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Abstract: The intense research focus on stem and progenitor cells could be attributed to their
differentiation potential to generate new cells to replace diseased or lost cells in many highly
intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases.
However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of
these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules,
none of these molecules singly or in combination could recapitulate the functional effects of stem
cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate
the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the
prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically
active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or
diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both
primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due
to the composition of their cargo. The cargo of EVs from different cell types are known to include a
common set of proteins and also proteins that reflect the cell source of the EVs and the physiological
or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an
insight into the multiple physiological or biochemical changes necessary to affect the many reported
stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.
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1. Introduction

Stem cells or progenitor cells are presently our best candidate therapeutic to treat intractable
degenerative or genetic diseases through their capacity to engraft, differentiate, and generate new
healthy cells to replace injured or diseased cells. This is best evidenced by the clinical success of
hematopoietic stem cells as used in bone marrow transplantation to re-populate the recipient’s
hematopoietic compartment with donor cells and treat a myriad of diseases such as cancer and
genetic blood diseases such as thalassemia. Hence, the discovery of pluripotent stem cell (PSC) and
non-hematopoietic tissue stem cells such as mesenchymal stem cell (MSC), neural stem cell (NSC),
endothelial progenitor cell (EPC), or cardiac progenitor cells (CPC) has generated much optimism
that non-hematopoietic diseases could also be similarly treated by replacing diseased cells with newly
generated cells from pluripotent or tissue stem cells. Preliminary animal studies have demonstrated
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that many pluripotent or tissue stem cells have the potential to reduce the severity of many intractable
degenerative or genetic non-hematopoietic diseases [1–5]. In fact, many of these stem or progenitor
cells are being tested in clinical trials to treat many different diseases such as acute myocardial infarction
(AMI), liver damage, ischemic kidney failure or stroke, amyotrophic lateral sclerosis (ALS), spinal cord
injury, graft-versus-host disease (GVHD), etc. (Available online: http://www.clinicaltrials.gov).

1.1. Stem Cells

Stem cells (SCs) are generally defined as undifferentiated renewable cells that can differentiate into
tissue-specific cell types with specialized functions. Currently, stem cells are divided into embryonic
or “pluripotent” stem cells, and non-embryonic “somatic”, “adult” or “tissue” stem/progenitor cells.
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst,
an early-stage preimplantation embryo [6], and they are distinguished by two distinctive properties:
pluripotency and the ability to replicate indefinitely. They are able to differentiate into the more than
200 cell-type derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. Adult
stem/progenitor cells, also known as somatic stem cells, are undifferentiated cells found throughout the
body in juveniles as well as adults. These cells have large proliferative capacity and lineage-restricted
differentiation potential, and could regenerate and contribute to physiological cell turnover [7–10].
To date, a large number of adult stem cells have been identified and isolated, and many have been
reported to elicit therapeutic efficacy in animal studies and clinical trials. Some of these adult stem
cells are MSCs, EPCs, CPCs, and NSCs. MSCs are multipotent stromal cells that can differentiate into a
variety of mesodermal cell types [11] such as osteoblasts, chondrocytes, and adipocytes. They are also
the most used stem cell type in clinical trials, primarily because they are multipotent, can be easily
isolated from adult tissues, and have a large ex vivo expansion capacity [12]. EPCs, a subset of bone
marrow-derived cells, are generally defined as circulating cells that express cell surface markers similar
to those expressed by vascular endothelial cells, adhere to endothelium at sites of hypoxia/ischemia,
and participate in new vessel formation [13,14]. CPCs are resident cardiac progenitor cells that are
postulated to be derived from bone marrow or the embryonic cell population. They are thought to
contribute to the physiological turnover of cardiac myocytes and vascular endothelial cells [15,16].
NSCs are self-renewing, multipotent cells that could be isolated from the fetal and adult brain, and
have the potential to differentiate into neurons, astrocytes, and oligodendrocytes [17].

The use of embryonic versus adult stem cells for cell-based regenerative therapies has its own
unique advantages and disadvantages [18]. Unlike adult stem cells whose ex vivo expansion capacity
and differentiation potential are limited, embryonic stem cells have unlimited ex vivo expansion capacity
and the potential to differentiate and replace almost every cell type in the adult body. However, adult
stem cells are technically more amenable to our present regulatory framework and are ethically less
controversial. In addition, the risk of immune rejection could be greatly reduced as adult stem cells
could be harvested from the patient’s own body for ex vivo expansion and transplantation [19,20].
Their limited differentiation potential also mitigates the risk of forming aberrant or inappropriate
tissues that could be deleterious, e.g., the formation of hard bone tissue in soft tissues like the brain. As
such, the use of adult stem cells as therapeutic agents far exceeds that of ESCs and is currently being
tested in the clinic against a large variety of disease indications.

