and cytotoxicity function exemplified by pathways like
antigen processing and presentation, PD-1 signaling and
immune effector process pathways, which are involved in
anti-tumour process (Figure 3F).
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Transcriptional signature gene analysis using single cell data shows T cell activation is involved in the tumour-associated T

cells (TATs). (A) CD4*/ CD8" T cell relative ratio in PBMCs between tumour and healthy samples calculated by single cell data. (B) CD4*/
CD8* T cell relative ratio between TATs and non-clonal T cells in PBMCs. (C) The proportion of TATSs in tumour and healthy-specific clusters
(in which tumour patients or healthy donors derived T cells occupy more than 70%, see Methods) by TCR functional landscape estimation
supervised with scRNA-seq analysis (TESSA) clustering analysis. (D) T cell subtype distribution in different T cell receptor repertoire (TCR)

compartments. (E) Heatmap shows differentially expressed genes between TATs and non-clonal T cells. (F) Gene Ontology (GO) analysis of
TAT differentially expressed genes

Similarly, T cell activation was enriched in non-clonal
group from patient PBMCs compared with that in T cells
from healthy PBMCs (Figure S4B), indicating that non-
clonal T cells in tumour patients are generally more active
than T cells in healthy donors. The reason might be two-
fold: (1) clonal T cells were labelled as non-clonal due to
sampling dropout in single-cell experiments; (2) system-
atic immune response was induced upon tumour stimula-

tion. Moreover, we found that the frequencies of TAT TCRs
in tumour tissues were significantly correlated with those
in PBMCs (Figure S4C), suggesting that the clone size of
the TATs among PBMCs reflects the clone size in tumour

sites to some extent.*®

T cell metabolism is coupled with many immuno-
logical signals and facilitates the adaptation of T cells
encountering pathogens and tumours.”® We mined Kyoto
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FIGURE 4 Transcriptional signatures are generalizable to predict the tumour-associated T cells (TATs) from other single cell datasets.
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using a colorectal cancer (CRC) dataset to train the prediction logistic regression model and testing the performance of model on the other

datasets. (C) Permutation analysis by randomizing the true labels of TATs 1000 times and comparing the Area Under the Curve (AUC)
distribution with the true prediction AUC values on each dataset. (D) PD-1 expression between TATs and non-clonal T cell group. (E) ROC
plot using the expression of PD-1 alone to differentiate TATs from non-clonal T cells. (F) Differential expression analysis between TATs in
PBMCs and TILs_Shared compartment in tumour-infiltrated T lymphocytes (TILs)

Encyclopedia of Genes and Genomes (KEGG) metabolism
pathways and analysed metabolic pathway changes in
TATs. We found that the glycosaminoglycan degradation
pathway was significantly enriched (p < 1le73) in TATS,
while the purine metabolism pathway was significantly

depleted (p < 1e~3) in TATs (Figure 4A). The glycosamino-
glycan degradation pathway is mediated by enzymes pro-
duced by activated T cells, and it has been reported to be
involved in the immune response and regulation of T cell
homeostasis.”””® On the other hand, purine metabolism
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especially the adenosine synthesis axis serves as a common
path for attenuating T cell activation and can mediate regu-
latory T cell to suppress immune activity’”-%; therefore in
the TATs compartment, this metabolic pathway is down-
regulated.

Since the TAT data we collected were from samples
manifesting different cancer types, with some obtained
from different species, we wondered whether the tran-
scriptional signatures of TATs in these datasets can be
generalized to predict TATs in other datasets. We there-
fore performed a leave-one-dataset-out cross-validation
experiment and used signatures of TATs explored in each
dataset to build a logistic regression binary model. Then,
we applied the model to independently test the TAT pre-
diction performance on all the other datasets (Methods).
The ROC demonstrated that the gene module can be sat-
isfactorily generalized across different datasets (Figure 4B,
Figure S4D-0) satisfactorily, and a permutation analysis
demonstrated the robustness of our signatures (Figure 4C).

Our results suggest that using TCR sharing as molecu-
lar barcodes, we can characterize the transcriptional sig-
natures of a group of tumour-specific TATs. Previously,
PD-1*CD8" T cells were believed to be tumour-specific
biomarkers in both TILs and PBMC population,?®? and
we found that PD-1 was indeed highly-expressed in TATs
(Figure 4D) compared with its expression in non-clonal T
cells (p < 1e~*). However, using the normalized expression
of this gene alone was not sufficient to distinguish TATSs
from non-clonal T cells (Figure 4E).