1.2. Therapeutic Stem Cell Extracellular Vesicles (EVs)

Of the stem cells that are currently in clinical trials, the most widely used cell type is MSC and
the other cell types are EPC, NSC and CPC (Available online: http://www.clinicaltrials.gov). The
use of stem cells as therapeutics is often rationalized on their differentiation potential to generate
replacement cell types. However this differentiation rationale was found to be increasingly inadequate,
particularly for MSC which, being the widely used cell type, is also the best scrutinized. There are
presently sufficient MSC studies to support an alternative proposal that MSC exerts its therapeutic
effects through a secretion, and not a differentiation mechanism [12,21]. In many studies where
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functional improvement was reported after MSC transplantation, it was observed that migration,
engraftment, and differentiation of MSCs at the sites of injury were rare [22–24], and involved <1% of
transplanted cells [12]. It was also observed that migration of transplanted MSCs to the injured tissue
is not necessary for efficacy [25–28].

The hypothesis that stem cells could exert therapeutic activity through their secretions is highly
plausible as stem cell secretions are known to include many biologically potent molecules such as
growth factors, cytokines, chemokines, and bioactive lipids that could elicit wide-ranging physiological
effects [29]. This hypothesis was first validated for MSCs simply because they are the most studied
stem cell type in therapeutic applications [21]. MSC-conditioned culture medium alone has been
reported to recapitulate the efficacy of MSCs in cardioprotection [30–32], renal tubular cell survival [33],
protection against fulminant hepatic failure [34,35], and immunomodulatory activity to alleviate
immune disease [36]. However, it is unlikely that the capacity of MSCs in ameliorating complex and
diverse tissue injuries such as myocardial ischemia/reperfusion injury or graft-versus-host disease
could be attributed to a single molecular factor (reviewed [37,38]). Hence, EVs with their large and
complex cargo of lipids, proteins, and RNAs are more likely candidates (reviewed [37,38]), and many
stem cells are known to secrete EVs. Beside MSCs [39], ESCs [40], EPCs [41], NPCs [42], and CPCs [43]
also secrete EVs. Some of the characteristics of EVs are comprehensively discussed in this focus edition
by Kalra et al. [44].

With increasing evidence that EVs are major mediators of intercellular communication in many
cell types [45,46], it is likely that EVs also perform similar functions for stem cells. As such, they would
be expected to be significant in the hypothesis that stem cells exert therapeutic activity through their
secretions by communicating therapeutic signals from stem cells to recipient cells to initiate repair
and regeneration. The first therapeutically efficacious EVs secreted by stem cells were reported in
2009 when Bruno et al. reported that 180 nm MSC-derived microvesicles protect against acute tubular
injury [39]. We subsequently reported that the smaller MSC-derived exosomes with a hydrodynamic
radius of 55–65 nm also protect against acute myocardial ischemia/reperfusion injury [38,47], enhance
wound healing [48], alleviate GVHD [49], reduce renal injury [50], and promote damaged hepatic
regeneration [51]. Other groups have also reported the potential efficacy of MSC exosomes or EVs in
treating other disease indications. For example, Xin et al. reported that MSC-derived exosomes promote
neural plasticity and functional recovery in stroke via the transfer of miR-133b [52,53]. Katsuda et al.
reported that human adipose MSC-derived exosomes contain functional neprilysin, a major β-amyloid
peptide-degrading enzyme and, thus, have the potential to reduce the pathological accumulation of
β-amyloid peptide in Alzheimer’s disease [54]. MSC-derived EVs were also found to protect against
hypoxia- and endotoxin-induced lung injury [55,56]. More recently, EVs from CPCs have also been
reported to be efficacious in cardiovascular disease [43,57–59]. EPC was reported to secrete EVs as
early as 2007 [41], and these EVs enhance vascularization of xenotransplanted human islets in mice,
alleviate renal ischemia/reperfusion injury in rats, and induce neovascularization in a murine model
of hindlimb ischemia [60–62]. NSCs were first reported to secrete EVs in 2005 [42] and were shown in
2013 to promote neural plasticity and functional recovery after treatment of stroke. Together, these
studies demonstrated that eutherapeutic outcomes of stem cell-treated tissue injury could be mediated
by EVs [43,63–65] (as summarized in Table 1). Camussi et al. proposed that these EVs could potentially
be home to target cells through receptors present on their surface such that, upon internalization, the
cargo of EVs is loaded into diseased or injured target cells to initiate tissue repair and regeneration [66].