Because of the differences in TME and blood, TATs
circulating in the periphery may acquire immunopheno-
types that differ from those in TME, even when the TCR
sequences are the same. Using the aforementioned pro-
cedure, we performed differential gene expression anal-
ysis between cells of TATs among PBMCs and T cells
of TILs_Shared among TILs. We identified genes that
were consistently differentially expressed in more than 10
datasets. We found that compared to T cells of TILs_Shared
among tumour tissue, TATs among blood showed signifi-
cantly higher levels of T cell migration and immunoregu-
latory interactions between lymphoid and non-lymphoid
cell (Figure 4F), further demonstrating that circulating
TATs have the capacity to migrate across periphery, lym-
phoid and tumour tissues.

After identification of transcriptional signatures in TATS
on the basis of sScRNA-TCR-seq data, we sought to val-
idate whether TAT signature genes can be applied to
classify PBMC samples with bulk RNA-seq. We collected
three independent bulk RNA-seq PBMCs datasets com-
prising 33 breast cancer PBMC samples, eight hepatocel-
lular carcinoma (HCC) PBMC samples and 12 healthy
PBMC samples. We named these datasets validation cohort
1 (Table S3). Principle component analysis showed that

the tumour samples were transcriptionally separated from
healthy samples (Figure 5A) in validation cohort 1, indicat-
ing salient differences between the peripheral blood of can-
cer patients and that of healthy individuals. We found that
the expression pattern of TAT signature genes was distinct
in tumour and healthy samples (Figure 5B), confirming
that the signature module derived from the scRNA-TCR-
seq data can also be used with bulk PBMCs RNA-seq data
to distinguish cancer patients from healthy individuals.

The tumour reactive immune response is usually trig-
gered by immunogenic neoantigens expressed on tumour
cells. Therefore, we sought to determine whether the
tumour immunogenicity score (TIGS)* is correlated with
the expression of TAT signature genes. We utilized the
mutation and transcriptional data of 31 cancer types in the
The Cancer Genome Atlas (TCGA) database and defined
the TIGS as the tumour mutation burden multiplied by the
mean expression of a group of antigen-presenting genes
for each sample. We found that in nearly all the can-
cer types, the TIGS was significantly higher in the TAT-
signature-high group than in the TAT-signature-low group
(Figure 5C), providing evidence supporting our hypothesis
that transcriptional activation of TATs is associated with
the tumour mutation load.

Both the TCR repertoire and transcriptional signatures
of TATs have the capacity to distinguish tumour patients
from healthy samples. To determine whether the com-
bination of these two types of features can be leveraged
to achieve better performance for non-invasive tumour
screening, we performed bulk TCR and RNA sequencing
of PBMCs samples from 11 tumour patients and six healthy
donors (Table S4). Hereafter, we named this dataset as
validation cohort 2. We merged the PBMC samples from
validation cohort 1 and 2 to increase the sample number
included in the integrated analysis. We found that the clon-
ality and Gini coefficient of the PBMCs in cancer patients
were significantly higher than those in healthy donors
(Figure 6A,B), which is consistent with the results reported
in the previous sections. Next, we predicted the relative
proportion of immune cells in each sample by cell type
devolution of the bulk RNA-seq data using an R pack-
age, Immuno-Oncology Biological Research (IOBR).** We
found that the fractions of T cells-related components such
as Tregs and T follicular helper cells were significantly
different between tumour and healthy PBMCs samples
(Figure 6C).

Next, by integrating these two types of features, we
designed a novel tumour screening framework. We first
used the TAT prediction model to generate the TRRS for
each PBMC sample. Then, we calculated the TAT signa-
ture score using bulk RNA-seq data obtained from the
same sample. The two scores were then used to build
a binary logistic regression model and define the final
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FIGURE 5

Transcriptional signatures acquired from single cell datasets can be used to distinguish tumour patients from healthy

individuals of bulk RNA-seq data. (A) Principle component analysis (PCA) plot of PBMC samples from tumour patients and healthy donors.

(B) Heatmap of the expression patterns of tumour-associated T cells (TATs) signature genes from tumour and healthy bulk RNA-seq samples.

(C) The tumour immunogenicity score (TIGS) in 31 cancer types from The Cancer Genome Atlas (TCGA) database between the

TAT-signature-high group and the TAT-signature-low group

cancer risk score as the probability of the model predic-
tion (Figure 6D). We found that either TRRS or TAT signa-
ture score has the capacity to distinguish blood samples of
cancer patients from those of healthy individuals. Combin-
ing these two scores led to better predictive performance
(Figure 6E), demonstrating the potential application of the
two scores for use in non-invasive tumour screening.
Understanding the tumour-specific T lymphocyte
response helps us explore immune signatures of tumouri-
genesis. In this study, we first separated the T cells into
four different compartments based on the TCR-sharing
relationship and analysed the clone expansion differences
between these compartments. We used a group of TATSs
in the PBMC population that shared TCRs with TILs
and a group of healthy TCRs to build a binary model. We
designed a TRRS, which is the number of predicted TATs
among PBMCs divided by the number of healthy TCRs in
the healthy TCR pool. We found that TRRS can serve as
an indicator to distinguish tumour patients from healthy
donors in a series of clinical cohorts with different cancer
types. In addition, leveraging the scRNA-TCR-seq data
of paired tumour tissues and PBMCs, we characterized
the transcriptional signatures of TATs and found that T

cell activity and cytotoxicity were increased in TATs. TAT
signature genes mined from single cell data were also
validated with bulk RNA-seq PBMC data, showing high
applicational prospect. Finally, combining the informa-
tion from the TCR sequence and signature gene level of
TATs, we designed an integrated framework for tumour
screening and validated it with an independent clinical
dataset. This framework considered tumour-associated
TCR repertoire and transcriptional patterns of TATs,
providing insights into an alternative strategy of liquid
biopsy on the basis of the immune cells.

Our method offers a new perspective for tumour screen-
ing harnessing the tumour-associated immune response.
Imaging-based diagnostic assessments, including breast
mammogram and low dose computed tomography scan
screening methods, are used in limited cancer types.®*®
False positive rate and overdiagnosis remain major
concerns.’® Serum protein-based markers such as a-
fetoprotein, prostate-specific antigens, carcinoembryonic
antigen, CA19-9 and CA125 have been investigated in clin-
ical studies, but the specificity is not satisfactory for pop-
ulation level tumour screening.' Liquid biopsy methods
utilizing ctDNA usually need predefined biomarkers of
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tumour somatic mutations and are highly heterogeneous
among and within cancer types. Mutations called from
plasma cfDNA often come from white blood cells rather
than tumour cells.” Besides, tumour-specific ctDNA and
CTC are expected to be rare in the bloodstream, and cap-
turing the tumour-specific signals often needs to perform
ultra-deep next-generation sequencing.®®

Our method provides a feasibility of tumour screening
from the view of tumour-associated T cells that are
antigen-independent, shifting the diagnostic paradigm
from tumour-modality-driven to immune-response-
driven.®” Since immune responses are usually ahead of
any measurable symptoms, this framework may have the
potential to detect diseases at early stages. The melanoma
cohort’® in our study consists of tumour samples of
early stage (Stage I, Table SI), indicating the potential
capability of our model for identifying early stage tumour
patients. Besides, our framework can serve as a cheap,
non-redundant and complementary diagnostic paradigm
for tumour screening since we use information of both
DNA (for TCR repertoire quantification) and RNA (or
protein, for immunophenotype quantification) level from
peripheral blood. Last but not the least, the framework we
provided is not intended to replace the current diagnostic
paradigms, and we think it can serve as a complementary
method with existing modalities.

There are limitations of our study, which should be
considered. Our binary predictive model based on TCR
sequences from different patients and cancer types does
not currently address HLA restriction information. HLA
restriction information is very important to the TCR reper-
toire distribution in patients since it is related to the pat-
tern of the antigen peptides presented. We believe that,
when it is accessible, this information can be incorporated
into the model, and adding it will improve model perfor-
mance. Leveraging deep learning architecture allows us to
incorporate many types of features to predict TATs. How-
ever, we realize that transcriptional signatures are essen-
tial but not determinant factors for distinguishing tumours
from healthy samples. The immune reaction induced by
TSAs may be similar to that included by common pathogen
infections. In our study, we have mined publicly available
databases of virus/bacteria TCR sequences and removed
all the T cell clones overlapped with the sequences in these
databases before developing the model or performing dif-
ferential gene expression analysis, alleviating this problem
to a great extent. Notably, the starting material and library
construction methods for TCR sequencing can profoundly
influence the TCR repertoire detected. Using gDNA as the
starting material for TCR sequencing leads to more sta-
ble results and allows for better quantification of each sin-
gle TCR clone, while employing RNA potentially provides

information on expression levels. Therefore, consolidating
TCR sequencing data from different starting materials and
library construction warrants further efforts.
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