2. Mechanisms Underlying the Therapeutic Potential of Stem Cell EVs

In general, the functions of stem cell-derived EVs do not differ much from those found in EVs
derived from non-stem cells. Essentially, stem cell EVs, like other EVs, function to transfer lipids,
nucleic acids, and proteins from one cell to another to elicit biological responses, and it is well
documented that EVs from stem cells could indeed elicit biological responses from recipient cells
that are consistent with the contents of the EVs. For example, Ratajczak et al. [67] demonstrated
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that EVs from mouse ESCs enhanced survival and expansion of hematopoietic progenitor cells, and
upregulated early pluripotent (Oct-4, Nanog, and Rex-1) and early hematopoietic stem cell (Scl, HoxB4,
and GATA 2) markers. They attributed these effects to the presence of Wnt-3 protein and mRNA for
pluripotent transcription factors in the mESC-derived EVs [67] (as illustrated in Figure 1 and Table 2).
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Figure 1. A proposed model for mechanisms underlying stem cell EV therapeutic potential. By delivery
of lipids, proteins, and genetic information, stem cell-derived excellular vesicles (EVs) may biologically
activate recipient cells to elicit relevant therapeutic effects.

Like ESC-derived EVs, EPC-derived EVs were also biologically active and their RNA cargo were
implicated in EV-elicited biological or therapeutic responses such as angiogenesis [41] or protection
against angiotensin II (Ang II)-induced cardiac hypertrophy and apoptosis [68]. Subsequent studies
specifically implicated miR-126 and miR-296 [60,61] as the RNAs responsible for the angiogenic effect
of EPC-derived EVs. CPCs are also known to exert therapeutic effects through RNAs delivered by
their EVs. CPC-derived EVs protect against ischemia-reperfusion injury by delivering miR-451 to
injured cardiomyocytes [57] or miR-146a to recapitulate the regenerative and functional effects of CPC
transplantation [58]. Recently, it was suggested that grafted NSCs communicate with the host immune
system by inducing interferon gamma signaling through EV-associated IFN-γ/Ifngr1 complexes [69]
(as illustrated in Figure 1 and Table 2).



Int. J. Mol. Sci. 2016, 17, 174 5 of 11

Table 1. Therapeutic role of stem cell EVs in various tissue injury models.

Author Year EV a Source Disease or Assay Model Therapeutic Effects Ref.

Bruno et al. 2009 BM-MSC b Glycerol-induced acute kidney injury (AKI) in SCID c mice Protect against acute tubular injury [39]

Lai et al.
2011

ESC-MSC d Myocardial ischemia/reperfusion injury Protect against acute myocardial ischemia/reperfusion injury [38]
2010 [47]

Zhang et al. 2014 UC-MSC e Rat skin burn model Accelerate skin damage repair [48]

Kordelas et al. 2014 BM-MSC A therapy-refractory GVHD f patient Improved the clinical GVHD symptoms significantly [49]

Bruno et al. 2012 BM-MSC Lethal cisplatin-induced AKI in SCID mice Exert a pro-survival effect [50]

Tan et al. 2014 ESC-MSC Carbon tetrachloride (CCl4)-induced liver injury mouse model Elicit hepatoprotective effects against toxicants-induced injury [51]

Xin et al.
2012

BM-MSC Middle cerebral artery occlusion and reperfusion model Promote neural plasticity and functional recovery [52]
2013 [53]

Katsuda et al. 2013 ADSC g Co-culture of N2a cells with ADSCs Decrease β-amyloid peptide (Aβ) levels in the N2a cells [54]

Lee et al. 2012 UC-MSC Murine model of hypoxic pulmonary hypertension Exert a lung protection and inhibit pulmonary hypertension [55]

Zhu et al. 2014 BM-MSC E. coli endotoxin-induced acute lung injury (ALI) in mice Restore lung protein permeability and reduce inflammation [56]

Barile et al. 2014 CPC h Rat acute myocardial infarction (AMI) model Inhibit cardiomyocyte apoptosis and improve cardiac function [43]

Chen et al. 2013 CPC Acute mouse myocardial ischemia/reperfusion (MI/R) model Protect myocardium from acute MI/R injury [57]

Ibrahim et al. 2014 CPC Acute and chronic myocardial infarction model in SCID mice Enhance angiogenesis and promote cardiomyocyte survival [58]

Vrijsen et al. 2010 CPC The in vitro scratch wound assay Enhance migration of endothelial cells [59]

Ranghino et al. 2012 EPC i Murine model of hindlimb ischemia in SCID mice Induce neoangiogenesis and favor recovery [60]

Cantaluppi et al. 2012 EPC Rat acute kidney ischemia-reperfusion injury model Protect the kidney from ischemic acute injury [61]

Cantaluppi et al. 2012 EPC Human islet transplantation model in SCID mice Enhance insulin secretion, survival, and revascularization [62]
a EV: extracellular vesicles; b BM-MSC: bone marrow-derived mesenchymal stem cell; c SCID: severe combined immunodeficiency; d ESC-MSC: embryonic stem cell-derived
mesenchymal stem cell; e UC-MSC: umbilical cord-derived mesenchymal stem cell; f GVHD: graft-versus-host disease; g ADSC: adipose tissue-derived mesenchymal stem cell; h CPC:
cardiac progenitor cells; i EPC: endothelial progenitor cells.
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Table 2. Examples of mechanisms underlying stem cell EV therapeutic potential.

EV Source EV-Associated Active Contents Biological Activities Ref.

ESC Wnt-3 protein and mRNA Enhance hematopoietic progenitor cell survival and upregulate Oct-4, Nanog, Rex-1, Scl, HoxB4, and GATA 2 [67]
EPC miR-126, miR-296 Angiogenesis or protection against angiotensin II-induced cardiac hypertrophy and apoptosis [41,60,61,68]
CPC miR-451, miR-146a Protect against cardiac ischemia-reperfusion injury and recapitulate the regenerative and functional effects [57,58]
NSC IFN-γ/Ifngr1 complexes Induce interferon gamma signaling [69]
MSC RNA/protein cargo Protect against acute tubular injury and myocardial ischemia-reperfusion injury [37,39,47,70–73]
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The earliest stem cell reported to exert therapeutic effects through EVs is MSC, where MSC-derived
EVs reportedly protect against acute tubular injury through their RNA cargo [39]. MSC-derived
EVs also protect against myocardial ischemia-reperfusion injury [47]. Based on the cargo load of
EVs [37,70,71], and the proteomic changes in the heart during myocardial ischemia-reperfusion
injury [72], we hypothesize that MSC-derived EVs protect heart tissues against the injury by proteomic
complementation to compensate for the proteomic alterations in myocardial ischemia-reperfusion
injury and restore ATP production and induce survival signaling [73] (as illustrated in Figure 1 and
Table 2).

We had also derived and characterized human fetal MSC and umbilical cord MSC as an alternative
cell source for large-scale production of therapeutic cardioprotective EVs [74,75]. Consistent with the
well-documented observation that the therapeutic efficacy of MSC is inversely correlated with the
developmental stage of the donor, this correlation extended to the EVs. We observed that cord-derived
MSC produced the least amount of therapeutic EVs, followed by fetal- and then ESC-derived MSC,
suggesting that the inverse correlation between the therapeutic efficacy of MSC and the developmental
stage of the donor is underpinned by the rate of EV production [75].

3. Conclusions

Stem cell EVs exert their therapeutic potential through the transfer of biologically active molecules
in their vesicular cargo, which includes proteins, bioactive lipids, mRNA, and microRNA. The diversity
of this EV cargo provides a rationale for the many reported stem cell-based therapeutic outcomes.
There is now ample evidence of the effective recapitulation of the therapeutic efficacy of stem cells
by their secreted EVs. This renders stem cell-derived extracellular vesicles a compelling alternative
off-the-shelf, cell-free therapeutic modality that could be effective, safer, and cheaper. However,
realizing this promising therapeutic modality of stem cell EVs would require extensive testing to
validate their safety and efficacy.

For further information on the basic properties of EVs, their involvement in neurodegenerative
and malignant diseases, their role in cell-cell communication, their potential as drug delivery vehicles,
etc., the reader is referred to the various reviews in this focus edition [44,76–79].
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